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Abstract

:

Short-term building energy consumption prediction is of great significance for the optimized operation of building energy management systems and energy conservation. Due to the high-dimensional nonlinear characteristics of building heat loads, traditional single machine-learning models cannot extract the features well. Therefore, in this paper, a combined model based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), four deep learning (DL), and the autoregressive integrated moving average (ARIMA) models is proposed. The DL models include a convolution neural network, long- and short-term memory (LSTM), bi-directional LSTM (bi-LSTM), and the gated recurrent unit. The CEEMDAN decomposed the heating load into different components to extract the different features, while the DL and ARIMA models were used for the prediction of heating load features with high and low complexity, respectively. The single-DL models and the CEEMDAN-DL combinations were also implemented for comparison purposes. The results show that the combined models achieved much higher accuracy compared to the single-DL models and the CEEMDAN-DL combinations. Compared to the single-DL models, the average coefficient of determination (R2), root mean square error (RMSE), and coefficient of variation of the RMSE (CV-RMSE) were improved by 2.91%, 47.93%, and 47.92%, respectively. Furthermore, CEEMDAN-bi-LSTM-ARIMA performed the best of all the combined models, achieving values of R2 = 0.983, RMSE = 70.25 kWh, and CV-RMSE = 1.47%. This study provides a new guide for developing combined models for building energy consumption prediction.
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1. Introduction


Building energy consumption accounts for more than one-third of the global total energy consumption and is expected to continue increasing with the acceleration of urbanization in developing countries [1]. Consequently, energy saving and sustainable buildings have become the top priority of all countries in the world. To solve this problem, researchers have put forward a series of building energy-saving measures, such as renewable energy utilization and high-performance building envelopes. Among them, efficient intelligent control is one of the most effective measures to reduce energy consumption during the building’s lifecycle [2]. However, building energy consumption exhibits substantial randomness, so its accurate and reliable prediction is of great significance to predictive building systems’ control and optimal scheduling [3,4,5].



Depending on the time-scale range, building energy consumption prediction (BECP) methods can be divided into short-term, medium-term, and long-term [6]. Short-term building energy forecasting is mainly used for the daily operation and management of building energy systems [7]; it can help users adjust the equipment in real time according to the predicted values so as to achieve the best match between energy supply and demand as well as formulate the operational and regulation strategy of building energy systems [8]. Medium-term BECP is mainly applied to the scheduling of energy systems [9], while long-term prediction is mainly used for capacity design [10].



BECP methods can be mainly divided into physical models and data-driven models [11]. The physical models are based on energy consumption analysis and make predictions according to the heat-transfer process and outdoor meteorological conditions [12]. A notable example of this approach is the EnergyPlus simulation tool [13]. Physical models require detailed physical building information, including parameters related to exterior walls, doors and windows, ground, and other details, as well as the heat sources in the building. This information is often difficult to obtain, which limits the wide adoption of physical models [14]. With the continuous development of the Internet of Things, building energy consumption monitoring technologies are gradually maturing, and a large amount of historical data have become available, which has allowed the rapid development of data-driven energy consumption prediction models [15].



Machine-learning models have become one of the most commonly used data-driven methods for BECP due to their high accuracy and excellent ability to deal with high-dimensional nonlinear problems [16]. Such methods include artificial neural networks (NN) [17], support vector machines (SVMs) [18], least square SVMs [19], decision trees [20], random forests (RFs) [21], extreme gradient boosting (XGBoost) [22], etc. For example, Ling et al. [23] adopted a back-propagation neural network (BPNN) and an SVM to select the optimal input parameters for BECP. Chen and Chou [24] reviewed the machine-learning models commonly used for this purpose. Yang et al. [25] compared an RF with a BPNN and an SVM for BECP and concluded that the RF exhibits obvious advantages in terms of performance. Liu et al. [26] developed the 24-h-ahead BECP model based on long- and short-term memory (LSTM) and demonstrated that their proposed models achieved high accuracy and reliable predictions. Lei et al. [27] adopted a rough dataset and deep learning (DL) models for short- and medium-term BECP using one-year data from a laboratory building of a university in Dalian. The comparison with a BPNN, an Elman-NN, and a fuzzy NN showed that the DL models using the rough dataset produced the highest accuracy. Zhou et al. [28] compared 15 machine-learning models for short-term building heat load prediction and concluded that the tree-based models that adopted decision tree as the base model easily countered over-fitting problems, while the SVM and Gaussian process regression models produced the highest accuracy. Li et al. [29] developed a genetic algorithm (GA) and an NN BECP model for the building design and summarized that the application of GA can improve the accuracy and efficiency of BECP.



As the accuracy of single models is to some degree limited, researchers have proposed different model combinations to improve the prediction accuracy of machine-learning models [30]. For example, Li et al. [31] compared five combined models, namely an LSTM-convolutional neural network (LSTM-CNN), a CNN-LSTM, LSTM-Attention, a CNN-Attention-LSTM, and an LSTM-Attention-CNN, using data from 60 buildings. The results showed that LSTM-Attention-LSTM performed the best, as the RMSE was decreased by 5.6% compared to the LSTM alone. Li et al. [32] developed different ensemble models, including a teaching learning-based optimization algorithm-BPNN (TLBO-BPNN), a TLBO-SVM, BPNN-Adaboost, an extreme learning machine, and an RF. The results showed that the ensemble models performed much better compared to the single models in all cases. Zhang et al. [33] proposed two combined models for short-term BECP. The first was based on LSTM and BPNN and was proposed to solve the time-lag problems, while the second was based on a dimensionless sensitivity index and a weighted Manhattan distance to allow the machine-learning models to be explained more easily using domain knowledge. The results showed that the combined models achieved much higher accuracy.



Overall, combined models offer an efficient way to improve the accuracy of BECP. Generally, the combined techniques used for BECP include ensemble-based models [32], cluster-based models [34], decomposition-based models, etc. The decomposition-based models are based on decomposition algorithm and machine-learning models and can process multi-resolution data by extracting the embedded information from non-stationary BECP data. It is also an efficient method for BECP. However, there is little research on decomposition-based models.



Due to the high-dimensional nonlinear characteristics of building load, traditional single models face difficulties in capturing the features of the original data accurately [35]. In recent years, researchers have proposed to decompose the time series using decomposition algorithms in an attempt to capture the different features of the original data. Such methods include the wavelet transform, empirical mode decomposition, ensemble empirical model decomposition, and so on [36]. Following this trend, ensemble empirical model decomposition with adaptive noise (CEEMDAN) has become one of the most widely used decomposition algorithms, as it does not require a predetermined mother wavelet basis and can be used to solve problems such as modal aliasing. Through the decomposition algorithm, different features of the building load data can be extracted effectively, and then, the most appropriate model for each component can be found, which leads to the improved prediction accuracy of single models [37].



Based on the above, in this study, a decomposition-based model is developed based on CEEMDAN, DL models (including CNN, LSTM, bi-directional LSTM, and gated recurrent unit (GRU)), and autoregressive integrated moving average (ARIMA) models for BECP. The one-step prediction model (single model) and two-step prediction models (CEEMDAN-DLs) are adopted for comparison. First, CEEMDAN is used to decompose the original data into n intrinsic mode functions (IMFs) and a residual (RES). Then, the sample entropy of each component is calculated, based on which the complexity of different components is determined. As for deep learning models, the deep structure can fit the highly nonlinear relationships; however, there are issues with overfitting and high computational complexity. In comparison, numerous studies have shown that the ARIMA model has been proven to be excellent in handling linear problems [28]. Furthermore, its structure is much simpler, and its computational complexity is much lower than that of DL models. Therefore, ARIMA is used to predict the low-complexity components, and DL models are used to predict the high-complexity components. Finally, the CEEMDAN-DL-ARIMA model is proposed as an integration of the prediction results of the two algorithms, and it is validated using real building energy consumption data. Consequently, in this paper, a novel approach to high-dimensional nonlinear building load forecasting is proposed.




2. Overview of the Combined Model


Figure 1 shows the development framework of the combined model. First, the original heating load data are decomposed into n IMFs and a RES through CEEMDAN, and the sample entropy of each component is calculated. For components with high complexity, a DL model is used for prediction, while the ARIMA model is used for components with low complexity. Finally, the prediction results of the different components are weighted linearly to obtain the final prediction results.



2.1. Empirical Model Decomposition


The decomposition algorithm can be used to extract the embedded information of non-stationary time series and obtain multi-resolution data. Generally, the time series is decomposed into several low-frequency components and one high-frequency component. Wavelet analysis is one of the most widely used decomposition algorithms. However, the wavelet basis and decomposition need to be selected manually [38], which limits the method’s applicability. Empirical mode decomposition (EMD) can be used to select the wavelet basis and decomposition layers automatically [39] and has been widely adopted. However, EMD is prone to modal aliasing when there are jump changes in the time series. Therefore, Wu et al. [40] proposed the ensemble empirical model decomposition (EEMD) model, which can eliminate modal aliasing through the addition of white noise to the time series. However, redundant white noise may exist after the reconstruction [38]. Consequently, Torres et al. [41] proposed the complete ensemble empirical model decomposition with adaptive noise (CEEMDAN). By adding adaptive noise, CEEMDAN not only avoids the problem of modal aliasing but also eliminates the redundant white noise in the reconstructed time series.



The calculation steps of CEEMDAN are as follows:




	(1)

	
White noise ωi is added into the original signal x; then, the IMFs are obtained via decomposition of the signal using EMD. Thus, the first model is calculated using the following equation:











  I M  F 1  =  1 N    ∑   i = 1  N   E i   [  x + ε  ω i   ]   



(1)




where Ei(·) is the i-th IMF decomposed using EMD;    ω i    is the white noise; and  ε  is the signal-to-noise ratio.



	(2)

	
Calculate the first residual (r1) at the first stage:








    r 1  = x − I M  F 1    



(2)





	(3)

	
The signal (   r 1  + ε  E 1   [   ω i   ]   ) is further decomposed using EMD until IMF1 is obtained. Then, IMF2 can be calculated as follows:








   I M  F 2  =  1 N    ∑   i = 1  N   E i   [   r 1  + ε  E 1   [   ω i   ]   ]    



(3)





	(4)

	
The k-th residual is calculated.








    r k  =  r  k − 1   − I M  F k    



(4)





	(5)

	
The realization signal (   r k  + ε  E k   [   ω i   ]   ) is further decomposed using EMD, and IMFk+1 is calculated:








   I M  F  k + 1   =  1 N    ∑   i = 1  N   E i   [   r k  + ε  E k   [   ω i   ]   ]    



(5)





	(6)

	
Repeat the above steps until the residual satisfies the iteration termination condition, i.e., when there is no further decomposition possible. Then, the final residual is:








   R = x −   ∑   k = 1  K  I M  F k    



(6)





The original signal can be reconstructed as follows:


  x =   ∑   k = 1  K  I M  F k  + R  



(7)








2.2. Deep Learning Models


2.2.1. Convolutional Neural Networks


CNNs consist of three main mapping layers types, namely convolutional, pooling, and fully-connected layers [42]. Convolutional layers are used to extract the features of input data; pooling layers are used to reduce the input data’s dimensions, while fully-connected layers are used to produce the output. Overall, CNNs are a reliable technique for the efficient extraction of hidden features and the creation of filters according to these features. Weight sharing and local connections are two main characteristics of CNNs [43]. The topological structure of a CNN is shown in Figure 2.



The convolutional layer is defined as [44]:


   h  i j  k  = f  (     (   W k  ∗ x  )    i j   +  b k   )   



(8)




where f is the activation function;    W k    is the weight vector; x is the input data;  ∗  is the convolution operator;    b k    is a bias matrix. For the activation function, the rectified linear unit (ReLU) is adopted and calculated as follows:


  f  ( x )  = max  (  0 , x  )   



(9)








2.2.2. Long–Short-Term Memory Networks


Long- and short-term memory (LSTM) has been proposed as a method to solve the time dependence problems of recursive neural networks. It is an excellent tool with strong memory for long time-series prediction. LSTMs consist of four gates, including the input, forget, control, and output gate [31]. The topological structure of the LSTM is shown in Figure 3.



The calculation steps of LSTM are as follows:




	(1)

	
Depending on the input xt and the state of the last hidden layers ht−1, the LSTM can determine the information to be thrown away by forget gate ft:











   f t  = σ  (   ω f   [   h  t − 1   ,  x t   ]  +  b f   )   



(10)




where  σ  is the activation function,    ω f    is the weight matrix, and    b f    is the bias vector.



	(2)

	
The last output and the current input value are transferred to the input gate. Then, the output it and candidate state      C t   ˜    are generated.








    i t  = σ  (   W i  ·  [   h  t − 1   ,  x t   ]  +  b i   )    



(11)






      C t   ˜  = tanh  (   W C  ·  [   h  t − 1   ,  x t   ]  +  b C   )    



(12)





	(3)

	
The current state of cell Ct is updated through the integration of the input of the forget gate with the last state of the cell.








    C t  =  f t  ·  C  t − 1   +  i t  ·    C t   ˜    



(13)





	(4)

	
Finally, the output gate ot is calculated using ht−1 and xt. Then, the final output ht is obtained from the output gate.








    o t  = σ  (   W o  ·  [   h  t − 1   ,  x t   ]  +  b o   )    



(14)






    h t  =  σ t  · tanh  (   C t   )    



(15)






2.2.3. Gated Recurrent Unit


The structure of the GRU is similar to that of LSTM, but there is no cell that stores the state. The GRU instead has a reset gate and an update gate, which are used to determine the information being stored or thrown away [45]. The reset gate allows the dismissal of irrelevant information from the hidden state, while the update gate controls how much information from the previous hidden state (ht−1) can be stored in the current hidden state (ht) [46]. The general topological structure of the GRU is shown in Figure 4.



The reset gate rt is defined as follows:


   r t  = σ  (   W r   x t  +  U r   h  t − 1   +  b r   )   



(16)







The update gate zt is defined as follows:


   z t  = σ  (   W z   x t  +  U z   h  t − 1   +  b z   )   



(17)




where    x t    is the new input;    W r   ,    W z   ,    U r   , and    U z    are the weight matrices;    b r   , and    b z    are the bias vectors. The output ht is calculated as follows:


   h t  =  z t  ·  h  t − 1   +  (  1 −  z t   )  ·    h t   ˜   



(18)




where     h ˜  t    is the candidate state, calculated as follows:


    h ˜  t  = tanh  (   W h   x t  +  U h   (   r t  ·  h  t − 1    )  +  b r   )   



(19)








2.2.4. Bidirectional Long–Short-Term Memory Network (Bi-LSTM)


Bi-LSTM transfers the input data at each time to the network for calculation. Each hidden layer contains two LSTM units. The first is the forward LSTM, which receives the output data corresponding to the previous instance and forwards it to the next instance after calculation to ensure that past information is taken into account. The other is the backward LSTM, which receives the output data of the next instance, calculates, and sends it back to the previous instance to capture future information in current calculations [47]. Bi-LSTM’s topological structure is shown in Figure 5.



Defining the last hidden vector as   h →   and the next hidden vector as   h ←  , the output of bi-LSTM is calculated as follows:


   h t  = α  h →  + β  h ←   



(20)




where  α  and  β  are the constants and   α + β = 1  .





2.3. ARIMA Model


The autoregressive integrated moving average (ARIMA) model converts a non-stationary time series into a stationary one through the d-order difference between an autoregressive model (AR) and a moving average model (MA) [48]. Generally, it is represented as ARIMA (p, q, d), where p is the order of the AR model; q is the order of the MA model; and d is the difference order.



The AR model captures the relationship between the values at the current time and the previous p instances. It can be expressed as:


   x t  = μ +   ∑   i = 1  p   Υ i   x  t − i   +  ε t   



(21)




where xt is the current value;  μ  is a constant;    Υ i    is the correlation coefficients; and    ε t    is the error.



The MA model is the weighted sum of white noises:


   x t  = μ +   ∑   i = 1  q   θ i   ε  t − i   +  ε t   



(22)




where  θ  is a coefficient. The combined AR (p) and MA (q) models can be obtained from the following equation:


   x t  = μ +   ∑   i = 1  p   Υ i   x  t − i   +  ε t  +   ∑   i = 1  q   θ i   ε  t − i    



(23)







The difference order can be determined using Bayesian information criterion (BIC):


  V = 2 M + d log N  



(24)




where M is the optimal log likelihood value, and N is the number of samples.





3. Materials and Methods


3.1. Data Description


The research data were obtained from the monitoring data of the heating pipe network of Xi’an University of Architecture and Technology, China. The total heating area was 392,219.63 m2 and included student dormitories, restaurants, teaching buildings, office buildings, and hospitals. The research data include hourly heating load data covering from 2 January to 2 March 2016. Figure 6 shows the heating load and the corresponding IMFs and RES decomposed using the CEEMDAN algorithm. The training and testing dataset are decomposed separately. First, the training dataset was decomposed, and then, the testing dataset was decomposed based on the training dataset. The total number of heating load samples was 1480, and 991 samples were used as training data, while the remaining 489 samples were taken as test data. The heating loads of the training dataset varied from 3743.9–5707.8 kWh with an average value of 7518.6 kWh, while the range of the test dataset was 3313.8–4764.0 kWh with an average value of 5612.9 kWh.




3.2. Correlation Analysis


Methods based on correlation coefficients are the most widely used for feature selection. Among these methods, Pearson’s correlation coefficient is one of the most popular options. For example, Zhang et al. [34] adopted Pearson’s correlation coefficient to determine the key impact parameters of day-ahead and intra-day heating loads. However, generally, Pearson’s correlation coefficient can only be used to describe linear correlations [9]. For the building heating load, due to the thermal inertial of buildings, the hourly-ahead heating load presents high nonlinear correlation with historic heating loads. As a result, Pearson’s correlation coefficient’s applicability is limited in building heating load prediction. In contrast, Spearman’s correlation coefficient can describe the nonlinear correlation between two parameters. It is a nonparametric index to measure the dependence of two variables, and it has the advantages of universality, low complexity, and high efficiency. Therefore, in this study, Spearman’s correlation coefficient was adopted. For a sample size N, the N original samples are converted into rank data, and the correlation coefficient  ρ  can be calculated through the following equation:


  ρ =     ∑  i   (   x i  −  x ¯   )   (   y i  −  y ¯   )        ∑  i     (   x i  −  x ¯   )   2      ∑  i     (   y i  −  y ¯   )   2     



(25)




where Xi and Yi represent the independent and dependent variables, respectively. xi and yi represent the average values of independent and dependent variables. Figure 7 illustrates the Spearman correlation coefficients between the hour-ahead heating load with the 12-h historic heating loads. It is evident that the historic heating loads have a high correlation with the hour-ahead heating load, as the corresponding Spearman correlation coefficient values are higher than 0.70. For the 2-h historic heating load in particular, the corresponding values are above 0.90. As values further back in time are considered, the correlation coefficient decreases gradually. Considering the model complexity and accuracy comprehensively, the historical heating loads with correlation coefficients above 0.80 were selected as input parameters. That is, the 7-h historical heating loads were selected as model input parameters.




3.3. Model Evaluation


Four evaluation indicators, namely the coefficient of determination (R2), the root mean square error (RMSE), the coefficient of RMSE variation (CV-RMSE), and the mean bias error (MBE), were adopted in this study. The respective calculation equations are as follows [49]:


   R 2  =      [    ∑   i = 1  n   (   Y  i , c   −   Y ¯   i , c    )   (   Y  i , m   −   Y ¯   i , m    )   ]   2      ∑   i = 1  n     (   Y  i , c   −   Y ¯   i , c    )   2    ∑   i = 1  n     (   Y  i , m   −   Y ¯   i , m    )   2     



(26)






  RMSE =       ∑   i = 1  n     (   Y  i , m   −  Y  i , c    )   2   n     



(27)






  CV − RMSE =   RMSE      Y  i , m    ¯     



(28)






  MBE =  1 n    ∑   i = 1  n   (   Y  i , m   −  Y  i , c    )   



(29)




where Yi,m is the measured value, Yi,c is the predicted value, and n is the number of the observations. R2 represents the ratio of the sum of regression squares to the total sum of squares, and values closer to 1 correspond to better performance. The RMSE describes the short-term performance of the model by comparing the deviation between the predicted and true values. CV-RMSE characterizes the performance of the model depending on its value as follows: when it is less than 10%, the accuracy of the model is considered to be excellent; between 10–30%, the model’s accuracy is considered good; when it is greater than 30%, the accuracy of the model is considered poor [50]. MBE describes the long-term performance of the model.




3.4. Model Development


3.4.1. Sample Entropy Analysis


Sample entropy is a dimensionless parameter that measures the complexity of a time series through the measurement of the probability of new patterns occurring in the signal. Greater pattern-generation probabilities correspond to more complex sequences [51]. In this study, sample entropy was adopted to measure the complexity of the components. Figure 8 shows the values of sample entropy of the components decomposed using CEEMDAN.



Comparing the change trends of the sample entropies of the components, if the differences between the sample entropies of the IMFs and that of RES are large, or the change range of the IMFs’ sample entropy suddenly becomes larger, then the last sequence between the two IMFs is used as the first sequence predicted by the ARIMA model, and the RES is used as the last sequence predicted by ARIMA model [52]. As seen in Figure 7, IMF5–RES are suitable for analysis using the ARIMA model, and IMF1−IMF4 are suitable for analysis using the DL models.




3.4.2. Model Development and Parameter Setting


In this study, four DL models, namely the CNN, LSTM, bi-LSTM, and GRU models, were adopted to develop the combined models. The process comprises three steps:




	(1)

	
Data preprocessing: The CEEMDAN algorithm is applied to decompose the heating load into six IMFs and one RES. Then, the sample entropies are calculated, and the corresponding prediction models of each component are determined.




	(2)

	
Model development: The four DL models are integrated with the ARIMA model to develop the combined models. That is, IMF1−IMF4 are used to train the DL models, and IMF5−RES are used to train the ARIMA model.




	(3)

	
Model prediction: The prediction of the four DL models and the ARIMA model are summed. Thus, the predictions obtained are from four combined models, namely CEEMDAN-CNN-ARIMA, CEEMDAN-LSTM-ARIMA, CEEMDAN-GRU-ARIMA, and CEEMDAN-bi-LSTM-ARIMA.









The adaptive moment estimation (Adam) method is adopted to optimize the weights of the CNN, LSTM, bi-LSTM, and GRU networks. The reader can refer to [45] for an introduction to Adam. The hyper-parameters optimized for the four DL models are shown in Table 1. In this study, the Tree of Parzen Estimators (TPE) [53] method was used to optimize the hyper parameters, where the number of maximum estimations was set to be 100.






4. Results and Discussion


To verify the performance of the combined models proposed in this study, eight models, namely CNN, LSTM, GRU, bi-LSTM, CEEMDAN-CNN, CEEMDAN-LSTM, CEEMDAN-GRU, and CEEMDAN-bi-LSTM, were implemented and compared.



The CNN, LSTM, GRU, and bi-LSTM are one-step prediction models and were adopted to predict the heating load without any data preprocessing. CEEMDAN-CNN, CEEMDAN-LSTM, CEEMDAN-GRU, and CEEMDAN-bi-LSTM are the two-step prediction models based on the CEEMDAN algorithm, where the components of the heating load, including the IMFs and RES were decomposed using CEEMDAN algorithm and then predicted by the DL models. CEEMDAN-CNN-ARIMA, CEEMDAN-LSTM-ARIMA, CEEMDAN-GRU-ARIMA, and CEEMDAN-bi-LSTM-ARIMA are the three-step prediction models, which combine the DL models, the CEEMDAN algorithm, and the ARIMA model, where the ARIMA model is adopted to predict the components of low frequencies instead of the DL models.



4.1. Model Performance Comparison


Table 2 shows the evaluation indicators of the one-, two-, and three-step prediction models. Overall, all models achieved high accuracy. R2, RMSE, CV-RMSE, and MBE varied from 0.917–0.988, 70.25–272.72 kWh, 1.47–5.72%, and −99.16–210.74 kWh with average values of 0.971, 151.73 kWh, 3.18%, and 78.70 kWh, respectively.



Figure 9 shows the prediction results of the one-step prediction models. For the CNN model, it can be seen in the diagram of Figure 8 that before the 350th heating load sample, the predicted heating load showed good agreement with the measured values. However, after the 350th sample, the agreement between them gradually deteriorated, which was the cause of the lowest R2 values. The main reason is that in the early stage of testing, the heating load change trend is similar to that in the training phases. Thus, the CNN model could fit the training set very well through its multi-layer structure. That is, when the change trend in the test phase is similar to that of the training phase, the CNN models will produce excellent predictions. However, as time progressed, the temperature gradually warmed up, the heating load gradually decreased, and the change trend of the heating load began to change. Because the CNN model does not have any memory, it is difficult to capture the change trend of long-lasting series. As a result, the coincidence of CNN prediction and measured values declined after that point.



Although the change trend of the LSTM model’s heating load prediction was similar to that of the measured values at all stages, its deviation degree was high. Therefore, the R2 value of LSTM was higher than that of CNN, while the RMSE and CV-RMSE were higher than those of CNN. Moreover, it can be seen from Figure 8 that the coincidence degree of the LSTM continued to improve as time progressed. This is because the LSTM has a memory function and continues to learn through the prediction, so its performance improves continuously. Similarly, the performance of bi-LSTM and GRU also improved continuously, and the agreement between heating load predictions and measured values was very high in all testing phases.



Comparing the GRU and the bi-LSTM, it can be seen that the GRU had higher R2 value, while the bi-LSTM yielded lower RMSE, CV-RMSE, and MBE. Building heating load is related to climate conditions, historical heating loads, building characteristics, and other factors, and its randomness is strong. The bi-LSTM generates the current prediction value considering the past and future information of time series, so its prediction is relatively smooth, resulting in poor consistency of the change trend between the predicted and the measured values compared with the GRU. However, because the bi-LSTM integrates these additional aspects of the time series, its prediction deviation is smaller than that of the GRU, and the prediction error is smaller. Thus, the RMSE, CV-RMSE, and MBE of bi-LSTM were lower than the corresponding values of the GRU.



Figure 10 shows a comparison of predicted and measured heating load of the two-step prediction models, in which it can be easily seen that the performance was greatly improved compared with one-step prediction models. The average R2, RMSE, CV-RMSE, and MBE were 0.980, 143.72 kWh, 3.02%, and 88.88 kWh, respectively, improved by 2.78%, 31.03%, 31.01%, and 5.08% compared to the corresponding one-step prediction models. Similarly, CEEMDAN-GRU produced the highest R2 at a value of 0.988, while CEEMDAN-bi-LSTM yielded the lowest RMSE and CV-RMSE with values of 92.27 kWh and 1.94%, respectively.



Figure 11 shows a comparison of the predicted and measured heating load of the three-step prediction models. In a similar fashion to the previous comparison, compared with two-step prediction models, the performance was greatly improved, with average R2 = 0.981, RMSE = 103.10 kWh, CV-RMSE = 2.16%, and MBE = 55.58 kWh. These values were improved by 0.08%, 28.26%, 28.28%, and 39.71%, respectively. CEEMDAN-CNN-ARIMA had worst performance; the R2 value of CEEMDAN-GRU-ARIMA was the highest one; CEEMDAN-bi-LSTM-ARIMA produced the best performance with the lowest RMSE, CV-RMSE, and MBE.




4.2. Improvements of Combined Models


Figure 12, Figure 13 and Figure 14 show the performance improvement percentages of the models investigated in this paper. It is evident that with regard to prediction accuracy, increasing the number of steps generally improved the prediction results. Furthermore, one-step models with worse performance showed higher performance improvement when used in combined models. For example, compared with one-step models, CNN models yielded the lowest R2, while GRU models have highest R2. The performance improvement percentages of the two- and three-step models were 5.45% and 5.45%, respectively. In contrast, the corresponding values for GRU were 0.92% and 0.92%, respectively.



Compared to one-step models, the performance improvement percentages of R2, RMSE, and CV-RMSE of the two-step models were 2.83%, 30.22%, and 30.15%, respectively, and 2.91%, 47.93%, and 47.92% for the three-step models.





5. Conclusions


Accurate prediction of building energy consumption is of great significance to building energy management systems. In this paper, a model combining DL models (including CNN, LSTM, bi-LSTM, GRU) and the ARIMA model is proposed based on CEEMDAN. The CEEMDAN model was used to decompose the original heating load data, while the DL models were used to predict complex high-frequency subsequences; the ARIMA model was used to predict relatively stable low-frequency subsequences. Through the validation of models using actual heating load data, the following conclusions are obtained:




	(1)

	
At the initial stage of testing, the change trend of the heating load is similar to that observed during training phases, and the CNN model could follow the heating load due to its deep structure. Therefore, at the initial stage of testing, the CNN had the best performance. As time progressed, the heating load gradually decreased, the change trend became less familiar to the model, and the CNN prediction performance decreased. In comparison, the LSTM, bi-LSTM, and GRU have memory functions resulting in their prediction performance improving over time. The Bi-LSTM had the best comprehensive performance because it can integrate information from the previous and the following samples of the time series.




	(2)

	
Combined models performed better than single models. Compared with the single model, the average performance improvement percentages of R2, RMSE, and CV-RMSE of the two-step models combining CEEMDAN and DL models were 2.83%, 30.22%, and 30.15%, respectively. The corresponding values of the three-step models, which combined CEEMDAN, DL, and ARIMA, were 2.91%, 47.93%, and 47.92%, respectively.




	(3)

	
Among all models, the CEEMDAN-Bi-LSTM-ARIMA model had the best performance. ARIMA model can predict the low-frequency subsequences decomposed by CEEMDAN effectively and reduce the prediction error of the bi-LSTM on these low-frequency subsequences. This resulted in an improvement in the overall prediction accuracy of the hybrid model.









In conclusion, building energy consumption has high-dimensional nonlinearity and randomness. The CEEEMD-DL-ARIMA model can not only solve the problem of BECP but also solve other time series prediction problems, such as the solar radiation prediction problem. However, the different components of the model are still summed using a simple linear weighting. As the time series changes dynamically, the weight of each component also changes dynamically as time progresses. Therefore, in future research, a variable weight combination method should be considered to improve the prediction accuracy of building energy consumption.
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Nomenclature








	Symbols
	



	R2
	Coefficient of determination



	Abbreviations
	



	Adam
	Adaptive moment estimation



	ANN
	Artificial neural network



	ARIMA
	Autoregressive integrated moving average



	Bi-LSTM
	Bi-directional long- and short-term memory



	BPNN
	Back-propagation neural network



	CEEMDAN
	Complete ensemble empirical model decomposition with adaptive noise



	CNN
	Convolutional neural network



	CV-RMSE
	Coefficient of variation of the root mean square error



	DL
	Deep learning



	EEMD
	Ensemble empirical model decomposition



	EMD
	Empirical mode decomposition



	GRU
	Gated recurrent unit



	IMF
	Intrinsic mode function



	LSSVM
	Least square support vector machine



	LSTM
	Long- and short-term memory



	MBE
	Mean bias error



	RF
	Random forest



	RMSE
	Root mean square error



	RES
	Residuals



	SVM
	Support vector machine



	TLBO
	Teaching learning-based optimization algorithm



	TPE
	Tree of Parzen Estimators



	XGBoost
	Extreme gradient boosting
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Figure 1. Combined model structure for building heating load prediction. 
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Figure 2. General topological structure of a CNN model. 
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Figure 3. General topological structure of LSTM model. 
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Figure 4. General topological structure of GRU model. 
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Figure 5. General topological structure of Bi-LSTM. 
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Figure 6. Heating load and the corresponding intrinsic mode functions and residuals decomposed using CEEMDAN. 
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Figure 7. Correlation analysis between current heating load and historical heating loads. 
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Figure 8. Sample entropy of the components decomposed using CEEMDAN. 
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Figure 9. Comparison of prediction results of one-step prediction models. 
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Figure 10. Comparison of prediction results of two-step prediction models. 






Figure 10. Comparison of prediction results of two-step prediction models.



[image: Sustainability 14 07349 g010]







[image: Sustainability 14 07349 g011 550] 





Figure 11. Comparison of prediction results of three-step prediction models. 
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Figure 12. Improvement percentage of R2 between different models investigated in this study. Notes: Improvement of R2 = (R2 in columns − R2 in rows)/R2 in columns. 
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Figure 13. Improvement percentage of RMSE between different models investigated in this study (%). Notes: Improvement of RMSE = (RMSE in columns − RMSE in rows)/RMSE in columns. 
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Figure 14. Improvement percentage of RMSE between different models investigated in this study (%). Notes: Improvement of CV-RMSE = (CV-RMSE in columns − CV-RMSE in rows)/CV-RMSE in columns. 
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Table 1. Hyper-parameters of DL models for building heating load prediction.
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	Models
	Parameters
	Maximum Values
	Minimum Values





	CNN
	Filters
	1
	30



	
	Kernels
	1
	3



	
	Dropout rate
	0.1
	0.5



	
	Pooling size
	1
	2



	
	Layers
	1
	5



	
	Learning rate
	0.01
	0.1



	
	Epochs
	10
	100



	
	Batch size
	12
	72



	LSTM
	LSTM layers
	1
	5



	
	Dense layers
	1
	3



	
	LSTM units
	10
	100



	
	Dropout rate
	0.1
	0.5



	
	Dense units
	10
	100



	
	Batch size
	12
	72



	
	Epochs
	10
	100



	
	Learning rate
	0.01
	0.1



	GRU
	GRU layers
	1
	5



	
	Dense layer
	1
	3



	
	GRU units
	10
	100



	
	Dropout rate
	0.1
	0.5



	
	Dense units
	10
	100



	
	Batch size
	12
	72



	
	Epochs
	10
	100



	
	Learning rate
	0.01
	0.1



	Bi-LSTM
	Bi-LSTM layers
	1
	5



	
	Dense layers
	1
	3



	
	Dropout rate
	0.1
	0.5



	
	Dense units
	10
	100



	
	Batch size
	12
	72



	
	Epochs
	10
	100



	
	Learning rate
	0.01
	0.1
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Table 2. Evaluation indicators of different models for short-term building heating load prediction.






Table 2. Evaluation indicators of different models for short-term building heating load prediction.





	Models
	Model ID
	R2
	RMSE (kWh)
	CV-RMSE (%)
	MBE (kWh)





	CNN
	C1
	0.917
	200.98
	4.22
	−99.16



	CEEMDAN-CNN
	C2
	0.967
	196.15
	4.12
	158.74



	CEEMDAN-CNN-ARIMA
	C3
	0.967
	104.63
	2.20
	34.12



	LSTM
	L1
	0.942
	272.72
	5.72
	210.74



	CEEMDAN-LSTM
	L2
	0.981
	94.04
	1.97
	44.13



	CEEMDAN-LSTM-ARIMA
	L3
	0.984
	74.53
	1.56
	16.32



	Bi-LSTM
	B1
	0.975
	177.06
	3.71
	120.60



	CEEMDAN- Bi-LSTM
	B2
	0.983
	92.27
	1.94
	−22.17



	CEEMDAN- Bi-LSTM-ARIMA
	B3
	0.983
	70.25
	1.47
	14.25



	GRU
	G1
	0.979
	192.40
	4.03
	174.81



	CEEMDAN-GRU
	G2
	0.988
	182.69
	3.83
	142.34



	CEEMDAN-GRU-ARIMA
	G3
	0.988
	163.00
	3.42
	149.66
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