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Abstract: Searching for a free parking space can lead to traffic congestion, increasing fuel consump-
tion, and greenhouse gas pollution in urban areas. With an efficient parking infrastructure, the
cities can reduce carbon emissions caused by additional fuel combustion, waiting time, and traffic
congestion while looking for a free parking slot. A potential solution to mitigating parking search is
the provision of parking-related data and prediction. Previously many external data sources have
been considered in prediction models; however, the underlying impact of contextual data points and
prediction has not received due attention. In this work, we integrated parking occupancy, pedestrian,
weather, and traffic data to analyze the impact of external factors on on-street parking prediction. A
comparative analysis of well-known Machine (ML) Learning and Deep Learning (DL) techniques,
including Multilayer Perceptron (MLP), Random Forest (RF), Decision Trees (DT), K-Nearest Neigh-
bors (KNN), Gradient Boosting (GA), Adaptive Boosting (AB), and linear SVC for the prediction of
OnStreet parking space availability has been conducted. The results show that RF outperformed other
techniques evaluated with an average accuracy of 81% and an AUC of 0.18. The comparative analysis
shows that less complex algorithms like RF, DT, and KNN outperform complex algorithms like MLP
in terms of prediction accuracy. All four data sources have positively impacted the prediction, and
the proposed solution can determine the best possible parking slot based on weather conditions,
traffic flow, and pedestrian volume. The experiments on live prediction showed an ingest rate of 0.1
and throughput of 0.3 events per second, demonstrating a fast and reliable prediction approach for
available slots within a 5–10 min time frame. The study is scalable for larger time frames and faster
predictions that can be implemented for IoT-based big data-driven environments for on-street and
off-street parking.

Keywords: smart city applications; Internet of Things; predictive analytics; on-street parking prediction

1. Introduction

Due to massive urbanization, traffic volume in urban areas has grown, making urban
life very congested and polluted, leading to many negative impacts on human life, such
as higher energy consumption, global warming, and airborne diseases [1]. According to
World Resource Institute [2], 74% of CO2 is produced by greenhouse gas emissions, and
93% of it results from fossil fuel usage, transportation, manufacturing, and consumption.
In fact, 2020 has been recorded as the hottest year per NASA analysis. For the sustainable
development of cities, the efficient use of resources and the adoption of effective measures
have become crucial for survival. We have witnessed the COVID-19 effects in different
areas of life, making the internet and information the heart of modern and sustainable cities.
To reap the benefits of the internet and Information Communication Technologies (ICT),
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many city governments have initiated the concept of a “Smart City” with the deployment
of advanced ICT aiming to provide a better living experience to its citizens [3]. At the heart
of a smart city is the Internet of Things (IoT) which enables different devices to interact and
draws upon various underlying operations of a smart city for sustainable living such as
smart services, smart health, smart transportation, smart agriculture, smart energy to name
a few [4].

The goal of sustainable transport in smart cities is to ensure efficient traffic move-
ment while minimizing a negative impact on the environment and public health [5]. The
most discussed area in smart cities is intelligent transportation highlighting its impact on
intelligent mobility, the environment, and the economy. For example, Cisco Barcelona
Jurisdiction Profile 2014 [6] reveals an annual increase of $50 million through parking fee
revenues using smart parking technology. The main goal of smart parking is finding and
providing appropriate parking for each user. However, the problem of finding a parking
area is still challenging due to increased traffic flow in urban areas. For example, some
studies reveal that an average of 30–40% increase in traffic is caused by drivers looking for
vacant parking spots, and on average, a New York driver spends 107 h a year searching for
a parking spot [7]. This phenomenon has increased air pollution and has had a negative
environmental effect. With an efficient parking infrastructure, the cities can reduce carbon
emissions caused by additional fuel combustion and avoid delays and traffic congestion
while looking for a free parking slot.

In previous research, smart parking solutions are mainly categorized as off-street and
on-street [8,9]. Off-street parking includes garages and closed parking spaces which could
be outdoors or indoors. Off-street, the problem is simpler since it is straightforward to count
the number of available slots by counting the number of cars entering and leaving a closed
parking space. Off-street parking management has been tackled quite well due to its simpler
problem and data availability [10]. On the other hand, on-street parking is challenging
due to the absence of parking entrances and significant changes in occupancy rates as
more cars enter and leave the spots. On-street parking can directly affect streets regarding
traffic congestion and air pollution. Numerous research has been done on both problems
leading to an effective search for vacant parking spots. The research is usually based on
parking spaces equipped with sensors to sense whether the spots are occupied and provide
information. The data from occupancy sensors allows us to learn availability patterns and
predict probabilities of parking occupancy of the spots. Based on Parking Sensor Data
(PSD), various machine learning methods have been used to predict parking occupancy
rates [1,11]. The most common ML used for parking prediction are Regression Trees [12–14],
DTs [14], Support Vector Machine [13,15], Genetic Algorithm [16], Bayesian [17], and
Neural Network [13,18]. The performance of these models depends on the accuracy of
information provided to users about the availability of parking lots. However, multiple
traffic factors may influence car parking activity regarding on-street parking. For example,
the occupancy status may change due to other traffic factors present at that time, such as
weather, pedestrian mobility, and traffic volume; therefore, the information provided by
PSD is not very efficient. These factors can influence car parking conditions; therefore, it is
essential to identify possible factors to predict future parking availability accurately.

It is necessary to install many sensors in various cities with substantial setup costs to
collect data for contextual factors. Using a publicly available dataset can provide a good
starting point for understanding the impact of external elements on the real-time prediction
of the availability of parking spaces. Therefore, in this paper, we took advantage of publicly
available data from the sensors deployed in the City of Melbourne (COM). Based on the
literature review, on-street car parking, pedestrian, traffic, and weather data are identified
as possible relevant categories of data that can influence prediction accuracy. None of the
existing studies has investigated the influence of these factors on their predictions.

The main objective of this study is to design, build and evaluate an end-to-end ML
pipeline for an on-street parking prediction using multisource data. We plan to integrate
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the ML pipeline into a smart parking application for future experimentation. The research
objectives are achieved through the following contributions:

1. We integrated four datasets, i.e., car occupancy, weather, pedestrian, and traffic
datasets, for more reliable predictions. The research question is: does the integration
of multisource data impact the prediction accuracy of ML/DL models?

2. We investigated the relationship of car occupancy data with other external factors such
as pedestrian volume, traffic flow, and weather conditions. The research question
is: to what extent can each external factor help in improving the accuracy of the
occupancy prediction model?

3. We analyzed the performance of well-known and generally used ML/DL models
(e.g., MLP, RF, DTs, KNN, GA, AB, and linear SVC) to identify the best prediction
model. The research question is: which ML/DL model can be used to achieve a more
accurate prediction?

4. Using basic streaming operations, we deployed the best On-Street Prediction (ONSP)
model for real-time prediction. The simulation results have shown an ingest rate
of 0.1 and throughput of 0.3 events per second, demonstrating a fast and reliable
prediction approach for available slots within 5–10 min. The research question is:
how to scale the solution for IoT-driven big data environments to achieve sustainable
parking solutions?

The rest of the paper is structured as follows—Section 2 reviews related work to
summarize previous research on parking prediction. Section 3 describes the methodology
adopted for predictive analysis based on a multisource data-driven approach. Evaluation of
machine learning algorithms and comparison results of different modeling approaches are
discussed in Section 4. Finally, the future insights on intelligent real-time decision-making
for smart city applications are discussed in Section 5, followed by the concluding remarks.

2. Review of the Scientific Literature

The prediction of car park availability is the subject that has received significant
attention in the context of smart cities where parking facilities have installed sensors as
part of their infrastructure. Many research efforts have focused on improving parking
search efficiency, reservation, and prediction for an available parking space. For example,
Kizilkaya et al. [19] used a hierarchical approach for predicting free parking spots using a
binary search tree (BST). For the experiment, synthetic data is used with attributes such
as parking distance, capacity, and availability status. The approach first searches for the
nearest parking location and then finds a free spot in the nearest car park. Horng [20]
used the Artificial Fish Swarm Algorithm(AFSA) to minimize search time and traffic
congestion. The performance is evaluated through simulations by randomly distributing
300–1800 vehicles in a 5.0 × 5.0 km2 field. The results are compared with the conventional
opportunistic methods revealing the effectiveness of AFSA in terms of reducing search
time and congestion. However, the studies discussed above are promising, but the focus is
limited to exploring only algorithmic capability in the domain.

Similarly, Thomas and Kovoor [16] used Genetic Algorithm (GA) to solve the schedul-
ing problem in the parking system, but the proposed prototype can only be used for
reserving parking spots. The decision-making of parking slots is based on the maximized
fitness score of the GA objective function. The performance analysis metrics include ef-
ficiency, utilization, and average waiting time. Customers can book a parking slot in
advance for a specific time period. When parking time duration exceeds, the system sends
a notification of time exceeded. All the parking information is stored in the cloud. A multi-
criteria decision analysis-based Parking space Reservation (MCPR) algorithm is proposed
by Rehena et al. [21] for improvement in the reservation algorithm. The MCPR automati-
cally finds the nearest parking space based on the users’ preferences, from parking space
availability to pricing for the reservations. The studies mentioned in this section is a step
further in optimizing the decision capability for predicting parking slot and highlighting
the significance of using Machine Learning (ML) algorithms.
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The previous research efforts indicate that several ML algorithms have been widely
studied and explored in the direction of predicting occupancy. For example, Raj et al. [22]
used parking data and tested the Random Forest method for predicting parking spots in
a parking lot. The question is how contextual data and other ML methods can predict
parking availability. Stolfi et al. [23] used historical car parking occupancy data from
the Birmingham city council for testing various prediction strategies such as polynomial
fitting, Fourier series, K-means clustering, and time series to predict future occupancy. The
results are validated using K- fold cross-validation with the final output testing on unseen
occupancy data. The solution is made available for the users through a webpage. However,
it faces challenges due to the inconsistency in the sensor’s data, as the data may not be
updated for the whole day. Klandev et al. [24] used garage occupancy and traffic congestion
data to predict the parking spot availability ratio within 60 min. They tested the XGBoost
regression model, which received a low error rate confirming its efficiency of predictions.

Similarly, Claudio et al. [17] compared different prediction techniques utilizing traffic
flow, weather, and historical data to predict parking in the city garages of Florence. The
resulting solution proved the Bayesian regularized network for reliable and fast predictions.
Zheng et al. [13] perform a comparative analysis of SVM, Regression Tree, and Neural
Networks using San Francisco and Melbourne datasets to predict long-term occupancy
in 24 h intervals. The results indicate that the Regression tree outperforms the other
two methods they evaluated with the highest accuracy and minimum error rate.

The discussed research shows the importance of contextual data such as traffic and
weather being used along with ML approaches, but they are only tested on off-street park-
ing prediction. Alajali et al. [12] investigated the use of on-street car parking, pedestrian,
and daily traffic count data to predict short-term parking slots using Boosting Regression
Tree. The study was implemented for a particular location Central Business District Mel-
bourne, using data for special days and events since getting pedestrian counts were costly
and hard to scale. Here, only in one study, the impact of pedestrian data and traffic is
utilized for on-street parking. The results show that multisource data had an improved
performance using gradient boosting (GBRT) with MSE 0.029. Still, the results are reported
with only pedestrian data as the traffic data lacked proper mapping with other sources due
to limited availability.

One of the critical challenges in addressing parking prediction is considering the nature
of underlying data, suitable predictive models, and the accuracy of real-time decision-
making. All the research done has focused on either one or the other challenge. For
example, Liu et al. [8] proposed an online parking guidance system considering the delay
in real-time parking space availability. The authors discussed the multiuser online street
problem, and the study was validated on a Melbourne dataset. The results illustrated that
the proposed framework reduces 63.8% delay.

On the other hand, Vlahogianni et al. [25] proposed a two-step methodological frame-
work for real-time car occupancy prediction based on sensor data. The first step predicts the
real-time parking space using Recurrent Neural Networks (RNN). The second module is
based on finding the available parking space with traffic volume. This approach, however,
proved computationally expensive.

Among the studies discussed above, each has tried to solve different problems, such as
minimizing delay and congestion, techniques to deal with inconsistent sensor data, and ML
methods to improve the prediction accuracy for on-street and off-street parking prediction.
Many studies used only car parking sensor data to evaluate the predictive performance of
ML methods. Only a few studies focus on contextual factors such as traffic flow, weather,
or pedestrian mobility data. However, these studies are evaluated on off-street prediction
problems such as city garages and parking lots, where data accessibility of occupancy status
is easier to obtain. None of the existing studies has investigated the relationship of car
occupancy data with weather conditions, traffic count, and pedestrian mobility in their
predictive models for on-street parking.
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Additionally, most studies are evaluated via simulation, and very few are evaluated
in real-time. Real-time studies lack computational scalability, which is crucial for today’s
smart city applications. There have also been gaps in one way or the other, such as taking
advantage of multisource data for on-street parking and making a solution scalable for
real-time predictions. This work proposes a scalable predictive solution for real-time on-
street parking prediction utilizing multisource data. To the best of our knowledge, this is
the first study that serves as a starting point toward integrating multisource in designing
and developing real-time parking solutions.

3. Materials and Methods

The overview of the methodology is shown in Figure 1. In the first step, data prepara-
tion and integration are performed on the historical data (occupancy, pedestrian, traffic,
and weather data) to evaluate the impact of each data segment on prediction accuracy.
Then different ML techniques are implemented and evaluated to select the one with the
highest prediction performance on the historical data. Finally, the best prediction model is
deployed to perform the real-time prediction. In the next section, each step is described
in detail.
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3.1. Data Collection and Description

This work took advantage of open data obtained from the City of Melbourne (COM)
(https://data.melbourne.vic.gov.au/browse?category=Transport&sortBy=most_accessed&
src=fpc, accessed on 25 February 2021). COM has created an Open Data Portal that con-
tains a multitude of transport-related datasets collected from sensors installed on different
streets of the city. We downloaded three datasets for different domains, i.e., parking occu-
pancy (https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-
2017/u9sa-j86i, accessed on 25 February 2021), pedestrian (https://data.melbourne.vic.gov.
au/Transport/Pedestrian-Counting-System-2009-to-Present-counts-/b2ak-trbp, accessed
on 25 February 2021), and traffic (https://data.melbourne.vic.gov.au/Transport/Traffic-
Count-Vehicle-Classification-2014-2017/qksr-hqee/data, accessed on 25 February 2021),
from 1 January 2017 to 31 December 2017. We utilized relevant APIs to retrieve the weather
data (https://www.worldweatheronline.com/developer/api/historical-weather-api.aspx,
accessed on 15 July 2020) for the same period to analyze the impact of weather data on
parking slot prediction. The size of each data source is shown in Table 1.

https://data.melbourne.vic.gov.au/browse?category=Transport&sortBy=most_accessed&src=fpc
https://data.melbourne.vic.gov.au/browse?category=Transport&sortBy=most_accessed&src=fpc
https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-2017/u9sa-j86i
https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-2017/u9sa-j86i
https://data.melbourne.vic.gov.au/Transport/Pedestrian-Counting-System-2009-to-Present-counts-/b2ak-trbp
https://data.melbourne.vic.gov.au/Transport/Pedestrian-Counting-System-2009-to-Present-counts-/b2ak-trbp
https://data.melbourne.vic.gov.au/Transport/Traffic-Count-Vehicle-Classification-2014-2017/qksr-hqee/data
https://data.melbourne.vic.gov.au/Transport/Traffic-Count-Vehicle-Classification-2014-2017/qksr-hqee/data
https://www.worldweatheronline.com/developer/api/historical-weather-api.aspx
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Table 1. A summary of the datasets.

Data Source Melbourne City

Time interval 1 January 2017 to 31 December 2017
Car parking sensor data 35.9 million records
Pedestrian sensor data 3.09 million records

Car traffic data 60.2 K records
Weather data Hourly forecast

Car parking sensor data is primary data generated from ground sensors installed in
each street in the city. It reports report car parking events in each slot, such as arriving time,
departure time, presence or absence of a vehicle, etc. Parking event data is sufficient for
basic modeling to identify the number of free and occupied spaces if slots are numbered.
However, for the on-street parking problem, all parking slots are not numbered, and street
sensors report the presence or absence of a vehicle at a specific slot. Furthermore, the space
can quickly occupy based on traffic conditions and other environmental factors around the
vicinity. Therefore additional data is needed to identify the impact of contextual factors
on parking utilization. We used pedestrian, traffic, and weather datasets to analyze the
implications of pedestrian mobility, traffic load, and weather conditions on car parking
events for contextual factors. Pedestrian sensors report hourly counts of pedestrians at
any given location, while traffic data reports hourly counts of vehicles. We downloaded
historical weather data for the same city during the same period for every hour of the
day. Tables 2–5 present the feature of each of the original datasets. The dataset from all
four sources resulted in 21,334,807 rows, and each record consisted of 51 fields/features.
The dataset is considered big data. Data preparation, feature selection, and integration are
made to draw the most influential features from each original dataset discussed in the next
section to extract the relevant records representing all data sources.

Table 2. Features description of on-street parking occupancy data.

Features Description

Duration Seconds Time difference between arrival and departure events
Area City area used for administrative purposes

Street Id A GIS key that describes the street segment where the sensor is located
Street Name Street upon which the vehicle parked

BetweenStreet1 Closest intersecting street Id in front of the parked vehicle
BetweenStreet2 Closest intersecting street Id behind the parked vehicle.

Side Of Street Side of the street on which the parking event occurred
1 = Centre; 2 = North; 3 = East; 4 = South; 5 = West

In Violation This indicates that the Parking event exceeded the legal duration
Vehicle Present Indicates whether the parking slot is free or occupied

Table 3. Features description of pedestrian data.

Features Description

Month Month of year (January, February, . . . December)
Mdate Day of year (1, 2, 3, . . . , 31)

Day Day of week (Monday, Tuesday, . . . , Sunday)

Time Time of day (0 = midnight–1 a.m.; 1 = 1 a.m.–2 a.m.; 2 = 2 a.m.–3 a.m.; . . . ;
23 = 11 p.m.–midnight)

Sensor_Name Sensor name
Sensor_ID Sensor ID

Hourly_Counts Total hourly sensor readings (count of pedestrians)
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Table 4. Features description of traffic data.

Features Description

location The location of the sensors
suburb The suburb where the road is located

speed_limit The speed limit of the road
traffic_count Total hourly sensor readings (count of vehicles)

average_speed The average speed of vehicles crossing a sensor

85th_percentile_speed

The speed at or below which 85% of vehicles in traffic
stream travel. This speed is likely to be influenced by

traffic conditions, so it reflects the conditions during the
analysis period.

maximum_speed The maximum speed traveled over the sensor
road_segment, road_segment_1,

road_segment_2 The road segment where the survey was conducted

Table 5. Features description of weather data.

Features Description

maxtempC day max temperature in ◦C (Celsius)
mintempC day min temperature in ◦C (Celsius)

totalSnow_cm total snowfall amount in cm
sunHour total sun hour
uvIndex UV Index

uvIndex.1 UV Index 1
moon_illumination moon illumination in %

DewPointC dew point temperature in ◦C (Celsius)
FeelsLikeC feels like temperature in degrees Celsius
HeatIndexC heat index temperature in ◦C
WindChillC wind chill in ◦C

WindGustKmph wind gust in kilometers per hour
cloudcover cloud cover in percentage (%)
humidity humidity in percentage (%)

precipMM precipitation in millimeter (mm)
pressure pressure in millibar (mb)
tempC the hourly temperature in ◦C (Celsius)

visibility visibility in kilometers (km)
winddirDegree the wind direction in degrees

windspeedKmph wind speed in kmph (kilometer per hour)

3.2. Data Preparation and Integration

In the data preparation phase, data is prepared in a more suitable way for parking
prediction modeling. The overall process of data preparation is shown in Figure 2. The data
is sampled and downsized using multistage cluster sampling [26] and non-proportional
quota sampling [27]. The data is first clustered geographically among occupancy, pedes-
trian, and traffic segments in the multistage cluster sampling to identify common streets
in different datasets. No overlapping was observed among these three datasets; therefore,
clustering was performed among two segments, ‘occupancy and pedestrian’ and ‘occu-
pancy and traffic.’ The weather data was mapped for both clusters, and both clusters
were then merged. We found 20 common streets between pedestrian and occupancy data
segments and seven overlapping streets among occupancy and traffic data segments.

In the next phase, sub-subsets are retrieved from both clusters using non-proportional
quota sampling. The traffic data was far less than the pedestrian data, and to ensure
the equal representation from uneven datasets, the occupancy weather and pedestrian
(O_W_P) and the occupancy weather and traffic (O_W_T) subsets were retrieved with
49% of ‘0’ class representation and 51% of ‘1’ labels. The multistage cluster sampling
resulted in two clusters, i.e., occupancy weather and pedestrian (O_W_P) and occupancy
weather and traffic (O_W_T). The non-proportional quota sampling picked an equal set of
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samples from both clusters. Finally, both groups’ datasets are merged, resulting in a single
dataset representing samples from all four sources. The downsizing of data resulted in
118,244 rows.

1 

 

 
Figure 2. Two steps process of multisource data preparation.

Figure 3 shows all the features from the individual data sources that are included
in the multisource data on-street parking prediction. The computed features include
‘traffic_count’, ‘T_BetweenStreet1′, and ‘T_BetweenStreet2′. The ‘traffic_count’ from the
traffic segment is a count derived from summing all the vehicle features present at any
given location at a specific time. The features ‘T_BetweenStreet1′ and T_BetweenStreet2′

are derived from the attribute ‘road_name’ and mapped with the occupancy data. The final
feature selection from the integrated data is conducted through algorithm scrutiny in the
next stage under the predictive model.

3.3. Predictive Modeling

The core component of the on-street parking predictive model is understanding the
impact of multisource data in batch and settings.

Various machine learning algorithms are trained in batch processing on historical data.
We compared the testing performance of MLP, Linear SVC, KN, DT, GB, AB, and RF. RF
has shown improved accuracy with 22 features; hence it is selected as the ONSP model.
The features were ranked using GINI Index [28,29], which is computed as follows:

G(t) = 1−
Q

∑
k=1

p2(k\t)

where (t) is the node of a tree and (p (k\t) : k = 1, . . . Q) are the estimated class probabili-
ties and (Q) is the number of classes.

Apart from training and validating the ONSP on integrated data, the model is also
evaluated to investigate its predictive capabilities of occupancy prediction in different com-
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binations of pedestrian volume, traffic flow, and weather conditions. The feature capabilities
and predictive performance of such combinations are discussed in the results section.
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Figure 3. Features integration of multisource data.

In the next step, the model trained on the historical data is deployed on Watson
Machine Learning for processing events on the fly using IBM Streams Flow. We used
100 instances of integrated data with 22 features for testing the streaming application using
IBM Cloud Shell. The instances were simulated using the python REST API utilizing Flask
(https://flask.palletsprojects.com/en/1.1.x/, accessed on 15 November 2021), deployed
on the IBM Cloud Foundry service. An end-to-end pipeline for of entire process is shown
in Figure 4. With the ready deployed model and data, source streamflow is generated for
performing streaming analytics. A streaming analytics dashboard is launched to monitor
predictions using the measure events per second (EPS), discussed in the result section.
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4. Experimental Results

The experimental setup, along with the results of model training and validation on
historical and real-time data, is discussed in this section.

4.1. Experimental Setup

The experiments are performed using various available resources. The system re-
quirements used for data engineering are described in Table 6. To evaluate the im-
pact of all four sources and model testing and validation, the Jupyter Notebook 6.0.1
is accessed via Anaconda 3 with python version Python 3.7.4. on Google Colaboratory
(https://colab.research.google.com/notebooks/intro.ipynb, accessed on 12 September
2021). The ONSP training and deployment are performed on IBM Watson using IBM Cloud.
All the required services, such as Watson Studio, Watson Machine Learning, streaming
analytics, and IBM cloud object storage, were added to IBM Cloud using the Lite version.
The Lite version is freely available but with limited computing hours.

Table 6. Summary of the experimental setup.

System Specifications

Local Machine Intel Core i7-8565-U, 64-bit OS, 16.0 RAM
Google Collaboratory Python 3 Google Compute Engine backend (TPU)

IBM Watson Studio 4 vCPU and 16 GB RAM, Default Python 3.6 S

4.2. Feature Selection

By applying the feature selection technique discussed in Section 3.3 the important
features are selected based on their importance score to understand the predictive ca-
pabilities of features from integrated datasets. The resultant features identified by the
proposed feature selection technique from the integrated dataset (O_W_P_T) are shown
in Figure 5, ranked from highest to lowest scores. It can be observed from Figure 5 that
DurationSecond and SideOfStreet received the highest score from the occupancy data.
Other features from occupancy data are streetID and StreetName. Hourly_Count, Area,
and time of the day received the highest scores from pedestrian data. Traffic between
streets, which was mapped with the occupancy data points, received a high score from the
traffic data. However, due to the small traffic dataset, the traffic condition does not show
much significance. From the weather data winddirDegree, humidity and cloudcover have
shown the highest score. Other features from weather data are WindGustKmph, pressure,
moon_illumination, DewPointC, tempC, WindChillC, and feelLikeC, which indicates the
importance of weather data in occupancy prediction. Only 22 features (shown in Figure 5)
are retained for further analysis out of 51 features from the original datasets based on the
feature scores.

Besides the feature’s capabilities of the integrated dataset (O_W_P_T), understanding
the importance of each feature as the possible predictive variable for different combina-
tions of the datasets is worth mentioning. The importance of each feature in all possible
combinations of the historical dataset is shown in Figure 6. These combinations include
occupancy (O), occupancy_weather (O_W), occupancy_pedestrian (O_P), occupancy_traffic
(O_T), occupancy_weather_pedestrian (O_W_P), occupancy_weather_traffic (O_W_T), and
occupancy_pedestrian_traffic (O_P_T).

It can be observed from Figure 6 that the important features from Occupancy (O) data
include DurationSeconds, Side Of Street, and the area between streets, making them basic
features for all other combinations. When occupancy is combined with pedestrian data in
(O_P), the hourly pedestrian count becomes the next influential variable, while in (O_T)
combination, traffic count received the highest scores making the traffic flow the most influ-
ential variable from the traffic dataset. The winddirDegree, humidity, and cloudcover are
amongst the top weather features in the O_W combination. The Hourly_Counts, Mdate, and
Time from the pedestrian and traffic_count, maximum_speed, and 85th_percentile_speed

https://colab.research.google.com/notebooks/intro.ipynb
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came as the top traffic features from the O_P_T combination. The figure proved that the
parking duration (DurationSeconds) and location (Side Of Street, Area, O_BetweenStreet1,
and O_BetweenStreet2) are present in every combination hence making them the most
influential variables in every combination. The other influential variables are traffic count,
pedestrian hourly count, and wind degree from traffic, pedestrian, and weather data, re-
spectively, proving that the availability of a free parking slot is tightly coupled with the
number of pedestrians, traffic flow, and weather conditions.
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4.3. Performance Evaluation of ML/DL Models

We performed two sets of experiments to evaluate the performance of selected al-
gorithms, first on the integrated database and the second on different combinations of
multisource datasets. At first ONSP model is trained using RF and tested on integrated
data with the 22 most influential features. The performance is compared using well-known
evaluation metrics accuracy, recall, F1-score, and AUC (Area under Curve) [11,30]. A
comparative analysis with the various models such as DT, KNN, GB, AB, MLP, and linear
SVC is performed. Although there are many ML/DL techniques in the literature, we choose
these six techniques since they are widely used by the community and have proven the best
results. Secondly, this is a preliminary work focused on identifying the impact of contextual
data points on the prediction accuracy of the most used techniques. The model validation
is performed using 6 K-fold cross-validations [31] for traditional ML approaches as part of
training. For the deep learning model, MLP, we adopted five-layered sequential network
architecture and tuned different hyperparameters discussed in the next section.

The results obtained are shown in Table 7, from which we generated Figure 7, which
clearly illustrates these comparative performances. Overall the ONSP showed the best
results for all measurements compared to other models. It received a training accuracy
of approximately 80%, higher than DT, KNN, GB, AB, Linear SVC, and MLP which is
77.7%, 64.0%, 61.7%, 58.8%, 51.5%, and 58.8%, respectively. Besides accuracy, the model is
evaluated in terms of other metrics such as precision, recall, AUC, and F-score (see Table 7
and Figure 7). With an 81% value for each of these metrics, it is proved that ONSP is prone
to a low number of false-positive rates compared to other classifiers under the study, where
values vary from 51 to 78%. The comparative analysis revealed that the complex model,
MLP showed the lowest performance with an average of 58.8% accuracy, 60% precision,
56% recall, 62% AUC, and 58% F-score. In contrast, one of the simplest ML models, DT,
outperformed MLP with the results of 78% precision, recall, F-Score, and 77.7% accuracy.
KNN and GB also outperformed MLP, and their performances were quite close to each other.
KNN showed 63% average precision, while GB had 62% average precision. The average
recall scores for KNN and GB were 63% and 61%, respectively. AB and Linear SVC showed
the lowest performance of all other ML algorithms, with 58% and 51% testing accuracy.

Moreover, the results are compared with similar research on on-street car parking
prediction [12], where Gradient Boosting has achieved maximum performance. However,
the model was only evaluated to explore the relationship between car occupancy and
pedestrian data of 13.2M rows with 57 streets. We validate the ONSP model to assess the
relationship of multisource data, i.e., car occupancy, pedestrian, weather, and traffic data of
size 22 M rows with 24 streets. In the data sampling, we shortlisted the common streets
among different data segments, and it has shown its impact on the results by achieving a
testing accuracy of 81%. Furthermore, we applied the feature reduction technique to select
the most influential variables. The proposed ONSP model performed better than those that
used the original features in terms of accuracy and other performance variances.

Table 7. Training and testing performance of ML/DL models on the integrated dataset.

Classifier Training Testing

Accuracy Accuracy AUC Precision Recall F-Score

ONSP 79.8 81 0.81 0.81 0.81 0.81
DT 77.7 78 0.78 0.78 0.78 0.78

KNN 64.0 63 0.63 0.63 0.63 0.63
GB 61.7 61 0.61 0.62 0.61 0.60
AB 58.8 58 0.58 0.59 0.58 0.57

Linear
SVC 51.5 51 0.51 0.65 0.51 0.36

MLP 58.8 58 0.62 0.60 0.56 0.58
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In all the performance measures, ONSP has shown improved accuracy with CV = 80% and testing
improvement with 81%, along with precise outcomes amongst all models at 0.81.

4.4. Performance Evaluation of Multilayer Perceptron (MLP) Neural Network

To evaluate deep learning with traditional ML approaches, we adopted MLP, which is
the most common neural network. The MLP architecture consists of an input layer, three
hidden layers, and an output layer. We ran multiple iterations to determine hidden layers
and neuron size range by considering accuracy and loss. As a result, three hidden layers (24,
24, 8) with 24, 24, and 8 neuron sizes are being used in the network. The hyperparameters
used to tune MLP are shown in Table 8. We trained MLP for three different epoch sizes of
100, 250, and 1500 on different batch sizes with adam optimizer and binary cross-entropy
loss function to test the training loss and accuracy. The hyper-parameters “learning_rate”
and “learning_rate_init” are responsible for optimizing and minimizing the loss function.
We used the “adaptive” learning rate to keep the learning rate constantly equal to the initial
learning rate as long as there is a decrease in the training loss in each epoch. “Activation”
determines how active a specific neuron (hidden unit) is. We adopted the widely-used
ReLU activation function to determine how active a specific hidden unit is.

The training and testing results of different epochs and batch settings (EiBi, where i is
the size of each epoch and batch) are shown in Table 9. Figure 8 is generated from Table 9
to identify the most stable epochs and batch pairs in terms of loss and accuracy. In Figure 8,
the loss has a slight decreasing curve as we move from E1B5 to E5B15 with an increased
value of AUC. However, we can notice that F-score and recall dropped first but became
stable again at E5B15. Hence, the E5B15 setting, with the epoch size of 500 (E5) and batch
size of 1500 (B15), resulted in the highest training and testing accuracy of 0.588 and 0.584,
respectively, with a loss of 0.653 and an F-score of 0.581. In Figure 9, the accuracy and loss
curves of different epoch combinations and batch sizes are shown. It can be observed from
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Figure 9c that epoch size of 500 and batch size of 1500 (E500, B1500) have better results
compared to (E150, B1000) and (E500, B1000).

Table 8. Hyperparameters of MLP model.

Parameter Value

hidden_layer_sizes (24, 24, 8)
activation ReLU

learning_rate Adaptive
learning_rate_init 0.001

optimizer Adam
Loss function Binary cross-entropy

Batch size Seven different batch sizes
Epocs (250, 100, 1500)

Table 9. Training and testing of MLP at different epochs and batch sizes.

ID Training Testing

Epoch Batch Accuracy Loss AUC Precision Recall F-Score Accuracy

E1B5 100 500 0.563 0.661 0.589 0.546 0.866 0.669 0.562

E1B1 100 1000 0.565 0.657 0.593 0.547 0.862 0.669 0.563

E1B15 100 1500 0.583 0.657 0.619 0.586 0.636 0.610 0.583

E1B2 100 2000 0.587 0.654 0.619 0.586 0.622 0.603 0.581

E1B25 100 2500 0.588 0.653 0.623 0.590 0.636 0.612 0.587

E1B3 100 3000 0.582 0.653 0.621 0.599 0.566 0.582 0.583

E1B35 100 3500 0.584 0.654 0.619 0.595 0.558 0.576 0.579

E25B5 250 500 0.584 0.654 0.622 0.598 0.559 0.578 0.582

E25B1 250 1000 0.581 0.656 0.616 0.590 0.591 0.590 0.580

E25B15 250 1500 0.584 0.656 0.614 0.582 0.600 0.591 0.575

E5B5 500 500 0.582 0.654 0.620 0.602 0.523 0.560 0.579

E5B1 500 1000 0.586 0.653 0.620 0.606 0.526 0.563 0.582

E5B15 500 1500 0.588 0.653 0.622 0.600 0.564 0.581 0.584
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Figure 8. Comparative analysis of MLP performance using different epochs and batch sizes. The E1B5
shows higher recall and F-score but lower values of AUC, training, and testing. All the evaluation
parameters converged at E5B15 with a lower loss curve and higher F-score, AUC, training, and
testing accuracy.
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4.5. Impact of Multisource Data on the Prediction Performance

Apart from training and validating ONSP on integrated data discussed above, the pro-
posed model is also evaluated to investigate the relationship of occupancy with pedestrian
volume, traffic flow, and weather conditions resulting in eight possible combinations, as
shown in Table 10. These combinations include occupancy (O), occupancy_weather (O_W),
occupancy_pedestrian (O_P), occupancy_traffic (O_T), occupancy_weather_pedestrian
(O_W_P), occupancy_weather_traffic (O_W_T), occupancy_pedestrian_traffic (O_P_T) and
occupancy_weather_pedestrian_traffic (O_W_P_T). The performance in term of accuracy
is observed as 71%, 79%, 67%, 60%, 80%, 79%, 62%, and 80%, respectively using 6 folds
validation. The results indicate that the overall training accuracy of the model has increased
when the occupancy data has integrated with traffic, followed by pedestrians and weather.

Interestingly, a higher performance is observed with the data segment mapped for
all occupancy streets and weather, followed by pedestrians and traffic with common
street mapping. For the pedestrian and traffic datasets, the performance varies with street
mapping. For example, the pedestrian data sharing 20 common streets with the occupancy
data resulted in an accuracy of 67% in O_P datasets, and traffic data sharing seven streets
with occupancy data resulted in an accuracy of 60% in the O_T combination. The presence
of weather data in any combination has improved the accuracy to 80%, 79%, and 80% in
O_W_P, O_W_T, and O_W_P_T combinations. Performance could have been even higher
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with more street data available for pedestrian and traffic segments since no common streets
were identified between these two in the dataset used for this study.

Table 10. Training and testing accuracy of ONSP model on different combinations of the datasets.

Datasets Training (CV = 6) Testing

Occupancy (O) 72% 71%
Occupancy Weather (O_W) 79% 80%

Occupancy Pedestrian (O_P) 67% 67%
Occupancy Traffic (O_T) 61% 62%

Occupancy Weather Pedestrian (O_W_P) 80% 81%
Occupancy Weather Traffic (O_W_T) 79% 80%

Occupancy Pedestrian Traffic (O_P_T) 62% 62%
Occupancy Weather Pedestrian Traffic (O_W_P_T) 80% 81%

4.6. Prediction Using Stream Analytics

To scale the proposed solution for a big data environment, real-time analytics was
performed. Previously in [25], the real-time prediction was implementable at a small scale,
and due to missing location features, drivers spent more time searching for a parking space.

Hence, this study has fulfilled these gaps for on-street parking prediction using the
ONSP for live predictions on IBM Watson, making the prediction system scalable for
a big data environment. Also, the prediction is based on the precise location features
(Side_Of_Street, Area, O_BetweenStreet1, and O_BetweenStreet2) that help reduce search
time. The ONSP predicts a sample size of approximately 100 instances. A dataset of this
size is used because of the limited cloud storage available in Lite Plan, but the whole
procedure is scalable for large data using advanced plans.

The streaming flow is shown in Figure 10, where the first operator with the label
‘Simulating’ generates the data streams. The second operator with the label ‘Python Model’
is the trained ONSP model, which is used for predicting incoming tuples. The predicted
outcomes can be accessed from the ‘Debug,’ the third operator. The analytics performance
is evaluated using two performance metrics: ingest rate and throughput. Ingest rate shows
the number of events submitted to streamflow per second. From Figure 10, we can see
that 0.1–0.3 events are received by the sample data operator per second (shown in the blue
line). The throughput rate measures the flow of predicted events, which is equivalent to the
ingest rate (shown in the green line). Both graphs show a steady flow of events suggesting
that instant predictions occur as soon as the events are ingested.
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The live streaming was performed for 30 min with a constant rate of 0.1–0.3 events
per second, resulting in 360 events (see Table 11). The total number of events shown in
Figure 11 is 365, approximately what is calculated in Table 11.

Table 11. Streams flow EPS rate in 30 min timeframe.

EPS No. of Minutes No. of Seconds Total Seconds Total Events

0.1 15 15 × 60 900 0.1 × 900 = 90
0.3 15 15 × 60 900 0.3 × 900 = 270
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The process of on-street parking prediction is summarized with a use case, ‘next best
option strategy,’ shown in Figure 12. In Use Case—1, Alex predicts occupancy through
a user request. On submitting a request, the feature values are ingested by the ONSP.
Although the data is simulated in the use case, data generated from an IoT infrastructure can
be ingested precisely in the same way. The ONSP is thus predicting the occupancy for Alex
using data. In analyzing the prediction based on the observed results shown in Table 9, with
a rate of 0.1, 0.2, and 0.3 EPS, 10, 5, and 3 events can be predicted in a 1-min duration using
IBM Lite Plan (https://cloud.ibm.com/docs/Db2onCloud?topic=Db2onCloud-free_plan,
accessed on 1 January 2022).

Figure 12. Use Case—1: User predicting on-street parking spot in using next best options strategy.

5. Future Implications

The prediction for on-street parking spots depends on the two types of models. The
first is training the model on historical data, which is adopted in this study. As shown

https://cloud.ibm.com/docs/Db2onCloud?topic=Db2onCloud-free_plan
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in Figure 13, the second model is the most used for live predictions using basic stream
operations. In the future, both model types can be integrated based on how advanced a
parking spot prediction is needed. To predict a parking spot within 30 min, the ONSP
model can select the best possible options based on the weather, traffic, and pedestrian
load. On the other hand, the basic stream operations can be performed in predicting spots
within a time span of 5–10 min.
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Figure 13. Use Case—2: User predicting on-street parking spots; a predictive modeling approach
based on time frames such as 15 min and 30 min.

In the live prediction based on the window size, for instance, 5 min, all the number of
records with ‘vehicle presence’ with a value equal to zero can be considered as available
spots. If the live data is updated after every five minutes, the information of available spots
will generate based on the buffer size; for example, in the last five minutes, the available
parking spots were 6 or 8 based on the location. The processing of live streams can be
performed in the IBM Infosphere (https://www.ibm.com/docs/en/streams/4.1.1?topic=
welcome-introduction-infosphere-streams, accessed on 1 January 2022) environment. Use
Case—2 demonstrates an end-to-end pipeline as a future perspective to fetch the data from
sensors in predictions by utilizing the available services and our research work.

In the first step, the relevant records will be filtered based on the user requirements
using the Watson IoT Platform. The filtered records will then be sent via Kafka as input
to the next step. In the third step, depending on the size of the time window, the relevant
model can be utilized for making live predictions.

6. Conclusions

This paper presents an end–end ML pipeline for parking prediction, which we plan to
integrate into a smart parking application. The application will help drivers find the nearest
parking spot in advance. We integrated contextual factors such as weather conditions, traffic
flow, and pedestrian volume with occupancy data to determine parking space reliably and
accurately. At first, feature engineering is performed to identify the predictive capabilities
of different features from each dataset. Then several ML/DL algorithms were trained and
tested on the different combinations of the historical dataset to evaluate if better results
could be produced for the parking space availability prediction problem by using less
complex algorithms. From the results of the comparative analysis, we found that Random
Forest is the optimal solution for the parking space availability problem with an accuracy
of 81%, and Decision Tree was the close second best model with 77.7% accuracy. These
two models consistently outperformed one of the computationally complex algorithms

https://www.ibm.com/docs/en/streams/4.1.1?topic=welcome-introduction-infosphere-streams
https://www.ibm.com/docs/en/streams/4.1.1?topic=welcome-introduction-infosphere-streams
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(Multilayer Perceptron). We selected Random Forest for subsequent analysis and real-time
deployment for the On-Street parking prediction problem (ONSP).

The results indicate that contextual features have improved the prediction accuracy by
10% compared to the models only tested on basic occupancy data. The most significant data
points from the contextual features are wind direction, humidity, temperature, and pressure
from the weather dataset, parking duration and location from the occupancy dataset, and
hourly count and time of the day from the pedestrian dataset. We did not observe any
significant impact on the traffic dataset; the reason is the limited traffic information available
for occupancy data compared to weather and pedestrian. However, even with the smaller
data size, the feature traffic count appeared to be the second most influential variable after
parking duration, showing a tight coupling of traffic flow with parking space availability.
The ONSP is deployed for real-time predictions using stream processing services in the next
step. The simulation results showed an ingest rate of 0.1 and a throughput of 0.3 events
per second, demonstrating a fast and reliable prediction approach for available slots within
a time frame of 5–10 min.

Results prove the worth of the proposed prediction pipeline over existing techniques in
predicting parking availability in time frames (e.g., 15 min, 30 min) by considering multiple
contextual factors. The study has a limitation in terms of the datasets used. We used
multiple datasets for the year 2017, and since then, there has been a significant update on
multiple data sources, especially in terms of traffic flow in the City of Melbourne. Providing
the updated data associated with multiple sources might impact the results. However, it is
worth mentioning that this study aims to identify the predictive capabilities of underlying
features from each data source used in the study so that future research will consider
the influence of such variables on parking prediction. Another limitation is the real-time
prediction of simulated data; however, the data generated by the IoT sensors and devices
can be ingested by the ONSP model precisely in the same way. Hence, combining real-time
data with ML approaches can be a useful step toward sustainable parking solutions.

In the future, we intend to explore more contextual features of the research study,
such as special events around, to understand how temporal points of interest can impact
prediction accuracy [32]. We will leverage the historical dataset to more recent data and
evaluate more deep learning techniques (LSTM, GRU, etc.). Finally, we plan to develop
a web-based application for the end-users to show parking space availability in a time
window of 15, 30 min, and so on.
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