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Abstract: Based on a one-dimensional (1D) traffic flow cellular automaton (CA) FI model, a deter-
ministic next-nearest-neighbor interaction FI model (NIFI model) is proposed. Using the mean-field
analysis, the analytical solution of the NIFI model in one-dimensional traffic flow is derived under
periodic boundary conditions. For the mixed traffic flow, the occupancy and the mixing ratio are
introduced to describe the mixing effect. Similarly, using the mean-field method, the exact solution of
the mixed traffic flow is derived from the long-time evolution to reach the steady state. The numeri-
cal simulations are carried out for the mixed traffic flow with different vehicle lengths, maximum
velocities, and mixing ratios to verify the analytical solutions. The results show that the numerical
simulation results agree well with the analytical solution.

Keywords: traffic flow; cellular automaton; modelling; mean-field method; analytic solution

1. Introduction

In recent years, traffic congestion and traffic accidents are becoming increasingly serious.
Research on traffic flow issues helps people to better predict road traffic conditions. Recently,
there have been various traffic flow models to study the traffic flow problems, such as the
cellular automata model, the car-following model, and so on [1]. Among these models, the CA
(cellular automata) model has been conveniently implemented on computers due to its simple
evolution rules and computational efficiency. Moreover, the CA model can be flexibly adjusted
to the applications according to the actual situation, so it has good practical significance [1–4].
The CA model can not only simulate the traffic flow of single lane [3,5], complex three-phase
traffic flow [6], and urban road networks [4], but also study traffic fuel consumption [7],
pollutant emission [8–10], and traffic control [11,12], etc.

The cellular automata describing the most primitive form of highway traffic flow is
a cellular automata named CA model, Rule 184 [2]. Based on the 184 model, Nagel and
Schreckenberg have proposed the NaSch cellular automaton traffic flow model, which
reflects the features of gradual acceleration, deceleration, and randomization in realistic
traffic flows [3]. To simulate a variety of phenomena in actual traffic measurements, various
improvement models have been developed [5,6,13]. In 1996, Fukui and Ishibashi proposed
the CA FI model to improve the acceleration process of a vehicle. The FI model can simu-
late the acceleration behavior of a vehicle at an intersection to a certain extent [5]. Wang
et al. studied the FI model numerically and analytically and obtained the average velocity
<V(t→∞)> in the long-time limit as a function of car density, called the fundamental dia-
gram [14]. Wang L et al. strictly derived the mean-field equation for a one-dimensional CA
FI model [15,16]. The solution <V(t→∞)> in the NaSch model without random delay was
obtained by tracing the time evolution of car spacing [17]. In 2007, Fu et al. proposed the
modified Nagel–Schreckenberg model with the Fukui–Ishibashi acceleration rule and gave
the corresponding analytical solution [18]. Jia and Ma carried out an analytical investiga-
tion of the open boundary conditions in the Nagel–Schreckenberg model. They found an

Sustainability 2022, 14, 7127. https://doi.org/10.3390/su14127127 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14127127
https://doi.org/10.3390/su14127127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-7205-5463
https://doi.org/10.3390/su14127127
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14127127?type=check_update&version=1


Sustainability 2022, 14, 7127 2 of 12

effective approach for deducing the analytical expression of inflow [19]. Jia and Ma studied
the deterministic Nagel–Schreckenberg model with stochastic open boundary conditions
in an analytical way. The analytical expression of the free-flow density profiles was de-
rived [20]. Ding et al. investigated the Biham–Middleton–Levine model with a random
update rule and found the coexistence of the moving phase and jamming phase under open
boundary conditions. They presented a mean-field analysis of the moving phase [21]. In
more recent years, Ding et al. proceeded the mean-field analysis of asymmetric exclusion
processes on two parallel lattices with fully parallel dynamics and derived an analytic
solution [22]. In 1999, Nagatani first proposed an optimal velocity model considering the
next-nearest-neighbor interaction [23]. The researcher discovered that the next-nearest-
neighbor interaction stabilizes the traffic flow, and the jamming transition between the
freely moving and jamming phases occurs at a higher density than the threshold of the
original optimal velocity model. Li et al. presented a CA model called the Velocity Effect
(VE) model by considering the influence of the distance between the nearest neighbor and
the next nearest neighbor on the current vehicle motion. The simulation displays that there
exists a metastable state and hysteresis phenomenon under deterministic conditions [24].
Ge et al. proposed an extended car-following model to study the influence of multiple
vehicles ahead on traffic flow. Their research shows that anticipating the behavior of more
vehicles ahead leads to the stabilization of traffic systems [25]. However, the CA FI model
taking the next-nearest-neighbor interaction into account has not been studied. Therefore,
we proposed a deterministic next-nearest-neighbor interaction FI model (NIFI model for
short) for single and mixed traffic flow. The mixed traffic flow consists of different vehicle
lengths and the maximum velocity. By using the mean-field theory, we will attempt to
derive the mean-field solutions of the deterministic NIFI model of single traffic flow and
mixed traffic flow, respectively.

The arrangement of this paper is organized as follows: By incorporating the evolution
rule of vehicles in Section 2, we present a deterministic next-nearest-neighbor interaction
FI model (NIFI model). The analytical solution of the NIFI model in one-dimensional
single traffic flow and mixed traffic flow is derived by using CA mean-field theory. In
Section 3, the analytical solution of the NIFI model is verified by numerical simulation.
Some conclusions are drawn in Section 4.

2. Methodology
2.1. NIFI Model

The Nagel–Schreckenberg (NaSch) model and the Fukui–Ishibashi (FI) model are
two typical one-dimensional cellular automata traffic flow models. In the deterministic FI
model, the evolution of each vehicle’s velocity is carried out according to the following
parallel updating rules.

Vi(t+1)→ min(Vmax, gapi) (1)

where Vmax denotes the maximum velocity, and gapi is the headway between the (i + 1)th
vehicle and the ith one.

gapi = Xi+1(t)− Xi(t)− l (2)

Vi(t) and Xi(t), respectively, denote the velocity and position of the ith vehicle on the
road at time step t, and l denotes the vehicle length. If the traffic flow consists of the same
vehicle, the vehicle length is taken as the unit length to occupy a cell (l = 1).

Taking the next-nearest-neighbor interaction into account, the following update rule
of the deterministic NIFI model can be obtained by embedding the deterministic FI model
velocity update rule. The positions and velocities of all vehicles are updated at the same time.

Step 1. Determine the velocity of the next time step:

Vi
(
t+1)→ min(Vmax

i , (gap i+min(Vmax
i+1 , gapi+1))) (3)
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Step 2. Move forward.

Xi(t + 1)→ Xi(t) + Vi(t+1) (4)

where Vmax
i+1 and Vmax

i are the maximum velocity of the (i + 1)th vehicle and the ith vehicle,
respectively. Under periodic boundary conditions, the road is a closed-loop chain composed
of L cells. The vehicles in a single traffic flow consisting of the same vehicles have the same
length and occupy a cell in the simulation process.

For a mixed traffic flow composed of long and short vehicles, each cell may be occupied
by a vehicle with a disparate length or no vehicle at all. The vehicle velocity of the occupied
cell ranges from 0 to a maximum velocity, Vmax. The short vehicle and the long vehicle
take up lS cells and lL (lL > lS) cells, respectively. At each evolutionary time step, all vehicle
states are updated in parallel according to evolution rules (3) and (4).

To describe the mixed traffic flow, the occupancy rate is introduced. The occupancy C
is defined as follows:

C =
NLlL + NSlS

L
(5)

where the number of the long vehicle and the short vehicle, respectively, is denoted as NL
and Ns. The maximum velocity of the long and short vehicles is, respectively, expressed
as Vmax

L and Vmax
S . The mixing ratio Cn is defined as Cn = NS

N , which is to measure the
degree of mixing between the long and short vehicles. The global density is represented as
ρ = N

L , L is the length of road, and the total number of vehicles is equal to N = NL + NS.
The global density is obtained as follows:

ρ =
C

Cnls + (1− Cn)lL
(6)

2.2. Analytical Solution of NIFI Model

At first, the traffic flow composed of the same type of vehicle was studied. Based
on the mean-field method, we tried to derive the exact solution of the NIFI model in one-
dimensional traffic flow under periodic boundary conditions. With the increasing number
of vehicles on the road, the dynamic behavior of traffic flow will change. For low vehicle
density (ρ ≤ ρc), all vehicles on the road can move at their own maximum velocity Vmax

i .
For high vehicle density (ρ > ρc), the vehicle cannot move with the maximum velocity in
the next time step due to the distance between two consecutive vehicles being less than
the maximum velocity, as well as the influence of the next-nearest-neighbor interaction.
On average, when the evolution time is long enough ( t→ ∞ ), according to the velocity
update rules of the NIFI model, the velocity of vehicles can be limited to the average gap.
The average gap for the whole traffic flow can be calculated by dividing the total number
of empty cells on the road that are not occupied by vehicles by the total number of vehicles.
Therefore, the average gap can be represented by

gap =

L−
N
∑

i=1
li

N
(7)

where li is the length of the ith vehicle. When the vehicle density approaches the critical
density ρc, traffic flow changes from free flow to congestion. Under the condition of high
vehicle density, the evolutionary step (3) of the NIFI model manifests that the motion of
the ith vehicle must be accompanied by the motion of the (i + 1)th vehicle and the (i + 2)th
vehicle in front considering the effect of the next-nearest-neighbor (i + 2)th vehicle in front,
To put it another way, under the condition of high vehicle density, the ith vehicle can move
forward at an average velocity of twice the average gap due to the movement of the next
nearest neighbor. The average velocity V satisfies the following equation:

V = 2× gap. (8)
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Thus, the average velocity is obtained from Equations (7) and (8):

V= 2(
L−

N
∑

i=1
li

N
) for ρ > ρc. (9)

For one-dimensional single traffic flow, firstly, we discuss the situation where there is
only one type of vehicle on the road. It is assumed that the length of the vehicle is 1 cell
(li = 1). According to Equation (9), the following average velocity is acquired:

V= 2(
1
ρ
− 1) for ρ > ρc. (10)

Since the average velocity at the critical density point ρc is Vmax, there is the
following equation:

Vmax= 2(
1
ρc
− 1) , (11)

Therefore, the critical density is fielded:

ρc =
2

Vmax + 2
. (12)

Taking Equations (10) and (11) and velocity Vmax in free flow into consideration, the
relation of the average velocity with vehicle density is obtained:

V =

{
Vmax 0 ≤ ρ ≤ ρc =

2
Vmax+2

2(1−ρ)
ρ ρc < ρ ≤ 1

(13)

For the deterministic FI model, the average velocity is expressed as follows [15,16]:

V =

{
Vmax 0 ≤ ρ ≤ 1

Vmax+1
1
ρ−1 1

Vmax+1 < ρ ≤ 1
(14)

The analytical solution Equation (13) of the NIFI model is obviously different from
Equation (14) of the deterministic FI model. The jamming transition between the freely
moving and jamming phases occurs at a higher density than the threshold of the original
deterministic FI model when the next-nearest-neighbor interaction is considered. Traffic
flux J is defined as J = ρV, and the fundamental diagram of NIFI model is obtained
as follows:

J =

{
ρVmax 0 ≤ ρ ≤ ρc =

2
Vmax+2

2(1− ρ) ρc < ρ ≤ 1
(15)

Next, we will study the mixed traffic flows with more than one type of vehicle on the
road. For mixed traffic flow, different types of vehicles possess different vehicle lengths and
maximum velocities. To describe the road occupied by vehicles more precisely, the density
ρ, of vehicles on the road is replaced by the total occupancy C. Similarly, we can determine
the relationship of the average gap and the average velocity V, with the occupancy C.
Therefore, it can be concluded as follows from Equations (7) and (8):

gap =
L(1− C)

N
. (16)

V =
2L(1− C)

N
(17)

In mixed traffic flow, the maximum velocity of the long vehicle is Vmax
L , and the

maximum velocity of the short vehicle is Vmax
S . As the evolution time is long enough
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(t→∞) to reach the steady state, vehicles with the higher maximum velocity cannot travel
at their maximum velocity due to the obstruction effect of vehicles with smaller maximum
velocity, even if the vehicle density is very small. Chowdhury et al. and Knospe et al. have
discussed this blocking effect of slow vehicles when they studied lane changing using a
cellular automata model, respectively [26,27]. As the evolution time is long enough (t→∞)
for the mixed traffic flow to reach the steady state, vehicles with a large maximum velocity
in the mixed traffic flow can only travel at a small maximum velocity. The maximum
velocity in the mixed traffic flow is taken as a smaller maximum velocity.

Vmax = min(Vmax
S , Vmax

L ) (18)

Similarly, at the critical occupancy, Cc, all vehicles can also travel at the maximum ve-
locity Vmax. By substituting Equation (17) into Equation (18) and considering Equation (6),
we can, thus, derive the following equation:

Vmax =
2(1− Cc)(CnlS+(1−Cn)lL)

Cc
. (19)

The critical occupancy, Cc, of mixed traffic flow is obtained as follows:

Cc =
2

Vmax
(CnlS+(1−Cn) lL)

+2
or ρc =

1
Vmax

2 +(CnlS+(1−Cn

)
lL)

. (20)

Compared with the critical density of Equation (12), the critical occupancy, Cc, of
mixed traffic flow also has a similar mathematical expression. When the length of a long
vehicle is much higher than that of a short one, (lL > ls), Equation (20) can be simplified to
the following equation:

Cc ≈
2

Vmax
(1−Cn)lL

(1− Cn
(1−Cn)

ls
lL
) + 2

≈ 2
Vmax

(1−Cn)lL
+2

(21)

The critical occupancy, Cc, is determined by the length of the long vehicle and the
mixing ratio. When the number of long vehicles is equal to the number of short vehicles
(NL = NS, Cn = 0.5), Equation (20) can be rewritten as follows:

Cc =
1

Vmax
ls+lL

+1
(22)

In this case, the length of the long vehicle and the short one together determines the
critical occupancy, Cc. As may be observed, Cc, the critical density of mixed traffic flow, is
higher than that of the single NIFI model by comparing Equation (20) with Equation (12),
because the maximum velocity is reduced.

As time evolves to the steady state, vehicles can move with the maximum velocity
at low occupancy. According to Equation (18), the average velocity of the free flow of
the vehicle is Vmax. At high occupancy, the average velocity of the traffic flow is V rather
than the maximum velocity Vmax. From Equations (6) and (17), the average velocity, V, of
vehicles at high density is derived. Therefore, the average velocity vs. occupancy, C, is
represented as the following relationship:

V =

{
Vmax 0 ≤ C ≤ Cc

2(1−C)[CnlS+(1−Cn)lL ]
C Cc < C ≤ 1

(23)
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The exact solution of the NIFI model of mixed traffic flow is quite different from that
of the deterministic FI model from Equation (14) [15,16]. The corresponding equation of
the fundamental diagram is:

J =

{
CVmax

CnlS+(1−Cn)lL
0 ≤ C ≤ Cc

2(1− C) Cc < C ≤ 1
(24)

According to Equation (24), we can perform simulation experiments to obtain the
fundamental diagram, which can reflect the movement of traffic flow on the road. At low
density, the traffic flow is in the free-flow state of maximum velocity, while at high density,
the traffic congestion is at low velocity. Based on Equation (24), we can figure out that the
slope of curves from the equation of the fundamental diagram is:

dJ
dC

=

{
Vmax

CnlS+(1−Cn)lL
0 ≤ C ≤ Cc

−2 Cc < C ≤ 1
(25)

Equation (25) indicates that when the occupancy is small, the slope of a flow is related
to the mixing ratio Cn, and the mixture lengths of vehicles. In traffic congestion, the flow
slope is not relevant to the mixture ratio Cn. These conclusions will be confirmed in the
following section of the numerical simulation.

When Cn = 1, it is a special case of one-dimensional single traffic flow, and all vehicles
are short ones (lS = 1), C = ρ, Cc =

2
Vmax+2 . The corresponding equation of the fundamental

diagram is:

J =

{
ρVmax 0 ≤ ρ ≤ 2

Vmax+2
2(1− ρ) 2

Vmax+2 < ρ ≤ 1
(26)

This result is consistent with Equation (15). When Cc = 0, it corresponds to a one-
dimensional (1D) single traffic flow composed of long vehicles with the maximum velocity,
Vmax

L , C = ρlL, Cc =
2lL

Vmax
L +2lL

. The corresponding equation of the fundamental diagram is:

J =

{
ρVmax

L 0 ≤ ρlL ≤ 2lL
Vmax

L +2lL

2(1− ρlL)
2lL

Vmax
L +2lL

< ρlL ≤ 1
(27)

Clearly, it is different from Equation (26). If the size of a cell is the length of long
vehicles (i.e., lL = 1), Equation (27) is in agreement with Equation (26).

3. Simulation

The fundamental diagram of the NIFI model is derived analytically to give the traffic
flux as a function of vehicle density or occupancy. We perform a numerical simulation to
verify its accuracy. For the computer simulation, the average velocity V of traffic flow is
defined as follows:

V =
1
T

1
N

t0+T

∑
t=t0+1

N

∑
i=1

vi(t) (28)

where t0 is the relaxation time to reach the steady state. Traffic flux, J, is defined as J = ρV.
We carried out numerical simulations on a one-dimensional chain consisting of L = 104

cells under periodic boundary conditions. All vehicles were randomly distributed along
the lattice chain with a random velocity at the beginning. The simulation was performed
with 50 independent runs in different initial configurations. Each run for 3 × 104 iterations
and the first 2 × 104 iterations were discarded in measuring the quantities of interest.

3.1. Numerical Simulation for 1D Single Traffic Flow

Figures 1 and 2, respectively, show the numerical simulation results and the analytical
solutions of the average velocity and the traffic flux, J, for different maximum velocities. It
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shows that the result of numerical simulation is consistent with the analytical solution. The
fundamental diagram for different maximum velocities shows the change of traffic flow
from the free flow to the congested state with the increase of the density.
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3.2. Numerical Simulation of the Mixed Traffic Flow
3.2.1. Effect of Mixing Ratio on Mixed Traffic Flow

Firstly, the fundamental diagrams of mixed traffic flow are studied for different mixing
ratios, Cn. The mixed traffic flow on the road is composed of vehicles with different vehicle
lengths and the maximum velocity in terms of the mixing ratio, Cn. The long vehicle
with the maximum velocity Vmax

L = 10 occupies two cells and the short vehicle with the
maximum velocity Vmax

S = 5 occupies one cell at the initial moment. Thus, Vmax = min
(Vmax

L ,Vmax
S ) = 5. The fundamental diagrams and average vehicle velocity vs. occupancy,

C, of mixed traffic flow with mixing ratios Cn = 0.1, 0.2, 0.4, 0.5, and 0.8 are shown in
Figures 3 and 4, respectively.
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As can be seen from Figures 3 and 4, the numerical simulation was consistent with
the analytical solution. Traffic flow was proportional to occupancy, C, in the free flow and
decreases with occupancy, C, in the congested state. Because of the rise in mixing ratio, Cn,
the increase of short vehicles will lead to traffic jams easily. Moreover, when the occupancy
is small, Figure 3 displays that the flow rate has different slopes due to the mixing ratio,
Cn. In the case of traffic congestion, the flow rate slope was the same and had nothing to
do with the mixing ratio, Cn. The curves in Figure 3 merged into a line whose slope is −2.
These numerical simulations were in good agreement with Equation (25) obtained from the
theoretical analysis.

3.2.2. Effect of Vehicle Length on Mixed Traffic Flow

To study the effect of different lengths of vehicles on mixed traffic flow, we changed the
length of the long vehicle and kept the short vehicle length constant (lS = 1). The maximum
velocities of the long vehicle and short vehicle were, respectively selected as Vmax

L = 10 and
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Vmax
S = 5 and the mixing ratio Cn = 0.5. Figures 5 and 6 show the fundamental diagrams

and average velocity for long vehicle length lL = 2, 3, 5, 8, and 10 cells, respectively. All
figures show that the numerical simulation was in agreement with the analytical solution.
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As can be seen from Figures 5 and 6, it was more impossible to cause traffic congestion
with the increase of the length of the long vehicle due to the jamming transition point in
the mixed traffic flow increasing in terms of Equation (20).

3.2.3. Effect of the Maximum Velocity on Mixed Traffic Flow

Similarly, we changed the maximum velocity of the short vehicle and fixed the max-
imum velocity of long vehicles to study the effect of the maximum velocity of mixed
traffic flow. The length of the longest vehicle and the maximum velocity were, respectively
selected as lL = 2 cells and Vmax

L = 10. Accordingly, the mix ratio was Cn = 0.5. In the
same way, Figures 7 and 8 show the fundamental diagram and average vehicle velocity vs.
occupancy for different maximum velocities of the short vehicle, Vmax

S = 1, 2, 5, 8, and 10.
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Results also show that the numerical simulation is well in agreement with the analytical
solution. The higher the maximum velocity of a short vehicle, the more likely it is to cause
traffic jams.

4. Conclusions

Based on a one-dimensional (1D) cellular automaton (CA) FI model of traffic flow, we
proposed a deterministic extended one-dimensional cellular automaton FI model, called the
NIFI model, with consideration of the next-nearest-neighbor interaction. Using the mean-
field analysis, the analytic solution of the NIFI model in one-dimensional single traffic flow
was derived under periodic boundary conditions. Compared with the original deterministic
FI model, the jamming transition between the freely moving and jammed phases occurred
at a higher density when the next-nearest-neighbor interaction was considered. For the
mixed traffic flow, we introduced the mixing ratio, Cn, and the occupancy, C, to replace the
vehicle density, ρ. Similarly, using the mean-field theory, the analytic solution of the mixed
traffic flow was derived from the long-time evolution to reach the steady state. To verify
the solutions, we conducted numerical simulations for the mixed traffic flow composed of
different vehicle lengths, maximum velocities, and mixing ratios. All numerical simulations
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indicated that the numerical simulation results and the analytical solutions were matched
excellently. Moreover, the vehicle length, the maximum velocity, and the mixing ratio had
a great impact on the mixed traffic flow. However, there are still some limitations in our
research. The NIFI model is a deterministic model, ignoring the stochastic delay scenario
in nearest-neighbor and next-nearest-neighbor interactions. In future studies, the stochastic
FI model considering the next-nearest neighbor interaction can be used as a research topic.

Although the NIFI model is a quite simple one-dimensional cellular automata model of
traffic flow, the study of the interaction of the next-nearest-neighbor is helpful to anticipate
the dynamic behavior of vehicles resulting in the stabilization of traffic systems. Therefore,
it may be used in the forecast of traffic flow and traffic management in the future.
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