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Abstract: Weakly rigid drilling systems, such as the industrial robot, are widely used in aerospace,
military, and other fields due to its good flexibility and large scope of operation. However, the weak
rigidity can easily cause burrs, seriously affecting the precision of parts and product performance.
To reduce the heavy deburring process and to improve continuous production and sustainable
processing capacity, accurate prediction of burr quality is a prerequisite. Traditional burr forming
theory cannot accurately predict the drilling defects. Data-driven approaches can be independent of
prior knowledge and discover relationships between process parameters and machining precision
directly from the data structure itself. Therefore, to take advantage of both approaches, a fusion
model was established for burr classified prediction. On the one hand, the drilling and burr forming
process was firstly modeled, and preliminary classification results for burrs were calculated. On the
other hand, according to the measured data, the errors between initial calculation results and actual
classification results were obtained and selected as the tag values of dataset, which served as inputs
for the error compensation model of burrs. Finally, by training the network of TCN–DNN using
the drilling data, the burr classified prediction in a weak rigid hole-making system was realized.
Experimental results showed that compared with traditional drilling theory, the prediction accuracy
of the proposed model improved by 25%, reaching 91.67%. The results can provide a basis for judging
the process of burr post-treatment, which has practical guiding significance. This method is beneficial
to reduce the heavy deburring process and to improve sustainable processing capacity.

Keywords: industrial robot; weak rigidity; sustainable processing; drilling; burr classified prediction;
fusion model

1. Introduction

Automatic hole-making by industrial robots is widely used in aerospace, military, and
other fields [1,2]. As its system stiffness is usually less than 1/10 of traditional CNC machine
tools, there will be strong vibration under the action of large drilling force, and as such
it is difficult to guarantee processing quality. This will lead to unpredictable burr quality
and heavy deburring processes in late processing. To improve continuous production and
sustainable manufacturing capacity, accurate prediction of burr quality is a prerequisite.
By accurately implementing burr classified prediction in weak rigid hole-making systems,
substandard products can be targeted, and reprocessing and process parameters can be
effectively optimized, which can significantly improve the quality and efficiency.

Generally, machining systems with rigidity lower than 7 × 106 N/m are defined as
weak rigid systems [3,4]. Taking the drilling technology of anti-aircraft tanks as an example,
the bolt mounting holes on the car frame have the characteristics of scattered positions and
large-span hole pitches. It is difficult to control burrs when using industrial robots to make
holes because of insufficient rigidities of the system. In the actual hole-making process,
as the drilling force changes, the machining tremor of the weak rigid system increases,
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working time becomes longer, surface integrity of the holes becomes worse, and burrs
become larger. It is easy to cause fatigue failure of mounting holes and serious safety
accidents [5,6].

Due to the weak rigidity of the system, the drilling process will bring about consider-
able instability and uncertainty. Traditional burr forming theory cannot accurately predict
the drilling deflections. In the working process of the weak rigid hole-making system,
there are two main types of factors affecting the drilling performance: the geometric factors
involving the diameter-to-length (D:L) ratio, hole tolerance, center-drill, surface prepa-
ration, plate structure, etc.; and the dynamic factors involving the drilling force, drilling
temperature, tooling equipment, the spindle speed, feed, etc. Furthermore, there is a cou-
pling relationship among these factors. Thus, it is almost impossible to build an analytical
model that can accurately predict the burrs. A data-driven approach can be independent of
prior knowledge and discover relationships between process parameters and machining
precision directly from the data structure itself. However, the pure data-driven model
is overly context-dependent and inadaptable to complex forecasting problems, and it is
difficult to maintain high accuracy.

In this paper, mechanical characteristics of the drilling process in weak rigid systems
will be firstly studied, and then the data-driven approach will be deeply integrated to
construct a novel burr-classified prediction model. This fusion model uses the mechanism
model to guide the data-driven model and performs multi-stage compensation correction
to improve the prediction performance.

2. Literature Review

The current research mainly focuses on burr control of drilling systems from three
perspectives: (1) Optimized machining parameters. Zai et al. [7] took full account of
the power capability of the hole-drilling system, involving axial force power, material
deformation power, and the total power, and calculated the burr height according to the
energy conservation method. Zheng [8] optimized parameter combinations by constructing
a satisfaction function. Mondal et al. [9] established a second-order regression model of burr
height and used a flower pollination algorithm to select the optimal process parameters.
(2) Optimized processing equipment. Jia et al. [10] proposed a new step drill structure to
reduce delamination and burrs by controlling the step diameter ratio. Kwon et al. [11]
developed a step drill that could minimize delamination and uncut fibers while processing
carbon fiber-reinforced plastics (CFRP), optimizing drilling quality. (3) Using auxiliary
machining technology. Hassan et al. [12] developed a new analytical model to describe
the formation of inlet burrs as a function of tool geometry, operating parameters, and
workpiece material properties during machining ductile metals. Hu et al. [13] studied robot
rotary ultrasonic drilling under a weak rigid environment and verified the influence of
high-frequency vibration on burr height. Li et al. [14] studied the influence of vibration-
assisted drilling on outlet burrs and concluded that vibration amplitude was the most
sensitive to burrs. Yang et al. [15] investigated an error compensation strategy that could
simultaneously consider the datum error, fixture error, tool path error, and workpiece
deformation error, effectively solving the error synthesis problem when using auxiliary
machining equipment. It is observed that at present, the mechanism of flutter and burr
forming in weak rigid hole-making systems is not clear. Therefore, an important means
to improve the machining accuracy and drilling quality of automatic hole-making system
is by studying the burr formation rule in weak rigid system and establishing the burr
prediction model.

The data-driven method is a research hotspot in industry, which can explore the re-
lationship between data structures directly from the data itself without relying on prior
knowledge. Chen et al. [16] introduced machine vibration signals and operation infor-
mation based on the logistic regression neural network model and effectively evaluated
the reliability of CNC machine tools. Gebraeel and Lawley [17] introduced a neural net-
work into the research of bearing life prediction and accurately predicted the residual life
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distribution of the bearing with its vibration signal as the model input. Yang et al. [18]
established and compared a variety of milling force models using a lot of experimental data,
and on that basis, Chang et al. [19] modeled drilling forces in the deep hole drilling scenario
with single boring and trepanning associations and derived critical conditions for drilling
vibrations with a steady state. Zheng et al. [20] established a stress calculation model of the
tool edge for micro-drilling and studied a neural network model in terms of tool wear state
based on vibration signals. Rimpault et al. [21] studied the burr height prediction model
of a hybrid laminated composite with CFRP, titanium alloy, and aluminum alloy using
data-driven analysis methods. An et al. [22] addressed sequence data in the task of tool
remaining useful life prediction by incorporating a convolutional neural network with a
stacked bi-directional and uni-directional LSTM network. Moreover, they proposed a novel
integrated model based on deep learning and multi-sensor feature fusion, successfully real-
izing cutting tool monitoring and bearing fault diagnosis [23]. However, the data-driven
approach is overly context-dependent and inadaptable to complex forecasting problems,
which makes it difficult to maintain high accuracy. How to use the mechanism model to
guide the data-driven model for performing multi-stage compensation correction so as to
improve the prediction performance [24,25] is becoming a new development direction for
the fusion of mechanism and data.

In recent years, scholars have tried the fusion modeling method of mechanism and
data, which provides a new idea for burr classified prediction. Abd-Elwahed [26] utilized
response surface analysis and artificial neural networks to model and evaluate the effect of
control parameters, effectively increasing the prediction accuracy. Gaitonde and Karnik [27]
developed burr size models required for PSO optimization using an artificial neural network
with the drilling experiments planned as per full factorial design. Gan et al. [28] proposed
a hierarchical diagnosis network by collecting deep belief networks for the hierarchical
identification of a mechanical system. Wang et al. [29] established a data-driven model of
fault diagnosis for rotating machinery and proposed a model updating a scheme based
on parameter sensitivity analysis. Yu et al. [30] proposed a data framework using non-
parametric Bayesian networks and reduced the error caused by unknown mechanism
structures of complex systems. For unknown exceptions that may occur during status
detection, Booyse et al. [31] proposed a deep data fusion framework that could monitor
the entity model state without relying on historical failure data. Luo et al. [32] proposed a
reliability maintenance method for NC machine tools based on the fusion of the mechanism
model and the data-driven model, which combined the theoretical model and particle
swarm optimization algorithm effectively, significantly improving the reliability of the
fusion model. Wang et al. [33] integrated nonlinear and linear dynamic decoupling models
into the data model, which increased the prediction efficiency and data model precision.
Hu et al. [34] proposed a construction method for a high fidelity model, which described
and defined models from three levels, including geometry, mechanism, and data, to achieve
knowledge acquisition and data mapping. Although mechanism and data fusion modeling
are developing continuously, there is still room for research on fusion modeling methods
of machining processes [35,36]. At present, the application of burr prediction and control
is still seriously lacking. Traditional burr prediction is based on the prior estimation of
machining parameters, which cannot monitor the workpiece state in real time. In the
working process of the weak rigid hole-making system, the dynamic parameters such as
stiffness are changing continuously, tools wear quickly, and drilling loads change constantly.
The information related to burr generation not only includes the spindle speed, feed, tool
parameters, and robot pose, but also includes power, current, drilling force, etc., and there
is a coupling relationship among these factors. Thus, it is almost impossible to build an
analytical model that can accurately predict the burrs. Therefore, it is necessary to put
forward a method of mass data acquisition and analysis for robot hole-making processes
and to study a new burr prediction method that can realize accurate prediction under the
conditions of multi-variable dynamic changes, so as to improve the efficiency of weak rigid
hole-making systems.
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In order to solve the above-mentioned problems, this paper will propose a prediction
method for burr classification based on the fusion of mechanism and data. On the one
hand, the drilling parameters of weak rigid systems are studied, and the mechanism model
of burr formation is deduced, revealing the characteristic quantity of burr formation. On
the other hand, the error compensation model for the drilling process is established by the
data-driven method. Finally, a hole-making experimental platform of a weak rigid system
is built for the acquisition of the signal data of drilling status. This paper mainly focuses on
the effects of dynamic parameters on drilling performance rather than over-discussing the
roles of geometric quantities of drilling systems, such as the structure and materials. Based
on the theory of drilling force and torque, unstable flutter will be analyzed, and a prediction
model of drilling burr scale established. The fusion model is constructed by combining
burr mechanisms and drilling data to achieve accurate prediction of burr characteristics.
The prediction results can provide a basis for judging the process of burr post-treatment,
which provides practical guiding significance.

3. Mechanism Model for Drilling Burr Forming

The traditional mechanism models for burr prediction are mostly based on machine
tools and cannot be combined with the machining characteristics of weak rigid drilling
systems. Therefore, this section will primarily establish the burr forming mechanism model
of weak rigid drilling processes. The mechanism model is a mathematical expression of a
physical entity or physical phenomenon, which has a mathematical mapping of rules and
belongs to the prior knowledge of the data-driven model. Thus, it is necessary to analyze
the causes of burrs and their relevant change processes.

3.1. Burr Formation Mechanism and Feature Selection

Burr formation is mainly caused by material slip deformation when plastic shearing
occurs in a drilling process, and the burr’s forming direction is consistent with the machin-
ing direction. The drilling area can be generally classified into three categories, namely, the
first deformation zone, the second deformation zone, and the third deformation zone. The
first deformation zone is the main zone of drilling deformation, which is characterized by
shearing deformation along the slip plane and easily contributes to the subsequent work
hardening. The second deformation zone is the main zone of friction, which lies between
the chip and the tool face. The third deformation zone is also the zone of friction, which
lies between the tool surface and the machined workpiece [37,38].

When the tool drills through the first deformation zone, it will be affected by the
deformation resistance of the workpiece cutting layer, as well as the friction between the
tool and the material; conversely, the tool also exerts forces on the contact part’s material,
where the plastic shearing slip deformation will easily happen. When the tool drills through
the second deformation zone, closing to the workpiece edge, material deforms elastically
under the cutter’s action as a result of decreases in the material’s stiffness. The edge
gradually deforms in the direction of the tool departure. Until the tool leaves the workpiece
passing through the third deformation zone, part of the material in the compressional state
which was not cut away thus results in burrs, as illustrated in Figure 1. The burr height H
is used as the burr characteristic parameter in this paper, which is also the burr evaluation
and prediction index in the drilling process.

For burr classification and evaluation [39], China uses the GB/T 33217-2016 standard
to define the limit height of the burrs of stamping parts but has not formulated an evaluation
system for drilling burr evaluation. The international organization NSMPA (National Screw
Machine Products Association) has carried out a clear provision about the flatness of burr
edges: the rough burr caused by jagged edges is regarded as needing to be removed if it
interferes with the normal operation of the parts. The allowed burr height is limited to
10% of the material thickness. Volvo corporation has developed the burr standard of STD
102-0005: qualified burrs are defined as those that do not cause personal injury, do not
interfere with component assembly, do not reduce strength, and do not damage the surface
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treatment. At the same time, the maximum allowable burr height is limited to 7% on steel
or other material if its thickness exceeds 2.0 mm. Combined with the above methods, this
paper adopts the following indicators to grade the burr for weak rigid hole-making systems.
The details are shown in Table 1.
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Table 1. Burr classification and evaluation.

Level Burr Height Ratio
(Burr Height/Material Thickness) Rating Instructions

Level 1 <5% This rating may be deemed not to require
deburring operations.

Level 2 5–7% This rating is considered a qualified hole for
deburring operations.

Level 3 >7% Deburring should be carried out, and the
hole qualification should be evaluated.

Taking the actual burr as an example, the burr prediction and classification effect of
the weak rigid hole-making system is shown in Figure 2.
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3.2. Prediction Mechanism Model of Drilling Burr Scale

The generation of burrs is closely related to the drilling depth and ductile fracture, usu-
ally occurring at the late unstable stage of the drilling process. Due to the impact of drilling
speed and feed, burr formation can be divided into two situations: the tool penetrates the
workpiece, and the tool does not penetrate workpiece [40,41]. This paper models these
two kinds of burrs, respectively, and reconstructs the burrs in real environments through
different energy combinations.

(1) The tool penetrates workpiece: When the drill bit breaks through the workpiece
material, the burr on the edge can be regarded as pure plastic deformation. Because
of the radial vibration, there is an equivalent gap in the hole, similar to the blanking
process, and this gap has a certain effect on the generation of burrs. As shown in
Figure 3, assuming that the equivalent clearance is δs, which is equal to the amplitude
of vibration, the expression of burr height Hpenetrate is shown in Equation (1) based
on rigid plastic assumptions [42]. Figure 3 shows the h1 and δs schematics for the bit
breaking through the workpiece material.
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Hpenetrate = Kh

∣∣∣∣ xz

xx

∣∣∣∣
 r− kδs

tan p
2

+
h1 − r−kδs

tan p
2

sin p
2

(1−Ψ1%) (1)

where Hpenetrate is the burr height; Kh is the stiffness coefficient; xx is the forced vibration
quantity in the x direction, and xz is the forced vibration quantity in the z direction; h1 is
the maximum uncut thickness; r is the length of the bit cross edge; k = C/Vz, where C is the
coefficient obtained in the experiment and Vz is the drilling feed rate; δs is equivalent gap;
p is twist drill edge angle and generally takes p = 140◦; and Ψ1 is the cross-section cutting
rate of the workpiece material.

(2) The tool does not penetrate the workpiece: At this point, the formation of burrs firstly
appears as large plastic deformation and then as elastic fracture, as shown in Figure 4.
Due to elastic backflow at the fracture [43], burr height only needs to be considered
in terms of plastic elongation and the location of the danger point. At the moment
before the workpiece material fracture, the strain rate εf reaches 0.3 to 0.5. At this
point, the height curve of the burr edge can be approximately linearized. On this basis,
the modified burr height H can be obtained by further considering the area shrinkage
rate of material attributes, as shown in Equation (2).

Hunpenetrate =
kδs
′
√

ε2
f + 2ε f

K1eh1
(1−Ψ1%) (2)

where Hunpenetrate is the burr height; k = C/Vz, where C is the coefficient obtained in the
experiment, and Vz is the drilling feed rate; δs

′ is the equivalent gap; εf is the failure strain
rate; K1 is axial stiffness; h1 is the maximum uncut thickness; and Ψ1 is the cross-section
cutting rate of the workpiece material.
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(3) Equivalent height of burrs: The burr in real environments is the reconstruction of
these two kinds of burrs under different energy ratios. The details are shown in
Equation (3).

Hmechanism = KH1 Hpenetrate + KH2 Hunpenetrate

= KH1 Kh

∣∣∣ Xz
XX

∣∣∣( r−kδs
tan p

2
+

h1− r−kδs
tan p

2
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2

)
(1−Ψ1%) +

KH2 kδs
′
√

ε2
f +2ε f

K1eh1
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(3)

where all parameters are consistent with those described in Equations (1) and (2); KH1 and
KH2 are the energy reconstruction coefficients.

4. Error Compensation for Drilling Process by the Data-Driven Approach

There are many factors affecting weak rigid hole-making systems. The above mech-
anism model cannot accurately and comprehensively identify the influencing factors of
drilling burr formation. Therefore, the rating results are subject to a large margin of errors.
However, the data-driven method is a research hotspot in the industrial field, which can
explore the relationship between data structures directly from the data itself without re-
lying on prior knowledge. Therefore, the neural network model based on drilling data is
introduced as a classification error compensation model, which is an effective means to
modify the rating results of mechanism prediction.

Drilling state parameters are typical time series data; especially in the drilling exit
stage, the vibration and drilling force signals have significant time series characteristics.
According to this characteristic, a data-driven method for burr classification error discrimi-
nation considering multi-dimensional signal input is needed to make error analysis closely
combined with drilling force and vibration signals and extract the hidden information
behind the periodicity and correlation of different time nodes in signals [44]. The following
content will involve several machine learning methods, which are defined as:

• CNN: Convolutional Neural Network
• RNN: Recurrent Neural Network
• TCN: Temporal Convolutional Network
• DNN: Deep Neural Network
• TCN–DNN: Temporal Convolutional Network–Deep Neural Network

Drilling state parameters are the forms of typical two-dimensional inputs. The CNN
is the typical prediction model to solve this problem, and the final prediction result can
be obtained by convolution of two-dimensional information, or by virtue of RNNs, which
serve as temporal prediction networks for the ultimate processing of two-dimensional data.
However, due to the large time step of the dataset in the burr extrusion stage, traditional
CNN and RNN training models will lead to the gradient disappearance of back propagation,
which makes the corresponding model unable to learn. Therefore, the TCN is used as the
substitute model of CNN and RNN in this paper to predict the error of data signals in the
burr extrusion stage of the hole-making process.



Sustainability 2022, 14, 7429 8 of 21

The TCN convolution layer consists of four parts: causal cavity convolution, weight
normalization, activation function, and dropout layer [45,46]. For the problem of long
time series input, in order to minimize network depth and complexity and maximize the
perception field, dilated causal convolution is adopted in the structure of the TCN model;
at the same time, the weight normalization structure is added in TCN to avoid the gradient
explosion when training the neural network; in addition, TCN uses Relu as the activation
function, which can significantly reduce overfitting and computation; finally, according to
the set probability, the dropout layer is added, and network units are randomly selected
for propagation to reduce the training difficulty. The TCN network structure with two
convolutional layers is shown in Figure 5.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 22 
 

 

closely combined with drilling force and vibration signals and extract the hidden infor-
mation behind the periodicity and correlation of different time nodes in signals [44]. The 
following content will involve several machine learning methods, which are defined as: 
• CNN: Convolutional Neural Network 
• RNN: Recurrent Neural Network 
• TCN: Temporal Convolutional Network 
• DNN: Deep Neural Network 
• TCN–DNN: Temporal Convolutional Network–Deep Neural Network 

Drilling state parameters are the forms of typical two-dimensional inputs. The CNN 
is the typical prediction model to solve this problem, and the final prediction result can 
be obtained by convolution of two-dimensional information, or by virtue of RNNs, which 
serve as temporal prediction networks for the ultimate processing of two-dimensional 
data. However, due to the large time step of the dataset in the burr extrusion stage, tradi-
tional CNN and RNN training models will lead to the gradient disappearance of back 
propagation, which makes the corresponding model unable to learn. Therefore, the TCN 
is used as the substitute model of CNN and RNN in this paper to predict the error of data 
signals in the burr extrusion stage of the hole-making process. 

The TCN convolution layer consists of four parts: causal cavity convolution, weight 
normalization, activation function, and dropout layer [45,46]. For the problem of long time 
series input, in order to minimize network depth and complexity and maximize the per-
ception field, dilated causal convolution is adopted in the structure of the TCN model; at 
the same time, the weight normalization structure is added in TCN to avoid the gradient 
explosion when training the neural network; in addition, TCN uses Relu as the activation 
function, which can significantly reduce overfitting and computation; finally, according 
to the set probability, the dropout layer is added, and network units are randomly selected 
for propagation to reduce the training difficulty. The TCN network structure with two 
convolutional layers is shown in Figure 5. 

 
Figure 5. The structure of TCN. 

Based on the TCN model, its network structure can be further expanded to make this 
model have stronger learning ability. The TCN–DNN model will be constructed by com-
bining TCN with DNN. This model consists of two parts: the first part is TCN, the function 
of which is to extract the hidden information behind the periodicity of force and vibration 
signals and recognize the correlation of different time nodes in the hole-making stage; the 
second part is DNN, the function of which is to finally classify the mined information and 
form the error discrimination results [47]. In general, compared to some classical neural 
networks, such as CNN and RNN, TCN–DNN has more significant advantages, specifi-
cally as follows: 

Firstly, there is a causal relationship between the layers of TCN. Historical infor-
mation will affect the prediction of unknown data, and there will be no omissions. How-
ever, CNN and RNN models will constantly reduce the influence weight of untapped 
data, so that some information will be “forgotten”. 

Figure 5. The structure of TCN.

Based on the TCN model, its network structure can be further expanded to make
this model have stronger learning ability. The TCN–DNN model will be constructed by
combining TCN with DNN. This model consists of two parts: the first part is TCN, the
function of which is to extract the hidden information behind the periodicity of force
and vibration signals and recognize the correlation of different time nodes in the hole-
making stage; the second part is DNN, the function of which is to finally classify the
mined information and form the error discrimination results [47]. In general, compared to
some classical neural networks, such as CNN and RNN, TCN–DNN has more significant
advantages, specifically as follows:

Firstly, there is a causal relationship between the layers of TCN. Historical information
will affect the prediction of unknown data, and there will be no omissions. However, CNN
and RNN models will constantly reduce the influence weight of untapped data, so that
some information will be “forgotten”.

Secondly, the model architecture of TCN–DNN is highly adaptable to different data
input scales and can also be modified according to the structural requirements of the
data output.

Thirdly, TCN–DNN can ensure the parallelism of time series input, adjust the size of
receiving domain flexibly, and ensure stable gradient, which can meet the requirements of
data input under different time series lengths.

Fourthly, compared to a cyclic architecture with the same capacity, such as RNN, TCN
saves more memory and reduces training requirements.

5. Fusion Modelling of Mechanism and Data

It is a new development direction for the fusion of mechanism and data to improve the
prediction performance. In this section, a burr scale prediction architecture is proposed in
which the mechanical characteristics of the drilling process are studied, and a data driven
approach is used to perform multi-stage error compensation and correction.

The architecture of the weak rigid hole-making system designed in this paper is shown
in Figure 6. Based on the burr-forming process, the machining state parameters, material
properties of the workpiece, weak rigid system properties, nominal tool size, etc., should be
comprehensively considered so as to determine the key parameters such as rated drilling
force, rated torque, etc. In this study, the tool information includes its material and its
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geometric parameters (diameter, front angle, edge angle, etc.). The workpiece information
includes the material and geometric size. The machining parameters include the terminal
spindle speed (r/min) and feed rate (mm/s). The reading control of the working state for
the end-effector communicates with the upper computer through a serial port. The state
monitoring of the hole-making system is finally implemented.
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The dynamic updated process is as follows: Firstly, the burr state is preliminarily
evaluated based on the mechanism formula in the static physical model. Then the burr
classification results can be preliminarily established referring to Table 1, where the clas-
sification and evaluation basis is shown. By comparing with the classification results of
actual burr height, the difference between actual classification grade and theoretical calcu-
lating grade is worked out. These consequences are used as the label that serves as input
for the error compensation model of the burrs. Moreover, the dynamic updated model
takes force signals and machining parameters as inputs and determines whether the burr
classification grade based on the mechanism formula needs to be increased, unchanged, or
reduced. Finally, by training the network, the burr classified prediction in the weak rigid
hole-making system based on the fusion of mechanism and data is realized. Furthermore,
the final prediction result is the updated value of the data model acting on the mechanism
model. That is, it is the sum of the prediction results of the mechanism model Y1 and the
dynamic updated model Y2.

The state parameters of the drilling process are time series data, so a model with a
better ability to extract time series information is needed. In this paper, the part of the neural
network in the dynamic updated model adopts TCN–DNN to train the input data, where
TCN is used to explore the timing regularity of processing state parameters, and DNN is
used to classify the mined information, solving the problem of long-term dependence on
data input.

Due to the huge information capacity of the original data after denoising, it cannot
be directly used in the training of TCN–DNN. The burr state can be reflected only after
its feature extraction and normalization. Therefore, the inputs of the dynamic updated
model are the time-domain characteristic values of spindle speed, feed, three-component
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drilling force, and axial torque under the current hole-making conditions. The outputs are
the differences between the actual classification grade of burr height and the theoretically
calculated classification grade, that is, whether the prediction classification grade of real
burrs needs to be increased or decreased.

It needs to be emphasized that the fusion model proposed in this paper is more suitable
for burr classified prediction rather than parameters of real-time control of the drilling
process. To achieve that, it is necessary to monitor the burr growth state and provide
decision feedback according to the abnormal status information of burrs. This requires the
establishment of a decision information base and optimization model library, which will be
researched in the future.

6. Borehole Testing and Burr Scale Prediction

The fusion modeling method for burr classified prediction of the weak rigid drilling
process was described in detail above. In this section, a drilling platform is designed
and built. The method is further verified by a realistic case originating in a weak rigid
hole-making system.

6.1. Experimental Design

In order to verify the advantages and effectiveness of the proposed method, a small
automatic hole-making system with weak rigidity was designed independently, imitating
the last joint of the robot. The drilling system consisted of a gantry frame, a power head,
associated sensors, and other accessories, as shown in Figure 7.
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(1) Frame: A self-designed gantry frame and a metal platform for installing the gantry
frame were used. A one-dimensional slide table was installed on it to adjust the
machining position of the experimental workpiece, so that a piece of workpiece could
be tested many times, and reliable experimental results could be obtained.

(2) Power head: A double servo tapping and drilling machine was selected and connected
to the gantry frame through the installation base. A laser level meter and other related
equipment were used to adjust the frame to ensure its shape and position deviation
meets the requirements. The power head was controlled by a Galil control card,
model is DMC-B140-M, which adopts the control mode of C# language of the upper
computer. In addition, the spindle rotation servo motor used has a rated power of
1.8 kw and torque of 6 Nm. The feed servo motor used has a rated power of 0.4 kw
and torque of 1.27 Nm.
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(3) Sensor: An acceleration sensor (INV3062T) was installed on the power head, and
a four-axis sensor (NOS-C906) was mounted on the slide platform to collect the
parameters of axial force and torque during the machining process. Its rated load was
1 KN/1 KN/2 KN/200 Nm, and its sensitivity was 1%.

(4) Fixture: An ER20 collet was installed at the end of the power head with a 6 mm clip.
By self-design, it was mounted on the four-axis sensor. Thus, the data collected by
the sensor was more stable and reliable. An alloy steel straight shank twist drill was
selected for the drilling tool.

The platform was suitable for drilling experiments with diameters of 6 mm and below.
A #45 steel sheet of 200 mm × 100 m × 10 mm was selected as the workpiece material.
Its strength limit was about 600 Mpa. The axial force and torque were collected by the
four-axis sensor, and vibration signals were collected by the acceleration sensor. These data
were used to predict the scale rating of drilling burrs in weak rigid systems. The main
component parameters are shown in Table 2. Please refer to Appendix A for more detailed
technical parameters.

Table 2. Main component parameters.

Main Components Relevant Parameters

Rotary servomotor of power head spindle Rated power: 1.8 kw; torque: 6 Nm
Feed servomotor of power head spindle Rated power: 0.4 kw; torque: 1.27 Nm

Data acquisition card DMC-B140-M
(Table A1)

Displacement: 32 bit
Velocity: maximum output pulse 32 MHz

Acceleration: maximum 1,073,740,800 pulse/s2

Acceleration sensor INV3062T (Table A2) AD precision: 24 bits; dynamic range: 120 dB

Four-axis force sensor NOS C906 (Table A3) Rated load: 1 KN/1 KN/2 KN/200 Nm;
sensitivity: 1%

In order to obtain the stiffness and natural frequency of the system, ABAQUS was used
for finite element analysis in this paper. The axial stiffness of the system was 8,571,429 N/m
by simulation, and the radial stiffness was 4,137,932 N/m. The axial natural frequency was
34 Hz, and the radial natural frequency was 67 Hz. The system stiffness was about one
tenth of that of machine tools with the same specifications, which proved that the system
was weakly rigid.

Data of burr height was collected in the experiment. As the burr edge appeared to be
tearing, the workpiece was firstly cut by wire cutting; Secondly, in order to describe the
burr height comprehensively, six points on the burr were sampled by spiral micrometer on
average. Finally, the mean value of sampling points was used as the experimental data of
burr height.

Figure 8 shows part of the burrs in the real machining environment. The experimental
results illustrated that the machining quality of the weak rigid drilling system was poor.
It was easy to cause burrs at the outlet. Therefore, an accurate modelling method was
needed to predict the burr grade in the machining process so as to provide a judgment
basis for the burr post-treatment and to further implement the optimal state control in the
machining process.

6.2. Predictive Analytics

In this paper, a straight shank twist drill made of alloy steel was used to drill 6 mm
holes in #45 steel. A four-axis force sensor was used to collect the force signal, and the
acceleration sensor was used to collect the vibration signal during the drilling process.
Feature extraction was performed on the collected signals, and the drilling mechanism
model was used to predict the burr height to verify the validity of the traditional model.
The experimental results and theoretical predicted values were investigated, as shown in
Figure 9. Part of the experimental and predicted results of burr height are shown in the
figure. The comparison results showed that the mechanism model adopted in this paper
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had a certain burr prediction ability. The average error between measured values and
predicted values based on the drilling mechanism was 12%. However, it was also observed
that the maximum prediction error reached nearly 30%, which showed that there was still
great inconsistency. This result shows the limitation of the pure mechanism model. Faced
with masses of uncertain factors affecting the drilling performance, it is almost impossible
to build an analytical model that can accurately predict the burrs.
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Figure 9. Burr height comparison between measured value and the predicted value based on the
drilling mechanism.

In addition, an effective error compensation model based on the fusion of machine
learning techniques was established, which involved TCN and DNN. On the basis of
the above experiments, further feature collection was carried out on the boreholes in the
experiment, and the burr characteristics were classified. The error results are shown in
Table 3. By comparing the actual burr classification grade with the burr classification grade
calculated based on mechanism model, the corresponding error label could be obtained.
According to the processing dataset of the time-series feature, and the labeled dataset
consisting of burr evaluation data measured in the experiment, the results were randomly
classified. The label value of the dataset was the grade error of burr evaluation between the
actual measured value and the theoretical value. The top 10 groups of specific experimental
evaluation grade errors are shown in Table 3.
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Table 3. Experimental evaluation grade error (top 10 groups).

Serial
Number

Feed
(mm)

Spindle
Speed (r/min)

Burr
Height (mm)

Workpiece
Thickness (mm)

Real Burr
Classification

Drilling
Mechanism

Classification

Error
Label

1 0.16 1600 0.71 6 Level 3 Level 3 Null
2 0.18 1600 0.43 6 Level 2 Level 2 Null
3 0.20 1800 0.59 6 Level 3 Level 3 Null
4 0.22 1800 0.77 6 Level 3 Level 3 Null

5 0.16 2000 0.31 6 Level 2 Level 3 Up
grading

6 0.18 2000 0.23 6 Level 1 Level 2 Up
grading

7 0.20 2200 0.42 6 Level 2 Level 2 Null

8 0.22 2200 0.33 6 Level 2 Level 1 Down
grading

9 0.16 2400 0.29 6 Level 1 Level 1 Null
10 0.18 2400 0.38 6 Level 2 Level 2 Null

The TCN–DNN model was constructed, as shown in Figure 10. The input signal
structure was x, and its size was 500 × 42; 500 represented 500 truncations analyzed in the
time–frequency domain, and 42 meant 6 times 7, i.e., there were 6 signal types in total, and
7 time–frequency domain features were obtained for each signal. The output results were
three classification results, whose meanings were: increase the burr rating, not change the
burr rating, and reduce the burr rating.
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The parameter settings of the TCN–DNN model are shown in Table 4. The dropout
layer coefficient was set to 0.5 in the model to reduce the impact of data fluctuations.
The Softmax activation function was applied to multi-category scenarios, and the vector
dimension could be reduced to three dimensions with its help. This was because there
were three categories to predict in the model: to increase the burr rating, to not change the
burr rating, and to reduce the burr rating.
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Table 4. TCN–DNN model structure.

Layer Name Specific Description

Convolutional Layer 1 Using convolution expansion; convolution block d = 1;
activation function Relu; dropout coefficient 0.5

Convolutional Layer 2
Using convolution expansion; convolution block d = 2; the

convolution sequence is convolved for each time period;
activation function Relu; dropout coefficient 0.5

Convolutional Layer 3
Using convolution expansion; convolution block d = 4; the

convolution sequence is convolved for each time period;
activation function Relu; dropout coefficient 0.5

Convolutional Layer 4
Using convolution expansion; convolution block d = 8; the

convolution sequence is convolved for each time period;
activation function Relu; dropout coefficient 0.5

Convolutional Layer 5
Using convolution expansion; convolution block d = 16; the

convolution sequence is convolved for each time period;
activation function Relu; dropout coefficient 0.5

Fully Connected Layer 1 Node number 256; activation function Relu
Fully Connected Layer 2 Node number 128; activation function Relu
Fully Connected Layer 3 Node number 3; activation function Relu

Figure 11 shows the prediction results corrected by TCN–DNN error compensation
and the physical experimental results. As can be seen from Figure 11, the predicted
values of the fusion model were in better agreement with the experimental values. The
average relative error was about 9%. As can be seen from Figures 9 and 11, the prediction
accuracy of the fusion model improved by 25% compared with the results of the traditional
drilling mechanism model. Due to the complexity of weak rigid hole-making systems, the
prediction and classification effects of the pure mechanism model was poor, which could not
directly meet the requirements of actual prediction accuracy. This result further illustrated
the accuracy and reliability of the proposed burr classified prediction method. The fusion
model integrates the burr formation mechanism and data-driven error compensation
model, which can take advantage of both approaches and fully consider the mechanical
characteristics of the drilling process. Therefore, using the TCN–DNN neural network to
compensate and modify the traditional mechanism model is an effective means to improve
the prediction performance of drilling burrs.
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In order to further evaluate the advantages of the TCN–DNN model, the CNN model
represented by VGGNET (Visual Geometry Group NET) and the traditional DNN model
were selected as the control to calculate the convergence and loss values of the three models.
The models were trained and tested under the same conditions: the hardware environment
was an Intel i7-4770 + Nvidia GTX750, and the software environment was Windows 10 +
Python 3.6 + Keras. Loss values of different models after training are shown in Figure 12.
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It can be seen that the DNN model converged the fastest, but its loss value finally
fluctuated around 0.85, which was much higher than that of the TCN–DNN and CNN
model. However, the CNN model, using VGGNET, had the slowest convergence, and the
loss result was also higher than that of the TCN–DNN model. To sum up, although the TCN–
DNN model converged at the 38th iteration, the convergence speed of which ranked second,
its loss value was the lowest, reflecting its best convergence. It can be seen that the optimal
iteration number of TCN–DNN model was 40 times. Moreover, the prediction results
based on the TCN–DNN model had the highest accuracy, reaching 91.67%, higher than that
of the traditional CNN and DNN networks. This was determined by the characteristics
of the TCN–DNN network. There was a causal relationship between the layers of the
time convolutional network; that is, historical information could affect the unknown data
prediction, and there would be no omission. This accuracy rate further proved that the
TCN–DNN model can be applied to complex burr classification and prediction scenarios.

Based on the above comparative analysis, it can be seen that TCN–DNN has more
significant advantages. Experimental results prove that this trained network has fully
explored the timing regularity of machining state parameters and can both accurately
harmonize the past data and precisely predict the burr quality. To be specific, compared
to the classical neural networks, such as CNN and RNN, TCN–DNN can ensure the
parallelism of time series input, adjust the size of receiving domain flexibly, and ensure
a stable gradient, which can meet the requirements of data input under different time
series lengths.

In addition, the TCN–DNN model and its classification tasks will be further taken
into consideration comprehensively. Optimizers often play an important role in machine
learning. The performance of the same model may differ greatly due to the selection
of different optimizers, and even some models cannot be trained. In this experiment,
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three optimizers including Adam, RMSprop, and SGD were selected for comparison.
The influence of different learning rates on model accuracy and convergence speed were
synchronously investigated.

Specifically, SGD adopts the stochastic gradient descent algorithm. This solver gen-
erally uses a small batch gradient descent algorithm in training; that is, it selects part of
the data for training. This gradient-updating algorithm is concise and can converge to
the globally optimal solution (convex function) or locally optimal solution (non-convex
function) when the learning rate is appropriately designed. However, the solver is sensitive
to the hyperparameter learning rate and is easy to misjudge. Thus, the model will end the
iteration before reaching the extreme point and fall into the local minimum.

RMSProp is an effective and practical deep neural network optimization algorithm.
It can automatically adjust the learning rate of model parameters independently and up-
date sparse parameters greatly and frequent parameters slightly. Therefore, the RMSProp
method is very suitable for processing sparse data. However, there are still some deficien-
cies, such as the premature or excessive reduction of the learning rate, which is caused by
the cumulative gradient square.

Adam is essentially RMSProp with momentum terms, which dynamically adjust
the learning rate of each parameter using the first and second moment estimation of the
gradient. The advantages of this optimizer mainly lie in the fact that after bias correction,
the learning rate of each iteration has a certain range, which makes the parameters more
stable. In addition, Adam is suitable for scenarios with large-scale data and parameters
applied to the unstable objective function.

Simulation results showed that the influence of different learning rates on model accu-
racy and convergence speed was significantly different. Through experimental comparison,
Adam had the best effect, and its test accuracy reached 91.67%, as shown in Figure 13.
Therefore, the Adam optimizer could be used to ensure the best prediction accuracy of
burrs in weak rigid hole-making systems.
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To be sure, the creation of an efficient and sustainable processing mode is critical. At
present, multivariant industrial robots have been widely used in automatic production
lines, welding manufacturing, material handling, and other application scenarios with high
renaturation. Moreover, industrial robots are also gradually being adopted in aerospace
and military industries, automobile manufacturing, and other fields to replace humans.
The experimental platform built in this paper serves as a prototype system to simulate
the drilling process in real industrial applications. Experimental results demonstrated the
effectiveness and feasibility of the proposed method. This basic research about algorithm
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design and optimization is currently being focused, and practical industrial applications
are expected in the future.

7. Conclusions

This article attempts to establish a fusion model for burr classified prediction in a
weak rigid hole-making system. On the one hand, the expressions of burr characteristics
are deduced based on vibration mechanisms, and the preliminary classification results are
calculated; on the other hand, according to the measured data, the errors between initial
calculation results and actual classification results are obtained and selected as the tag
values of the dataset. Finally, by training the network of TCN–DNN using the drilling
data, the burr classified prediction based on the fusion model is realized. The following
conclusions can be drawn:

(1) The proposed burr classified prediction method can integrate the burr formation
mechanism and data-driven error compensation model, which fully considers the
mechanical characteristics of the drilling process. The overall calculation accuracy has
improved by 25% compared with that of the traditional drilling mechanism model.

(2) An effective error compensation model based on the fusion of machine learning tech-
niques is established, which involves the temporal convolutional network and deep
neural network. The trained network fully explores the timing regularity of machining
state parameters and can both accurately harmonize the past data and precisely pre-
dict the burr quality. The algorithm has the highest accuracy, reaching 91.67%, which
is higher than that of traditional networks, and a satisfactory convergence speed.

(3) The accuracy and feasibility of the proposed method are further verified by a realistic
case originating in a weak rigid hole-making system. Experimental results show
that the Adam optimizer has the best prediction accuracy and can be adopted in
the proposed prediction model. The research has strong practical significance and
theory-guiding sense. It can be widely used in automatic hole-making systems, such
as in aerospace, military, and other fields.

However, there are also some deficiencies in this method. The fusion model is still
overly machining environment-dependent, and certain errors will appear for different
processing scenarios (different types of cutting tools, different processing materials, etc.).
Moreover, the fusion model is more suitable for burr classified prediction rather than
real-time parameter control of the drilling process. To achieve this, the establishment of a
decision information base and optimization model library is required. In the future, the
idea of transfer learning could be integrated into this model to increase the generalization
capability of the fusion model, making it not overly dependent on the processing environ-
ment. On the other hand, the state monitoring in the machining process should be focused
in order to further realize the real-time optimal control for the drilling process.
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Appendix A

Table A1. Technical parameters of motion controller DMC-B140-M.

Parameter Index

System processor
32-bit MPU
Flash EEPROM
RAM

Communication interface Ethernet 100BASE-T
RS232 115.2K

Mode of motion

Point-to-point positioning control
Location tracking
JOG
2D line/arc interpolation with feed multiplier
1–4 axis linear interpolation
Electronic gear control with multiple driving shafts
Synchronism of gate bridge
Electronic cam
Contour control
S-curve acceleration and deceleration

Memory function
450 lines × 40 characters
126 variables
800 elements in 6 arrays

Range of motion
Position: 32 bits
Speed: 32 bits
Acceleration: 32 bits

Universal digital I/O 8 inputs/4 outputs

High-speed set latch 4-way latch input for X, Y, Z, W axis

Private input

Master encoder input: A, A−, B, B−, I, I−; +/−12 V
Positive and negative limit input
Back to zero input
High-speed position latch input
Emergency stop input

Private output
Instruction pulse and direction output for stepper motor
Servo enable output
Signal transfer output

Minimum servo updating rate 1–2 axis: 125 us
3–4 axis: 250 us

Maximum encoder feedback rate 12 MHZ

Maximum step forward motor command rate 3 MHZ

Power source specification 19–33VDC, ≥0.5 A

Work environment Working temperature: 0–70 ◦C
Humidity: 20–95% RH
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Table A2. Technical parameters of acceleration sensor INV3062T.

Parameter Index

Analog
input

Number of channels 2–4
AD precision: 24 bits or double 24 bits (double core)
Maximum sampling frequency 51.2 KHz for each channel
Frequency indication and resolution error <0.01%
Spectrum amplitude error <1%
Dynamic range of 24 bits channel 120 dB (typical value), 110 dB (guaranteed value)
Dual-core channel range 160 dB
Input range of 24 bits channel 10 V, 1 V, 0.1 V
Dual-core channel input range 10 V for one gear only (range: 160 dB)
Input noise of 24 bits channel <0.05 m Vrms @ ±10 V range (typical value 0.03 m Vrms)
Dual-core channel input noise <0.005 m Vrms @ ±10 V range (typical value 0.003 m Vrms)

Anti-aliasing filter 256 times oversampling + digital filter + analog anti-aliasing
filter, the total attenuation steepness is over −300 dB/oct

Total harmonic distortion −70 dB
Interchannel crosstalk −100 dB
Input impedance >1MΩ
Input mode Voltage DC, voltage AC, IEPE(ICP)
External conditioning unit Charge, strain

Rpm
input
Tacho

Number of channels 0–1
Internal sampling rate 25 MHz, supporting torsional vibration measurement
Rotary speed range 3–3,000,000 rpm
Input voltage range −5 to +5 VDC

Interface LEMO three-core connector, can supply power of +5 V to
photoelectric sensor

Digital
input/
output
system

Mode RS232

Number of channels 0–1

Cascade
connection

Number of cascade acquisition instruments Standard: 1–8 sets; customize: 9–32 or more

Cascade synchronization between instruments Synchronous cable RJ45 twisted pair cable, maximum 100 m;
built-in GPS module, external antenna

Table A3. Technical parameters of force sensor NOS-C906.

Parameter Index

Rated output 1.0 mV/V ± 0.1%
Zero balance ±1% of rated output
Creep after 30 min ±0.5% of rated output
Nonlinearity ±0.5% of rated output
Hysteresis ±0.5% of rated output
Repeatability ±2.0% of rated output
Temp. effect on output ≤0.02% of applied output/◦C
Temp. effect on zero ≤0.02% of applied output/◦C
Safe temp. range −10 ◦C to +70 ◦C
Temp. compensated −10 ◦C to +40 ◦C
Safe overload 150%
Input impedance 387 ohm ± 20 ohm
Output impedance 350 ohm ± 5 ohm
Rated excitation 10 V DC/AC
Maximum excitation 15 V DC/AC
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