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Abstract: The provision of sustainable housing solutions is one of the main challenges in emerging
economy countries. Furthermore, it is clear that a sustainable solution should be based on renewable
bio-based materials. Scientific and practical evidence clearly suggests that the use of bamboo in the
provision of housing solutions provides communities with both environmental and socio-economic
benefits via this strategy. One barrier to the promotion of this type of solution is the lack of knowledge
on structural design and environmental performance. Moreover, access to assessment tools and
methodologies is limited. The use of simplified Life Cycle Assessment (LCA) has exhibited great
potential to increase accessibility, but the generation of life cycle inventory data remains a major issue.
In this paper, we describe the development of a methodological approach to use parametric design to
generate the data required to carry out simplified LCA of social housing solutions. Moreover, we
present a case study assessing a housing unit using cement bamboo frame technology developed by
the Base Bahay Foundation in the Philippines. The main parameters for the LCA of the buildings
were identified through sensitivity analysis. Moreover, they show that parametric design is a valid
approach to overcome the challenges of data generation at early stages of design. The proposed
approach would enable users without civil and/or engineering background to carry out simplified
LCA calculations. Thus, through methodological approaches, it is possible to reduce significantly the
complexity associated with LCA and open new avenues for it application.

Keywords: bamboo; CO2; design; environmental impact; LCA

1. Introduction

One of the most important targets within Sustainable Development Goal 11 is the
provision of dignified housing for all [1]. This target poses a very high challenge in
emerging economy countries where a balance between affordability and delivery speed
is of great relevance [2]. Moreover, the built environment is responsible for more than
40% of the global consumption of energy and one-third of the global greenhouse gas
emissions and, therefore, exhibits the highest potential to achieve a significant reduction in
the environmental footprint [3]. Population growth in urban areas together with natural
disasters [4] further increases the demand for housing solutions [5]. Furthermore, the
production of conventional construction materials, such as ceramic, steel, and cement,
is related to high levels of the primary energy demand and CO2 emissions [6]. Thus,
it is crucial that the housing demand challenge is solved via the adoption of sustainable
solutions, aiming to decrease CO2 emissions originating from the production of construction
materials [7]. A new regenerative approach should be established, according to which
human activities do not deplete environmental sources [8]. This suggests that the housing
provision challenge should ensure affordability and guarantee access to the resources
needed [9,10]. This idea has led to the development of alternative low-carbon approaches
based on bio-based materials, such as bamboo [9].
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1.1. Bamboo Construction

Bamboo is a strong, fast-growing, and lightweight construction material [11,12]. Bam-
boo grows naturally in Africa, Asia, America, and Oceania [12], and due to the great
versatility, culms of bamboo have been widely used in construction [13]. Bamboo can
be used in low industrialized form such as bamboo poles, flattened bamboo, and woven
bamboo mats, or in industrialized form such as glue-laminated bamboo and laminated
woven bamboo mat panels [14]. Bamboo structures are used worldwide, especially in
Africa, Asia, and Latin America. Concerning their structural behaviour, bamboo materials
can cover large spans and achieve an excellent performance under compressive forces [15].
Nevertheless, due to their inherent geometric variability, the application in structures is
limited in comparison to other industrial applications of bamboo [16].

In general, two types of bamboo-based structures can be identified based on their
construction systems, spatial trusses, and frame walls. The first type can be used in open
structures such as pavilions or bridges, as shown in the examples in Figure 1. These types
of structures are the most common and easily recognized. The construction principles are
the same between both construction systems, with the main difference representing the use
of claddings in the frame wall system.
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Figure 1. Low-traffic bamboo bridge (source: Authors).

As the name indicates, bamboo frames are used to create building shear walls. This
construction system is commonly referred to as engineered bahareque, but regional differ-
ences can be found [17]. In 2002, the CEEA included two chapters regarding the structural
design of bamboo structures in the Colombian building code [18], one chapter for spatial
trusses and the other chapter for frame wall buildings up to two stories. This technology
has been implemented globally and is now part of a series of ISO norms [19,20]. One
example of this evolution is cement bamboo frame (CBF) technology. CBF is a localized
version of the engineered bahareque system, which has been used in the social housing
sector in the Philippines since 2013. The load bearing structure is constructed of round
bamboo, the connections consist of steel and mortar, and the cladding entails a conventional
plaster finishing layer, as shown in Figure 2.
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Figure 2. Single-family house using CBF technology in the Philippines (source: Base Bahay).

1.2. Life Cycle Assessment (LCA)

Life cycle assessment (LCA) is the main methodology used to quantitatively assess
the environmental impacts related to the production and use of goods throughout their
service life [21]. The LCA method is methodologically described in the ISO norm series
14040 [22] and in national standards worldwide. The life cycle of a building can be divided
into four methodological phases: (i) the production and transportation of materials, (ii) the
construction phase, (iii) the use/operational phase, and (iv) the demolition and disposal
phase [23]. A general view of the life cycle stage information of buildings, based on
the EN15978 norm, is shown in Figure 3. LCA can be summarized in four steps: goal
and scope definition, life cycle inventory (LCI), life cycle impact assessment (LCIA), and
interpretation of the results [24]. LCA results can be used to identify environmental hotspots
of the studied system. Thus, this technique provides information for the decision-making
process regarding the environmental impact products and processes [25]. Moreover, LCA
can be used to compare alternatives of a production process or products. The application of
LCA is hindered by high levels of complexity in terms of data generation [26] and allocation
of impacts and characterisation of results [27]. Moreover, the lack of representative data is
perceived as one of the greatest barriers to overcome [28].
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Currently, there exists a wide range of specialized software to perform LCA. These
software packages range from licenced solutions to open-access programs. Moreover, there
are both proprietary and open-source software packages. In general, all these software
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solutions are stand-alone applications and are challenging to interface with computer-aided
design software [29]. In addition, LCA software requires life cycle inventories (LCIs),
which are usually found in databases. These are curated by many different actors, and
access to these databases also varies, from licence-based to open-access formats. These
databases can be topic-specific or multi-topic databases, and their coverage can range from
country-specific to global values.

1.3. Parametric LCA

LCA is a data-driven methodology and requires detailed information, which is often
not available at the early design stages. These stages impose the greatest influence on
the environmental performance of buildings. LCA is often used as a post-ex assessment
tool, which limits its application and significantly reduces the usefulness of its results [30].
Simultaneously, the application of LCA in the building process is hindered due to its
inherent complexity and time demand. This limitation has driven the development of
simplified approaches that could be used by different actors without the need for expert
knowledge on LCA [28,31]. Among these approaches, parametric LCA has been identified
as a promising solution. This approach is particularly interesting for Non-Governmental Or-
ganisations (NGOs) and humanitarian organizations operating in the housing sector, as this
method allows users without LCA expertise to obtain results regarding the environmental
performance of their designs.

Hollberg et al. described the main challenges and opportunities for parametric
LCA [3,30,32,33]. In principle, the method should be easy to understand and widely
applicable, especially at the early design stages. During the course of the project, any as-
sumptions should be replaced with specific data [3]. Furthermore, the level of detail (LoD)
should be determined, such as the building, building elements, element components, and
component materials, which are used for the bill of quantities (BOQ) [33]. The integration
of BIM and LCA is a developing field, which inherits the challenges of LCA related to poor
accessibility of data and lack of compatibility of the data structures [34].

The current approaches still relay on the availability of data at early stages of design,
in practice this data is not available. Moreover, when developing a housing project, the
decisions regarding construction systems and materials are done before the actual designs
are developed. These decisions make a significant difference on the carbon footprint of the
final buildings. Thus, the need for solutions that allow non-experts to carry out LCAs at
early stages of design is needed.

The objective of the work presented in this paper was to identify the set of parameters
required to conduct simplified LCA of social housing units using both conventional and
bamboo-based construction systems. Moreover, to develop a simplified approach to link
the structural check of early-stage designs with the bill of material required to construct the
proposed housing units.

2. Materials and Methods

The methodological approach developed was intended to obtain single-story social
housing solutions. Figure 4 shows the methodology consisting of three interacting modules:
(i) structural design module with green background; (ii) LCA module orange background,
and (iii) user interface blue background. The latter module provides two main functions:
the first function collects user inputs and communicates the results. The data can be
collected at two detail levels, depending on the expertise of the user. At the basic level, the
user inputs information regarding the dimensions of the studied building (length, width,
and height) and the number of doors and windows. At the expert level, the collected
information refers to structural design parameters such as soil types, concrete and steel
grades and external forces such as earthquakes and winds. Regardless of the level of detail,
a calculation can be performed.
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The structural design module allows for the calculation of two construction systems: a
concrete post and beam and bamboo frame walls. Once the construction type is selected
by the user, the module performs structural calculations and designs building elements
starting with the super-structure. These values are used to calculate the material amounts
required for each specific construction system. In a parallel workflow, the module calculates
the dead loads required for building foundation calculations. Depending on the level of
details used, the module can adopt either default values (basic) or user data (expert) as
inputs related to the soil type and seismic and wind loads.

2.1. Construction Systems and Materials

The main materials used in the design include reinforced concrete, concrete hollow
blocks, cement mortar, steel, fired clay bricks, wood, and bamboo. The concrete strength
is either 20 or 25 MPa. The steel quality includes B500, Grade 33, Grade 40, and Grade 60.
The brick dimensions in mm are 190 × 90 × 60. The design values for the bamboo poles
and timber are listed in Table 1.

Table 1. Material design values.

Property Symbol Bamboo Wood
(50% Stress Grade)

Compression strength parallel to the grain fc,o,adm 8 6.54
Bending strength fm,adm 7.7 10.3

Shear strength fv,adm 8 1.69
Tension strength parallel to the grain ft,o,adm 27 -

Tension strength perpendicular to the grain ft,90,adm 0.09 -
Modulus of elasticity—mean Emean 15,500 -

Modulus of elasticity—5th percentile Emin 13,500 2910

2.2. Input Parameters

The input parameters can be divided into principal (basic mode) and secondary pa-
rameters (expert mode). The principal parameters include the building perimeter, number
of external doors, number of windows, height, number of interior rooms, and roof material.
These parameters are input by the user in both modes. The secondary parameters include
the soil quality, concrete quality, steel quality, wind loads, and earthquake loads. These
parameters are only input if the user possesses the expertise to select the appropriate
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values. In the basic mode, all the secondary parameters can be assigned default values, as
summarized in Table 2.

Table 2. Default values for the secondary parameters.

Material

Concrete strength fc′ = 20 MPa
Steel quality Grade 40 -

Roof

Roof type—choice 1 Gable
Roof angle 30 degrees

Foundation

f (length below the soil) 0.6 m
Soil permissible stresses 50

Loads

Additional surcharge (concrete) 1 kPa
Additional surcharge (bamboo) 0 kPa

Roof live load 0.6 kPa

Input for Earthquake Force Calculations

Soil profile SC—very dense soil and soft rock -
Seismic zone 4—rest -

Seismic source type A—7 ≤M ≤ 8.4 -

Input for Wind Force Calculations

Wind speed 250 kph
Exposure category B -

The user can determine the number of doors and windows, which exhibit standard
dimensions. The number of exterior doors can either be one or two, and the maximum
number of windows can reach two if there occurs one exterior door or four in the case
of two doors. The number of interior doors matches the number of interior separations
(rooms) defined by the user. If the number is zero, then only exterior walls exist. To consider
openings, the following standard dimensions were considered: the typical door opening
was 2.1 m high and 1 m wide, and the typical window opening was 1.2 m high and 0.9 m
wide. It should also be pointed out that the height provided as input was the height of the
CBF walls, not the height of the structure.

2.3. Load Calculation

The load calculation was based on the National Structure Code of the Philippines
(NSCP 2015) [35]. Where allowable stresses or allowable strength design was used, i.e., for
the design of the bamboo and timber members and soil stresses, the basic load combinations
in Section 203.4.2 were used [35]. Where strength design or the load and resistance factor
was used, i.e., for concrete members dimensioned under bending and shear, the load
combinations in Section 203.3.1 were used [35]. The height was calculated at the subsequent
stages by considering other parameters, such as the roof type and existence of concrete
hollow blocks (CHBs) below the walls.

The earthquake forces were calculated according to Chapter 208. In bahareque houses,
the main load-resisting system comprises bamboo walls, whereas in concrete houses,
ordinary reinforced moment-resisting frames occur. The main difference between these
two load resisting systems is that the structural period differs because the walled structure
is stiffer. This results in a lower design base shear coefficient (Vmax/W) value for concrete
frames. The earthquake force (Vmax) depends on the weight of the structure (W), so similar
to the first step, only the Vmax/W coefficient is determined.
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Wind load analysis was performed following NSCP-2015 [35] for enclosed or partially
enclosed buildings, and the analytical procedure for low-rise buildings (Section 207C.4.1)
was implemented. The possible load cases are shown in Table 3. The torsional load case
was omitted in the calculations, given that the investigated buildings are low-rise buildings
and the height is less than 9 m [35]. The wind loads depend on the geometry of the building.
Therefore, a separate wind analysis was implemented of these two types of buildings.
The self-weights of the structural and non-structural materials employed can be found in
Table 3.

Table 3. Unit weights of the materials used.

Structural Materials Unit Weight Unit

Concrete 25 kN/m3

Cement Mortar 1900 kg/m3

Steel 7850 kg/m3

Fired Clay Bricks 741 kg/m3

Wood 5.4 kN/m3

Bamboo 7 kN/m3

Non-Structural Materials Unit Weight Unit

G.I. Sheets 0.0314 kN/m2

100-mm CHBs 3 kN/m
Riblath (per 20 sheets) 25 kg

2.4. Cement Bamboo Frame Building Structural Calculations

The bamboo frame walls were designed to resist horizontal forces, such as winds
and earthquakes. The shear capacity of a bamboo frame with one side of mortar plaster
is 4 kN/m, whereas that of a bamboo frame with two sides reaches 8 kN/m. The total
shear capacity of the structure along each direction is the shear capacity of the bamboo
frame with two sides of mortar plaster times the sum of the effective length of the wall. The
effective length of a two-sided wall equals the length of the wall, while that of a one-sided
wall equals half the length of the wall. Based on this concept, the required amount of
the effective wall length can be calculated so that the walls can resist the induced shear
force, which is the maximum base shear due to winds or earthquakes. It was assumed that
all the external walls are single-cladding walls unless the required wall length is greater
than that provided by this assumption or the user desired to input more information. The
length of the intermediate walls was assumed to equal the length of the building along each
direction unless more information was provided. Based on the perimeter of the building,
the height of the walls and the number of openings and presence of walls, the weight of the
structure was assumed. The weight of the structure is required to determine the seismic
and wind forces, which determine the design of the structure in regions where horizontal
loads prevail. According to these forces, the minimum required length of the walls could
be calculated.

2.5. Concrete-Brick Building Structural Calculations

The loads carried by the concrete frame depend on the material of the roof. The beams
and columns were first dimensioned to carry the vertical loads according to the provisions
of EN-1992-1-1:2004 [36]. At this stage, the minimum reinforcement was calculated so
that the concrete does not fracture when the cracking moment is reached. In the next
step, the beams and columns were again dimensioned in compliance with the capacity
design requirements of EN-1998-1:2004 [36], since the horizontal forces are significant in
the Philippines. Brittle failure should be prevented by deriving the design action effects in
selected regions from equilibrium conditions, assuming that plastic hinges with possible
over-strengths were formed in adjacent areas. The structure could be classified in the
middle ductility class. Therefore, coefficient γRd equaled 1 for the beams and 1.1 for the
columns. The minimum value of the mechanical volumetric ratio of the confining hoops
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ωwd = 0.08 was provided within the critical region at the base of the primary seismic
columns.

In the calculation of the vertical loads, the height of the beams was derived from the
obtained data, whereas the dimensions of the columns were chosen so that the normalized
design axial force νEd does not exceed 0.3. This limitation was considered to perform an
initial assessment of the cross-section. However, horizontal forces induce further limita-
tions. The height of the cross-sections should resist the shear forces without exceeding
the allowable stresses acting on the concrete diagonal. Furthermore, earthquake forces
result in a reduction in the compressive force acting on the columns. In addition, given
that a one-story building was considered, the compressive force acting on the columns was
relatively low. Therefore, it could be assumed that the axial force given the earthquake
combination was negligible, and structural verification could be performed accordingly.
Additionally, it was required to maintain the depth of the compression zone below 45%
of the static depth to achieve ductile behaviour. This resulted in a normalized acting
moment of µsd = 0.295. Finally, the dimensions of the columns were derived so that all
the above-mentioned limitations were satisfied. The beam was finally reinforced with
continuous bars, all along the length, according to the critical combination. The ductility
requirements resulted in further constraints, such as the spacing of the stirrups, spacing of
the longitudinal reinforcement, confinement of the critical regions and base of the columns,
which were executed based on the provisions contained in EN-1998-1:2004 [36].

Once the structural calculations were carried out, the module could calculate the
bill of materials for the foundation, superstructure, and roof. This information was then
transferred to the LCA module to create the required life cycle inventories.

2.6. Simplified Life Cycle Assessment

In the LCA module, the functional unit was defined as a single-story building with
an area input by the user not exceeding 64 m2 and a wall height not exceeding 3 m. A
minimum of one door and one window was also specified. The scope of LCA typically
ranges from the determination of construction materials to the erection of buildings. These
calculations do not include the biogenic CO2 contributions of bio-based materials. The
conducted LCA was geographically located in the Philippines, but this technique could be
adapted to other geographic regions in the future.

Life cycle inventories were automatically generated using the user inputs and the
bill of quantities generated in the structural design module. These life cycle inventories
represent the production efficiencies and energy mix in the Philippines. The process of data
characterization followed the methodologies developed by Zea and Habert [28] based on
the Ecoinvent 3.6 database [37] and evaluation method of the IPCC (2013) [38]. With the
use of this information and bill of quantities, a life cycle impact assessment was conducted.
The calculation results were expressed in t CO2-eq, which represents the main unit in the
global warming potential impact category. The obtained LCIA results were presented at
different disaggregation levels; this type of presentation allows a better understanding
of the contributions of the different construction materials and/or building components.
Moreover, the results could be stored and used to compare different construction systems,
foundations, and/or roofs.

2.7. Case Study

To test the proposed approach, we used a case from the Base Bahay foundation being
developed in Batangas (PH). This project consists of attached single family houses of ne
storey of 27.3 m2. A rendered view of the architectural design is presented in Figure 5.
The primary and secondary parameters used for the calculations are presented in Table 4.
In order to carry out a comparative assessment, the calculations were performed for CBF
and concrete–brick construction systems. The same primary and secondary factors were
maintained for both options.
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Table 4. Primary and secondary parameters case study.

Primary Parameters

lx (parallel to building ridge—-if existent) 5.7 m
ly (normal to building ridge—-if existent) 4.8 m

Number of external doors (1 × 2.1) 2 -
Number of windows (0.9 × 1.2) 5 -

Minimum height (height of the walls) 2.8 m
Construction system CBF/Concrete-Brick
Interior separations 5 -

Secondary Parameters

Material
What is the concrete strength? fc′ = 25 MPa

What is the steel quality? Grade 30 -
Roof

Roof Type—-Choice 1 No slope
Roof angle 30 ◦

Foundation
f (length under soil) 0.9 m

Soil permissible stresses 30
Loads

Additional surcharge (concrete) 2 kPa
Additional surcharge (bamboo) 0 kPa

Roof live load 0.6 kPa
Input for earthquake force calculation

Soil profile SE-Soft Soil -
Seismic zone 4—rest -

Seismic zource type A—7 ≤M ≤ 8.4 -
Distance to seismic source (km) 35.1 km

Input for the wind’s force calculation
Wind speed (Wind. Map Figure 207A.5-1A, B or C) 340 kph

Exposure category B

3. Results and Discussion

The proposed approach allowed us to develop a robust yet user-friendly modular
methodology to perform simplified LCA studies using parametric design while ensuring
the structural performance of the studied buildings. The methodology was implemented,
and Excel calculations were executed to assess the approach. A case study in the Philippines
was used to evaluate the different features and sensitivity of the input detail level. Figure 6
shows the calculation results using basic and expert-level details. This figure shows that a
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variation of +/−8% in the results can be expected. Nevertheless, this level of variability
in the results is acceptable, and a compromise between the necessary data and expertise
demands that a more precise result could be required. This figure also shows that the inputs
in the expert mode can significantly influence the results. Thus, it could be advisable that
the team working with this tool should involve at least one expert on structural design. As
shown in this figure, the use of cement bamboo frame construction systems could achieve
environmental savings of approximately 60% over conventional construction systems.
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Figure 6. Comparative LCA.

The proposed approach also includes contribution analysis. Figure 7 shows the
results for the bamboo-based house. This figure reveals that the foundation is the main
component contributing to the building environmental impact, closely followed by the
walls. From the outer layer in the figure, we can observe how concrete and steel and the
main contributing materials affect each building component. These results highlight the
importance of appropriate structural design not only to guarantee the safety of future
inhabitants but also to maximize the environmental savings potential of the use of bio-
based materials. Furthermore, these results emphasize the importance of the appropriate
selection of materials and systems when making the case for sustainable construction.

To better identify the importance of the various parameters under each of the modes,
sensitivity analysis was carried out. The sensitivity analysis results are presented in
the following section, first evaluating the parameters under the basic mode, then those
under the expert mode and finally providing an overall view of the parameters and their
contributions. In these analyses, the maximum variations in each parameter and the results
were recorded. With this information, the percentage of change in each parameter was
defined.
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3.1. Basic Parameters

The first parameter studied was the building perimeter. In this case, the length of the
walls along the X (lx) and Y (ly) axes was the only parameter varied. This was achieved to
avoid interference resulting from other parameters in the calculations. The results indicated
that for any given value of lx, the environmental impact of both bamboo and concrete
houses seemed to increase with increasing lx value, and consequently, the gross floor area
increased. Additionally, the emissions increased with increasing ly value with respect to lx,
as shown in Figure 8. The reason is that the weight and the vertical and horizontal actions
also increased. Regarding the bamboo building, the observed increase mostly depended
on the structural capacity of the walls along each direction, which linearly depended on
the structural length of the walls. In terms of the concrete building, however, the shape of
the increase curve tended to be parabolic. The reason for this is that the maximum acting
moment increase was analogous to the square of the free-span length. The above moment
increase resulted in higher reinforcement requirements, which increased the environmental
impact.
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The results indicated that the emission difference per gross floor area did not remain
constant and, therefore, highly depended on the geometric parameters. This observation
highlights the importance of parametric approaches to this kind of calculation.

Another basic parameter considered in sensitivity analysis was the number of doors
and windows. In regard to this parameter, the total CO2 emissions decreased with increas-
ing number of doors and windows since less material was used. The change in emissions of
the bamboo structure was nonsignificant compared to that in the emissions of the concrete
structure. This could be explained based on the structure of a typical door and window
bamboo panel, in which the outline of the opening is constructed of wood, which is con-
nected with additional bolts and nuts. Regarding the concrete structure, the change was
attributed to the large difference in the number of bricks. Consequently, the difference in
the emissions of the bamboo-based concrete structure decreased with increasing number
of openings, since the increase in the number of openings significantly reduced only the
environmental impact of the concrete house. In the investigated example, the emission
difference decreased by 10% with additional openings.

3.2. Advanced Parameters

As mentioned above, the user can choose to increase the level of detail of the input
parameters, which requires more advanced knowledge and expertise. In this section,
we present the results for five of the most relevant parameters in the expert mode. The
first expert parameter studied was the quality of concrete. In this case, we observed
a direct relation between the increase in concrete strength and the total environmental
impacts. However, the difference in emissions between these two solutions changed by
only approximately 1%. This difference increased when considering a flat concrete roof for
the concrete building, reaching 8%.

The second parameter analysed was the quality of steel used for reinforcement. The
analysis demonstrated that a lower steel quality could result in much higher emissions of
the concrete structure and, therefore, in a much sharper increase in the total emissions. The
reason is that the capacity of the concrete cross-sections highly depended on the maximum
steel force. In the case of Grade 33 steel, the yield strength was 227.5 MPa, which is
approximately half of the value of B500 used in Europe. Consequently, approximately
double the reinforcement was required. The steel quality influenced only the foundation
of the bamboo structure. Therefore, the difference was not pronounced. As a result, the
difference between these two design scenarios could increase by 45%.

The third parameter analysed in the expert mode was the roof shape and material.
The analysis results indicated that the roof shape significantly influenced the emissions.
The reason is that the inclination of the roof raised the wall-material requirements. A
mono-slope roof design could decrease the environmental impact of the roof, but this
design could increase the environmental impact of the main structure. This configuration
could require less roof material but more wall material. The concrete structure was more
sensitive to the roof shape due to the high contribution to the total emissions of the walls
and concrete columns. In regard to the observed difference, the value was greater for the
mono-slope roof because, in this case, the increase in concrete was much more pronounced.
These analyses indicated that if the roof material and angles remained consistent in both
cases, a mono-slope roof could produce higher emissions than those under a gabled design.

The fourth parameter studied was the footing design. In general, the designed footing
should be wide enough so that the permissible soil stresses are not exceeded. The investi-
gated structures are one-story buildings, and, therefore, the weight was relatively small.
Consequently, the permissible stresses could influence the emissions only if the weight
of the materials increased or additional roof loads were added. The bamboo structure
consists of lightweight materials. Therefore, the pressures are relatively low, and in most
cases, the minimum foundation dimensions could be used. The results demonstrated
that the environmental impact of the bamboo structure was not greatly influenced by
the permissible soil stresses unless the permissible stresses remained below 30 MPa. The
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opposite behaviour could be observed for the concrete structure, which relies on heavier
materials. This resulted in higher axial forces acting on the columns, especially if the roof is
constructed of concrete.

The final studied parameter entailed the external lateral loads in terms of winds and
earthquakes. Several inputs are associated with this parameter, such as the soil types and
seismic zones. In the first case, changes in soil profile selection did not produce significant
changes in the results, as this factor impacted the seismic calculations. Thus, the material
amounts for both structures did not require significant changes. In the case of seismic
zones, we used the highest risk as a default value in all calculations. The change in seismic
zone could generate a decrease in the total emissions as the material demand of both the
foundation and superstructure of the buildings is directly related to these demands. In
the case of lateral wind loads, the default value used in the basic calculations was 250
kph. The analysis results indicated that the influence of the wind load was less significant
than that of the lateral loads stemming from earthquakes. In most cases, the critical design
shear force is the seismic force, and the wind loads influence the roof. An increase in the
wind speed increases the wind roof loads and, therefore, the environmental impact of the
bamboo house.

The sensitivity analysis results are summarized in Table 5. In this table, the results
for the inputs with the contributions to the variability in the results are higher than 6%.
Based on this table, we can observe that the most important values are considered in the
basic mode. This confirms the importance of appropriate design and material selection.
Moreover, most inputs in the expert mode could yield very low contributions to the
variability. It should be noted that these parameters were also considered in the basic mode
calculations, but only default values were used. These parameters are fundamental to
properly perform the calculations, and their absence could render the calculation results
unreliable. The results indicated that a tool using only basic mode inputs and default values
for expert mode parameters could produce reliable results without requiring a user with a
high degree of expertise on structural engineering. Nevertheless, to achieve higher-quality
results, it would be advisable to obtain the support of a structural engineer in the process
and to define all parameters to the best ability of the users.

Table 5. Parameter sensitivity and variability.

Parameter Contribution to the Variability Difference Variation

Geometry (lx, ly) Very high 90%
Concrete roof type Very high 95% for large geometries

Steel quality High 45%
Interior walls (rooms) Moderate 6–10%
Doors and windows Moderate 10%

Height Moderate 15%
Concrete quality Moderate 8%

4. Conclusions

Based on the experiences accumulated during the development of the research work
presented in this paper, we can conclude that the use of parametric design is a valid
approach to the challenge of data generation for LCA purposes. The proposed approach
allows bridging the knowledge gap both in structural design and LCA at early stages of
design. This shows that this kind of information can be generated at relevant stages of the
design process and support an informed decision-making process concerning materials and
construction systems. The case study helps identifying that the most relevant parameters
are related to the geometry of the buildings. The information required for this parameter is
available at the earliest stages of conception of a social housing project. Moreover, the low
data requirement to carry out these kind of calculation signals the potential application of
this type of approach in the social housing sector. Nevertheless, further research is required,
especially in the estimation transport distance of construction materials. Furthermore,
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the integration of calculations regarding biogenic CO2 stored in bio-based construction
materials needs to be addressed in order to obtain a better picture of the environmental
benefits from the use of bio-based construction materials like bamboo. Finally, we can
conclude that the proposed approaches can be further developed into tools and applications
that can benefit not only researchers but can also benefit many NGOs operating in the field
of affordable sustainable housing worldwide. Thus, bridging the existing knowledge gap
and promoting a science-based decision-making process in the sector.
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