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Abstract: As improved data availability and disaster resilience knowledge help progress community
resilience quantification schemes, spatial refinements of the associated empirical methods become
increasingly crucial. Most existing empirically based indicators in the U.S. use county-level data,
while qualitatively based schemes are more locally focused. The process of replicating resilience
indices at a sub-county level includes a comprehensive study of existing databases, an evaluation
of their conceptual relevance in the framework of resilience capitals, and finally, an analysis of the
statistical significance and internal consistency of the developed metrics. Using the U.S. Gulf Coast
region as a test case, this paper demonstrates the construction of a census tract-level resilience index
based on BRIC (Baseline Resilience Indicators for Communities), called TBRIC. The final TBRIC
construct gathers 65 variables into six resilience capitals: social, economic, community, institutional,
infrastructural, and environmental. The statistical results of tract- and county-level BRIC comparisons
highlight levels of divergence and convergence between the two measurement schemes and find
higher reliability for the fine-scale results.

Keywords: resilience indicators; geographical scale; Gulf coast; community resilience

1. Introduction

The concept of resilience appears in many fields including medicine, ecology, and
engineering, and describes conditions of systems and their abilities to bounce back after
external stressors or shocks [1]. Social-ecological resilience involves complex, adaptive
systems and highlights the capacity to adapt or transform socio-ecological systems to unex-
pected changes in a manner that benefits human well-being [2]. Resilience in the context
of hazards and disasters concentrates on the capacities of places and the people that live
there to prepare for, respond to, recover from, and adapt to present and future loss-causing
events. The focus on communities’ disaster resilience in specific community types such
as urban settings (definitions of urban resilience vary by discipline from socio-ecological
systems to public health, to engineering; but simply imply the ability of an urban system to
withstand shocks) [3–5], rural areas (highlighting the paradoxical nature of rural resilience,
unique local cultures, and specific capacities of these communities) [6–8], or urban-rural
place comparisons [9] has generated notable research advances. Understanding and mea-
suring resilience is not simple, as the concept is multi-faceted, complex, and contextual [10].
It is also difficult to operationalize and translate resilience indicators into local community
actions despite the increasing demand for such tools for utilization in hazards, climate
change, and sustainability planning. Even in the application of resilience to the built en-
vironment (or socio-technical systems), a gap exists between theory and practice [11,12].
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Moreover, there are no consistent or comparative empirically based resilience baselines by
which communities can gauge their progress towards improving their resilience.

Overviews of disaster resilience indices highlight the wide range of applications for
these empirically derived approaches for assessing community resilience [13–16], where
drivers of resilience at the metropolitan, county, or community scales are quantitatively
computed by employing secondary data and geospatial analytics [3]. One of the most
consistently cited approaches is the Baseline Resilience Indicators for Communities (BRIC)
index [17], a U.S. county-level comparative assessment of pre-existing community assets,
capabilities, and attributes of resilience to natural hazards. BRIC enables a temporal
and spatial assessment of changes in overall county resilience [18] and is now part of
FEMA’s National Risk Index natural hazards risk planning tool [19]. However, BRIC
remains a county-level comparison and does not reflect the variations of resilience at the
sub-county scale. In the U.S., geographic areas are organized in a geographic hierarchy,
where counties are administrative and political subdivisions of states, and census tracts
are statistical subdivisions of a county for which demographic data are collected. Only a
finer-scale measurement can reflect variability at the sub-county scale. This limitation of
the current BRIC provides the motivation for this paper. Therefore, we raise the question
whether a fine-scale measurement scheme is achievable as a tool for communities to gauge
inherent resilience variations through time at a local scale, and if so, what it would look
like. Our purpose is to (1) assess the fidelity of downscaling CBRIC to the census tract
scale (TBRIC), (2) test the relationship between CBRIC and TBRIC, and (3) reconfigure
CBRIC by aggregating the new census tract data to county scales to test aggregation bias
confronting the scale dependency issue. The BRIC index is re-named CBRIC for county-
level BRIC, because in 2020 FEMA launched a pre-disaster mitigation grant program,
Building Resilient Infrastructure and Communities (labeled BRIC). At the time the pre-
disaster mitigation grant program was established, the BRIC tool (Baseline Resilience
Indicators for Communities) was well-established and already incorporated into FEMA’s
National Risk Index. To avoid further confusion with the use of the acronym BRIC, the
resilience index was changed to denote its enumeration unit (CBRIC for county and TBRIC
for census tracts).

The processes that drive resilience varies between and among geographic scales,
thus findings from one scale might not be applicable at a smaller or larger scale [20].
Downscaling data, which applies the same value to smaller units of an original larger
unit, and aggregating data, which summarizes smaller units into a larger one (the scale
effect), as well as adapting data from different political and historical boundaries (the zonal
effect) results in the Modifiable Areal Unit Problem (MAUP) [21]. Resilience indicators can
have implications in decision making by managers and planners that may not be familiar
with the MAUP and lead to generalized inferences about an area based on biased results,
or the ecological fallacy [22], thus becoming prisoners of scale. To illustrate the variable
results the MAUP cautions against, Nelson and Brewer [23] aggregate and disaggregate
median household income and cancer diagnosis rates across three scales, showing that less
spatially autocorrelated data have a higher chance of showing misleading results at higher
aggregations. Additionally, the uncertain geographic context problem (UGCoP) can occur
from spatial uncertainty in the actual areas that influence the resilience of communities [24].
Data availability is a large limiting factor in mitigating the MAUP and UGCoP, but sub-
county computations are more attainable now due to advancements in our understanding
of disaster resilience, data becoming increasingly available, and improving methods.

At present, there have been relatively few efforts to empirically evaluate community
resilience at a local scale. For example, Frazier et al. [25] used a set of weighted indicators
identified by their focus group to measure a place-specific resilience index for Sarasota
County, FL (which also uses BRIC indicators); while Hong et al. [26] analyzed mobility
patterns in the context of Hurricane Harvey in Houston, TX, in 2017 as a neighborhood-
level measure of resilience. However, these studies are often implemented for a small
region or are compiled from datasets that are not publicly available, which complicates
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the replication of their method for other regions or a larger area. Empirically based
resilience studies outside of the U.S. context include Cardoni et al. [27], who employed the
PEOPLES analytical framework for a study in Italian regions; Ciccotti et al. [28], where they
applied a participatory method to identify community resilience indicators for Brazilian
municipalities; and Scherzer et al. [29] and Singh-Peterson et al. [30] who modified the
BRIC analytical framework for regions in Norway and Queensland, Australia, respectively.

The Gulf Coast region extending from South Texas to Florida serves as the testbed for
the TBRIC implementation in this study. Given the similarities in hazard experiences in the
past two decades with repeated land-falling tropical storms and flooding in both urban and
rural locations, significant property and crop losses, and demographic changes, this region
has been ground zero for understanding the variability in resilience capacity. The authors
also have considerable field experience working in this region [31], understanding resilience-
focused longitudinal datasets covering the region [32], and participating in collaborative
projects sponsored by the Gulf Research Program of the United States’ National Academies
of Science, Engineering, and Medicine (NASEM).

2. Materials and Methods
2.1. Index Construction Methodology

The county-level BRIC (CBRIC) is built upon the Disaster Resilience of Place (DROP)
model and uses a hierarchical model with 49 quantitative variables selected from open-
source government entities and matched to six broad resilience capitals with a system of
systems view, including: Social, Economic, Infrastructural, Institutional, Community Capi-
tal, and Environmental [17]. Because CBRIC input variables have differing measurement
units (percentages, numbers, dollars, rates) their values are transformed using linear min-
max scaling (values ranging from 0 (the lowest or least resilient) to 1 (the highest or most
resilient) for each variable). The transformed variables are summed for each capital, then
averaged to compute a capital score. The six capital scores are then summed to produce
an overall BRIC score [17] that theoretically ranges from zero to six. The results are both
presented as resilience scores and resilience classes, where classes are defined by scores
based on standard deviation from the mean (either in three or five categories). The method
is relatively easy to compute making it readily available to the targeted audience: coastal
planners and emergency managers.

In this sub-county reproduction labeled as census tract-level BRIC (TBRIC), we main-
tained the hierarchical model to remain methodologically consistent with CBRIC, and
selected census tracts as our enumeration unit. However, the list of variables is altered
to adapt to the scale change, both conceptually and statistically. In some instances, there
were some changes in the input data in comparison with the county measures, and in some
others, there are new and improved proxy variables available at the census tract-level but
not county, and vice versa. In every instance, we attempted to use the best available data at
the time for the variables at the census tract-level.

The intended set of variables is chosen based on an extensive literature review of
representative resilience indicators for TBRIC composed of 72 candidates including those
from CBRIC and others, where data have become more available. However, due to lim-
itations in the data’s availability, the implementation section and quantification of the
indicators consists of 70 variables (a list of variables and quantification details for each are
provided in Appendix A). The list of variables is tested for the robustness of the hierarchical
methodology of the original BRIC for the census tract scale and further refined using a
mixed-method approach including exploratory factor analysis (Principal Component Anal-
ysis, PCA), expert judgment (Pedigree analysis), and reliability testing (Cronbach’s alpha).

In order to identify the structure of the relationship between the initial set of variables,
an exploratory factor analysis using Principal Component Analysis (PCA) is used to test the
70 candidate indicators. Exploratory factor analysis is a variable reduction procedure that
assumes a set of latent variables (i.e., factors) can explain the interrelationships among a
larger set of variables. The PCA assumes no unique variance (i.e., common variance is equal
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to total variance explained). The results of PCA are then examined on their conceptual
relevance as to whether the multi-dimensional factors represent meaningful resilience
capitals. The statistical software SPSS Statistics 28 was used to perform the PCA tests.

The CBRIC methodology employs a hierarchical indexing model that has gone through
reliability tests for internal consistency of resilience components, with a similar test per-
formed to gauge the outcomes from census tract measures. The reliability test determines
whether the variables were indeed measuring elements of the capital category for which
they were initially intended based on the internal consistency results. The Cronbach’s
alpha (or coefficient alpha) originally developed by Cronbach in 1951 [33], is a widely
used measure of internal consistency. The alpha coefficient of reliability ranges from zero
to one, where higher values reflect higher co-variances between the variables and most
likely assess the same underlying concept (i.e., alpha values of higher than 0.65 are more
favorable). Reliability tests were performed for each of the six resilience components and
the overall TBRIC score, using the SPSS Statistics 28 software.

To provide a guide for future replications and applications of TBRIC, an expert eval-
uation of all candidate variables using Pedigree Analysis was performed to qualitatively
assess the conceptual basis and empirical contribution of the individual input parameters.
All variables are rated in four different categories: applicability and relevance to local scales,
statistical contribution and reliability, accessibility of data, and simplicity for replication.
Apart from applicability which is a yes/no answer, the other categories have a rating of one
to three (e.g., lower number suggesting less access, statistical contribution, and difficulty in
replication). Each variable’s score is the average of ratings given by evaluators. The range
of the rating’s epistemic uncertainty is also provided which is measured by the difference
between evaluators’ ratings divided by the number of evaluators. The coded evaluation
form was shared individually with each member, using the Microsoft 365 Excel Spreadsheet
Software, along with the rating guide. Once all members finished the rating, the first author
summarized the evaluations, and members discussed the differentiation in a meeting to
reach an agreement and decide whether variables needed to be discarded or not.

The final TBRIC construct distribution across the study area is tested through spatial
statistics of hot spot analysis (i.e., Getis-Ord Gi* statistic) to determine where high/low
resilience scores cluster spatially [34], using ArcGIS Pro 2.8 software. Additionally, TBRIC
scores are compared with the available county-level BRIC (CBRIC), by aggregating TBRIC
scores to parallel with CBRIC, and vice versa (i.e., disaggregating CBRIC to compare with
TBRIC), to gauge the impact of scale variations in these measurement schemes, which is
done using local spatial autocorrelation tests of Local Moran’s I statistic, with a first-order
queen contiguity spatial weight matrix and 999 permutations, in GeoDa 1.2 software [35].

2.2. Gulf Coast Region Implementation

Our study region covers coastal counties from five states: Texas, Louisiana, Missis-
sippi, Alabama, and Florida (Northern Gulf Coast with the inclusion of the Atlantic side
of Florida). The 196 counties in this study region, defined by National Oceanic and At-
mospheric Administration (NOAA) as coastal counties [36], include 7239 census tracts
(census tracts with zero population or housing are removed for data analysis). Identifying
compatible and uniform data spanning the five states posed a challenge; therefore, we
relied as much as possible on national rather than state-level data at sub-county scales to
minimally control for systematic errors in source data including data quality and coverage.
Data availability was best at the census tract (or equivalent enumeration unit) level and
generally covered timeframes from 2017 to 2021 [37]. In cases where a variable’s data did
not conform to census tract boundaries (i.e., wetlands, flood risk, etc.), spatial analysis
strategies were employed to ensure that the data was represented in the best possible
manner. In some cases, a variable’s data may have been available at the zip code (ZCTA)
level rather than the census tract-level. This limitation was accounted for with a basic
geoprocessing of the census tracts within that ZCTA to assign data as correctly as possible.
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The time frame goal for variable data was to capture the most recent and most reliable
data possible.

3. Index Construction Results
3.1. Exploratory Factor Analysis

The exploratory factor analysis is performed through a PCA analysis for 70 variables
from the initial candidate list (Appendix A) since the variables for urban flooding and
incorporated areas were not calculated due to a lack of consistent spatial data for the
study region. The variance explained by the 70 variables is 66.4% with 16 factors based on
eigenvalues greater than 1.0. However, according to the scree plot, the components could
be limited to 7~8 factors (where the variance is not changing significantly), and the variance
explained would be 52.1% if the number of factors to extract is limited to eight (Table 1).

Table 1. PCA analysis results (with eight components) and identified components for 70 initial
variables of TBRIC.

Component % Variance Explained Dominant Variables * Component Loading

1 17.469

Mitigation spending 0.992
Emergency services (police/fire) 0.984

Civic involvement 0.979
Building permits 0.971

Temporary housing availability 0.938
Tax-exempt organizations 0.933

Cultural heritage 0.907
Local disaster training 0.880

Art, entertainment, recreation centers 0.637
Energy burden −0.664

Air polluting facilities −0.965
Toxic facilities −0.976

Water quality risk −0.987
FRS sites −0.989

2 8.488

Educational equity 0.716
Internet access (speed) 0.819
Transportation access 0.690

Internet access (connectivity) 0.614
Physician access 0.573

Special needs 0.576
Health insurance coverage 0.560

3 7.921

Access/evacuation potential 0.756
Medical access 0.660
Housing type 0.549

Housing capital −0.504
Natural buffers, wetlands −0.618

Pervious surfaces −0.740

4 5.032

Language competency 0.844
Place attachment (recent immigrants) 0.837

Health insurance coverage 0.593
Energy use −0.632

5 4.616

Political engagement 0.494
Air quality (particulate matter) 0.493

Income to mortgage ratio −0.661
Water supply −0.700

Place attachment (nativity/tenure) −0.746

6 3.231

Sheltering needs 0.977
Multi-purpose retail 0.975

Social assistance services 0.932
Art, entertainment, recreation centers 0.756

7 2.567

Military employment 0.521
Age 0.480

Mitigation cost share 0.477
Employment −0.471

8 2.341
Business size II 0.578
Business size I 0.562

Sales rate 0.522

Note: * Only those variables with component loadings of 0.450 or higher are reported here.

The PCA did not result in factors that were conceptually sound and consistent with the
contemporary understanding of community resilience and its drivers (Table 1). Whether
this is a function of the variables themselves, the inconsistent measurement scale, or their
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representation in the study region is currently unknown and certainly worthy of further
investigation at broader regional and national geographies.

3.2. Reliability Testing for Capitals

The initial reliability testing of the 70 input variables indicates low internal consistency
for some of the capitals, particularly for economic and environmental resilience capitals
(Table 2). This initial result reveals a need for further experimentation to eliminate or move
the variables to other categories, to improve the internal consistency of the measurement
of the respective capitals, and readjust the capital assignment in each capital based on the
expert judgment results.

Table 2. The reliability test for the initial set of TBRIC components, Gulf Coast Study area.

Resilience Category Number of Indicators Initial Cronbach’s Alpha TBRIC 2020

Social 10 0.425
Economic 13 −0.285

Community Capital 10 0.246
Institutional 11 * 0.113

Housing/Infrastructural 13 0.310
Environmental 13 ** −0.492

Note: * The initial number of variables for the Institutional capital is 12, but the variable for incorporated areas
was not calculated due to a lack of data. ** The initial number of variables for the Environment component is 14,
but the variable for Urban/flash flooding was not calculated due to data limitations.

3.3. Expert Judgement

The Pedigree analysis for all 72 considered variables (i.e., 70 measured variables and
two variables with data availability constraints) is the result of expert opinion ratings
(Appendix B). The judgements, gathered from our team members who were involved in the
initial data collection, provided a subjective rating on each variable based on four criteria:
applicability for the local scale, statistical contribution to the capital, data accessibility at the
local scale, and simplicity for replication (rating guide provided at the bottom of the table).

4. TBRIC Implementation and Analysis
4.1. Final TBRIC Configuration

According to the results from the reliability tests and Pedigree scores, some individual
variables were eliminated from further consideration as they did not perform well (e.g., did
not meet a statistical threshold for retaining them). Additionally, when the variable could
conceptually fit into a different capital, we tested its internal consistency and either retained
or eliminated it based on the statistical test of significance. Seven variables were eliminated
from further consideration (from the initial 72 variables), while four were assigned to a
new capital (Table 3).

Table 3. Variables Eliminated or Reassigned to a Different Capital.

Variable Decision Rationale

Incorporated areas Eliminated Data limitation/unavailability
Nuclear accident planning Eliminated Conceptual inapplicability at local scale and statistical insignificance

Flood risk Eliminated Conceptual inapplicability at local scale and statistical insignificance
Urban flooding Eliminated Data limitation/unavailability

Air quality-particulate matter Eliminated Conceptual inapplicability at local scale and statistical insignificance
FRS sites Eliminated Statistical insignificance

Energy use Eliminated Statistical insignificance

Internet Access (speed) Reassigned

Moved from infrastructural capital to social capital, based on concept
and reliability test performance. Note, the other variable for internet
access (number of actual connections per 1000 households) is kept

in infrastructural.

Language competency Reassigned Moved from social capital to community capital, based on concept
and reliability test performance.

Food access Reassigned Moved from social capital to infrastructural capital, based on concept
and reliability test performance.

Income to mortgage ratio Reassigned Moved from economic capital to community capital, based on
concept and reliability test performance.
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The final construction of TBRIC utilizes 65 input variables categorized into six distinct
resilience capitals. Even though the final construction improves the internal consistency of
the resilience categories, only one capital—Social—reaches our goal of Cronbach’s alpha =
0.70 (Table 4). Two others show some moderate levels of reliability (community capital and
environmental capital), while housing/infrastructural and institutional capitals are weak
in their reliability. The economic capital did not perform well.

Table 4. The reliability test for final TBRIC components, Gulf Coast Region (7239 census tracts).

Resilience Category Number of Indicators Cronbach’s Alpha TBRIC Inter-item Correlation (Mean)

Social 9 0.699 0.236 ***
Economic 12 −0.103 0.009 ***

Community Capital 12 0.499 0.086 ***
Institutional 10 0.213 0.087 ***

Housing/Infrastructural 13 0.283 0.034 ***
Environmental 9 0.410 0.114 ***

TBRIC Total 65 0.456 0.019 ***

Note: Based on the ANOVA test: *** p < 0.001.

The TBRIC scores have an average value of 2.75 across all census tracts in the study
region (Figure 1), and score values vary from 2.06 (least resilient) (Tract 37.06 in Miami-Dade
County, FL) to 3.205 (most resilient) (Tract 120 in Orleans Parish, LA). The geographical
distribution of TBRIC shows considerable variability within and between counties as
expected. The areas of higher resilience scores are clustered around Jacksonville, FL, and
Baton Rouge, LA, while patterns of lower resilience scores are seen around Miami and
Okeechobee in Florida, and in Southern Texas around McAllen (Figure 1). While most
census tracts have medium levels of resilience, a significant percentage (7.13%) of the
census tracts are in the low resilience category while another 5.59% are in the high resilience
category, and there are significant hot spots of higher resilience in Louisiana and northern
Florida (Figure 2a).
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4.2. Scale Effects: TBRIC vs. CBRIC

Scale effects have significant policy implications, in addition to scientific interest.
The measurements of BRIC scores at smaller or larger scales both have applications in
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comprehensive resilience schemes, mitigation projects, and recovery plans. Apart from
the problems of MAUP and UGCoP that can lead to ecological fallacy, failing to select
the appropriate scale for quantifying the resilience metrics may hinder the utility of these
indicators. Since most of the mitigation and recovery policies are implemented locally, and
according to the findings in this study on higher reliability of finer-scale measurements,
TBRIC is more appropriate in the sub-national studies that employ BRIC in their analysis.

The economic capital did not perform well at the county scale or census tract scale
for this study area, which is a result of negative covariance between equality variables
and income/homeownership variables (in this region). The national study area for CBRIC
2015 [18] had greater overall internal consistency (Cronbach’s alpha of 0.623) than the
Gulf Coast study area with a Cronbach’s alpha of 0.550 (Table 5), using the same input
variables. The reliability results between resilience categories show consistency in the social,
infrastructure, and community capitals between the national and Gulf Coast study region.

Table 5. The reliability test for CBRIC 2015 components, Gulf Coast Region (196 counties).

Resilience Category Number of Indicators Cronbach’s Alpha CBRIC Inter-Item Correlation (Mean)

Social 10 0.543 0.103 ***
Economic 8 −0.205 −0.016 ***

Community Capital 7 0.444 0.064 ***
Institutional 10 0.332 0.032 ***

Housing/Infrastructural 9 0.415 0.072 ***
Environmental 5 −0.266 −0.024 ***

CBRIC Total 49 0.550 0.025 ***

Note: Based on the ANOVA test: *** p < 0.001.

A test of correlation between TBRIC and CBRIC for the Gulf Coast region shows
a moderate but significant association between the two score measures with Pearson’s
r of 0.483 (p < 0.01), and between the resilience score classes with Spearman’s rho of
0.389 (p < 0.01) (resilience classes are based on standard deviation from the mean). The
bivariate Moran’s I clusters of TBRIC vs. CBRIC (with Queen Contiguity weights) for both
scores (Figure 2b) and the score classes (Figure 2c) indicate that a majority of census tracts do
not show a significant association between the two measures. However, in Southern Texas
and Central Florida there are few Low-Low clusters (i.e., both indicators measured lower
resilience in neighboring tracts), and some High-High clusters are observed in Louisiana,
Northeastern Florida, and Southern Mississippi (i.e., both indicators measured higher
resilience in neighboring tracts) (Figure 2a). In contrast with these convergent results, there
are few sporadic divergent outliers (Figure 2b,c). It appears that both TBRIC and CBRIC
identify the extremes of low or high resilience whether looking at the overall scores or the
mapped five category classes.

Aggregating the TBRIC scores to the county-level by assigning the average of TBRIC
values for their associated county suggests a rather strong significant correlation between
the aggregated score and CBRIC 2015 (Spearman’s rho = 0.796, p < 0.01). The correlation
between classified scores (classes by standard deviation) also shows a similar result (Spear-
man’s rho = 0.741, p < 0.01). However, if we disaggregate CBRIC to tract-level and normalize
by population, the correlation with TBRIC is significant but weak (Spearman’s rho = 0.234,
p < 0.01). Additionally, if we assign the county-level scores directly to the tracts in each
county, the relationship with TBRIC is moderate (Spearman’s rho = 0.483, p < 0.01). There-
fore, aggregating values to a larger scale provides a close approximation to the scores
calculated at that level, but disaggregating values from the larger scale (proportional to
population or not) does not capture the finer-scale values, which has been seen in cases
of scale variations in other contexts. For example, Rabby et al. [38] found similar results
when comparing the Social Vulnerability Index (SoVI) in the coastal area of Bangladesh.
The downscaled SoVI (union to mouza level) had a weak correlation with the mouza
level SoVI (Spearman’s rho = 0.348, p < 0.01) and failed to categorize more than 9% of the
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highly vulnerable areas. In addition, Paegelow et al. [39] measured the vulnerability to
water-related risks (i.e., flooding, and water quality and scarcity issues) in two different
scales (regional/smaller and provincial/larger) in the Santiago Metropolitan Region, Chile,
and found a significant difference among a quarter of the vulnerability scores, with the
higher values in the provincial scale. There have been no tests of the scaling effects of BRIC
to date.

5. Discussion and Conclusions

A comparison of reliability results at the census tract-level (TBRIC) and county-level
scores (CBRIC) shows stronger internal consistency in the sub-county version for so-
cial and environmental components, while it is the opposite for the other components
(Tables 4 and 5). However, the overall score shows a slightly lower level of internal con-
sistency at the census tract-level for this study region. This difference could be due to
(1) TBRIC input variables being modified and updated for 2020, and (2) CBRIC variables
are from the original 2015 BRIC formulation. An updated version of CBRIC in future
studies may show a different level of convergence/divergence, and some of the variances
could be solely representative of this study region.

Regarding the limitations and constraints in this study, the reconstruction of BRIC
methodology for the sub-county level proved to be a tedious and labor-intensive process
that could potentially impede the timeliness of replications. Furthermore, data availability
and quality were not consistent across the five states in the study region and required
advanced geospatial analytical skills to overcome the discrepancies. Therefore, the cal-
culation of a sub-county measure might be challenging for our targeted users (i.e., local
planners) depending on their resources. On the bright side, local planners may have access
to other refined metrics to substitute certain indicators. Regardless, the availability of
BRIC measures at different scales will further help us envision the inter- and intra-county
variability and understand the contributing factors to a community’s resilience, which is
essential in a comprehensive resilience plan.

The community resilience related policies in hazards management are predominantly
local, and based on our findings, finer-scale measurements have higher reliability as
opposed to downscaling county scores, thus application of TBRIC is encouraged in the
sub-national studies that previously employed CBRIC in their analysis. The sub-county
measurement of community resilience at the census tract-level for the Gulf Coast (TBRIC)
study region is the first reconstruction of BRIC at a finer scale. Despite the arduous process
of constructing a finer scale iteration of BRIC, the final index captured the invaluable
perspective of sub-county variability and context. While the choice to operationalize
either CBRIC or TBRIC would be highly dependent on the intended application and the
target audience, the two scales can complement each other and provide two relative tools of
resilience metrics. In particular, aggregating TBRIC to compile CBRIC gets you a correlation
of 80%, showing a higher utility for local scales. CBRIC computation is easier and faster in
comparison with TBRIC but is not reliable for sub-county parallels (correlation of 23% to
48%). There are no previous tests on scaling effects for BRIC but studies on vulnerability
index scaling effects have found significant differences between scales, which can directly
impact the communities if they are misclassified, and the metrics are used for mitigation
policy implementations. Both CBRIC and TBRIC can highlight the resilience variability
within a community and the contributing factors to the final resilience level. Replications of
the TBRIC method for other regions in our next studies will further investigate the role of
geographic scale, applicability, and the patterns of divergence and convergence of TBRIC
and CBRIC measurements in other contexts.
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Appendix A

Table A1. Initial set of variables tested for TBRIC.

Variable Calculation Changes from Original

Social Resilience
Educational equity Percent population with college education or more Definitional
Age Percent population between 18 to 65 years old Definitional
Transportation access Percent households with at least one vehicle
Communication capacity Percent households with telephone service available
Language competency Percent population that are proficient English speakers
Non-special needs Percent population without a sensory, physical, or mental disability
Health coverage Percent of the population (under 65) with health insurance coverage
Mental health Psychosocial support facilities per 10 k population

Food access Food Insecurity Rate (population at 1 mile for urban areas and 10 miles for rural
areas) (Inverted) * New substitute

Physician access Number of physicians per 1000 population

Economic Resilience
Homeownership Percent owner-occupied housing units
Employment Percent labor force employed
Income and equality (Race/Ethnicity) GINI coefficient of income equality (Inverted) *
Non-dependence on primary and
tourism employment

Percent population not employed in farming, fishing, forestry, extractive, and
tourism industries

Income and equality (Gender) Percent of absolute difference between male median annual earnings and female median
annual earnings divided by annual income (Inverted) * Computation

Business size I Ratio of number of large (more than 100 employees) to small (less than
10 employees) businesses

Business size II Ratio of number of employees to number of establishments New
Multi-purpose retail Department stores per 1000 population
Energy burden Energy burden as % income (Inverted) * New
Sales rate Average sales volume divided by number of businesses New
Building permits Average number of building permits per 1000 population (5-year average) New
Income to mortgage ratio Median income to loan ratio New
Military employment Percent employed Armed Forces New substitute

Institutional Resilience
Mitigation spending Average amount ($) mitigation projects for 10-year period per capita
Mitigation cost share Mitigation cost-share percentage (10-year average) New
Flood insurance coverage Percent of housing units covered by NFIP policies
Incorporated areas Percent incorporated New
Jurisdictional uniformity Number of governments & special districts per 10 k persons
Local disaster training Number of Citizen Corps programs (local and county) per 1000 people
Governance connectivity and
performance regimes

Proximity to county seat (Travel time from centroid of census tract to county seat; inverted;
closer is more resilient) (Inverted) * New substitute

https://www.sc.edu/study/colleges_schools/artsandsciences/centers_and_institutes/hvri/data_and_resources/bric/bric_data/index.php
https://www.sc.edu/study/colleges_schools/artsandsciences/centers_and_institutes/hvri/data_and_resources/bric/bric_data/index.php
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Table A1. Cont.

Variable Calculation Changes from Original

Population Stability Absolute value of population change base year/current year
Nuclear accident planning Census tracts within 10 miles of nuclear power plant (Binary 0/1)
Social assistance services Number of social assistance services per 1000 population New
Community housing and emergency
and relief services Number of community housing and emergency and relief services per 1000 population New

Emergency services Number of emergency services per 1000 population New

Housing/Infrastructural Resilience
Housing type Percent housing units that are not mobile homes
Temporary housing availability Vacant rental units per 1000 population

Medical care capacity
Hospital beds per 1000 population; Buffer 10 mile for hospitals (to match food access buffer),

measured by population of tracts within the buffer then assigned to the tracts, for buffers
more than 1, the average is assigned to the underlying tract

Computation

Medical care access Average travel time to hospitals from tract centroid New
Access/Evacuation potential Intersection density (n_real nodes/tract_area_sq miles) New substitute
Housing age Percent housing units built before 1970 or after 2000 New substitute
Sheltering needs Number of hotels/motels per 1000 population
School restoration potential Number of public schools per 1000 population
Bridge rating Average sufficiency rating of all bridges within tract New
Dam age Average age of dams within tract (Inverted) * New
Tax-exempt organizations Tax-exempt organizations per 1000 population New
Internet Access–connectivity Number of actual connections per 1000 households New
Internet Access–speed Percent population with broadband internet subscription New substitute

Community Capital
Place attachment (not recent
immigrants) Population who are foreign-born and moved to US in previous 5 years per 1000 population

Place attachment (nativity/tenure) Percent population born in a state that still resides in that state
Political engagement Percent voter participation in a Presidential election (Precinct level data)
Social capital—religion Number of religious organizations per 1000 population
Social capital—civic involvement Number of civic organizations per 1000 population
Social capital—volunteerism AmeriCorps volunteers per 1000 population New substitute
Community engagement Number of art, entertainment, and recreation establishments per 1000 population New
Place security/Evictions Evictions per 1000 population (Inverted) * New
Sense of security Crime rate (property and violent crime), 5-year average, per 1000 population (Inverted) * New
Cultural heritage Museums, historical sites, and similar institutions per 1000 population New

Environmental Resilience
Natural buffers Percent Land in wetlands
Energy use Energy Use (megawatt hours) per Energy Consumer
Pervious surfaces Average Percent Perviousness
Water supply stress Domestic per capita use self-supply (in gallons/person/day) New substitute
Flood risk Percent land in flood plain New
Urban flooding Average Flash Flood Potential Index (FFPI) value (Inverted) * New

Air quality-particulate matter Average PM value of particulates less than 2.5 (PM2.5) by census tract from
1998 to 2016 (Inverted) * New

Toxic facilities Number of Superfund or LQG hazardous waste facilities in census tract
per 1000 population (Inverted) * New

Federal Registry Service sites All FRS sites in census tract per 1000 population (Inverted) * New
Water quality risk NPDES point source pollution facilities in census tract per 1000 population (Inverted) * New

Air polluting facilities Number of critical/hazardous air polluting facilities in census tract
per 1000 population (Inverted) * New

Change in pervious surfaces Average Percent Perviousness change 2006–2016 New
Open space Percent land in parks New
Local food environment Farmers’ markets per 1000 population (2018) New

Note:* Higher values indicate greater resilience (1 = high, 0 = low). Values were inverted (1 − x) when smaller
values indicated greater resilience.

Appendix B

Table A2. Pedigree results by variable (72 initial variables).

Pedigree Results by Variable Including Average Rate and Range of Rating’s Epistemic Uncertainty *

Variable name Applicability for local scale
(1–2)

Statistical contribution
(1–3)

Accessibility
(1–3)

Simplicity for replication
(1–3)

Educational equity 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Age 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Transportation access 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Communication capacity 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Language competency 2 (±0) 3 (±0) 3 (±0) 2.5 (±0.5)
Special needs 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Health coverage 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Mental health 2 (±0) 2.5 (±0.5) 3 (±0) 2.5 (±0.5)
Food access 2 (±0) 1.5 (±0.5) 3 (±0) 2.5 (±0.5)
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Table A2. Cont.

Pedigree Results by Variable Including Average Rate and Range of Rating’s Epistemic Uncertainty *

Health access 2 (±0) 3 (±0) 3 (±0) 2.5 (±0.5)
Housing capital 2 (±0) 2.5 (±0.5) 3 (±0) 3 (±0)
Employment 2 (±0) 3 (±0) 3 (±0) 2.5 (±0.5)
Income and equality (Race/Ethnicity) 2 (±0) 1.5 (±0.5) 3 (±0) 3 (±0)
Non-dependence on primary/tourism
employment 1.5 (±0.5) 2 (±0) 3 (±0) 2.5 (±0.5)

Income and equality (Gender) 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Business size I 1.5 (±0.5) 3 (±0) 2.5 (±0.5) 2.5 (±0.5)
Business size II 1.5 (±0.5) 3 (±0) 2.5 (±0.5) 2.5 (±0.5)
Multi-purpose retail 1.5 (±0.5) 2 (±0) 2.5 (±0.5) 2.5 (±0.5)
Energy burden 2 (±0) 2.5 (±0.5) 3 (±0) 3 (±0)
Building permit 2 (±0) 2 (±0) 3 (±0) 2.5 (±0.5)
Sales rate 2 (±0) 3 (±0) 2.5 (±0.5) 2.5 (±0.5)
Income to mortgage ratio 2 (±0) 2 (±1) 3 (±0) 3 (±0)
Military employment 2 (±0) 2 (±0) 3 (±0) 3 (±0)
Mitigation spending 1.5 (±0.5) 3 (±0) 3 (±0) 2.5 (±0.5)
Mitigation cost share 1.5 (±0.5) 3 (±0) 3 (±0) 2.5 (±0.5)
Flood insurance coverage 1.5 (±0.5) 2 (±0) 3 (±0) 2.5 (±0.5)
Incorporated areas 1 (±0.5) 1 (±0.5) 1 (±0.5) 1 (±0.5)
Jurisdictional uniformity 1.5 (±0.5) 3 (±0) 2 (±0) 3 (±0)
Local disaster training 2 (±0) 3 (±0) 3 (±0) 2 (±0)
Performance regimes—Distance to county seat 2 (±0) 2 (±0) 1.5 (±0.5) 1 (±0)
Social assistance services 2 (±0) 3 (±0) 2 (±0) 2 (±0)
Community housing and emergency services 2 (±0) 3 (±0) 2 (±0) 2 (±0)
Population Stability 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Nuclear Accident Planning 1 (±0) 1 (±0) 3 (±0) 2 (±0)
Emergency Services (Police/Fire) 2 (±0) 3 (±0) 3 (±0) 2 (±0)
Housing type 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Temporary Housing Availability 2 (±0) 2.5 (±0.5) 3 (±0) 3 (±0)
Medical capacity 2 (±0) 2.5 (±0.5) 3 (±0) 1.5 (±0.5)
Medical access 2 (±0) 3 (±0) 2.5 (±0.5) 1 (±0)
Access/Evacuation potential 2 (±0) 3 (±0) 1 (±0) 1.5 (±0.5)
Housing age 2 (±0) 3 (±0) 3 (±0) 3 (±0)
Sheltering needs 2 (±0) 2.5 (±0.5) 2 (±0) 3 (±0)
Recovery potential 2 (±0) 2.5 (±0.5) 3 (±0) 2.5 (±0.5)
Bridge Rating 2 (±0) 2.5 (±0.5) 3 (±0) 2 (±0)
Dam Age 1.5 (±0.5) 2.5 (±0.5) 3 (±0) 2 (±0)
Tax-exempt organizations 2 (±0) 2.5 (±0.5) 2.5 (±0.5) 2.5 (±0.5)
Internet access (2 variables) 2 (±0) 2.5 (±0.5) 2 (±0) 2.5 (±0.5)
Place attachment (recent immigrants) 2 (±0) 2 (±1) 3 (±0) 3 (±0)
Place attachment (nativity/tenure) 1.5 (±0.5) 3 (±0) 3 (±0) 3 (±0)
Political engagement 1.5 (±0.5) 3 (±0) 3 (±0) 3 (±0)
Social capital—religion 1.5 (±0.5) 2.5 (±0.5) 1.5 (±0.5) 2.5 (±0.5)
Social capital—civic involvement 2 (±0) 3 (±0) 2 (±0) 3 (±0)
Social Capital—volunteerism 2 (±0) 2 (±0) 2 (±0) 3 (±0)
Art, entertainment, and recreation centers 2 (±0) 2.5 (±0.5) 2 (±0) 2.5 (±0.5)
Evictions 2 (±0) 2 (±0) 2 (±0) 3 (±0)
Sense of security 1.5 (±0.5) 3 (±0) 2.5 (±0.5) 2.5 (±0.5)
Cultural heritage 2 (±0) 2 (±0) 2 (±0) 3 (±0)
Natural buffers 1.5 (±0.5) 3 (±0) 2 (±1) 2 (±1)
Energy use 1.5 (±0.5) 1 (±0) 3 (±0) 3 (±0)
Pervious surfaces 2 (±0) 2 (±1) 2 (±0) 2 (±0)
Water supply stress 1.5 (±0.5) 2 (±0) 2.5 (±0.5) 2.5 (±0.5)
Flood risk 1.5 (±0.5) 1 (±0) 2 (±1) 2 (±1)
Urban flooding 1.5 (±0.5) 1 (±0) 1 (±0) 1 (±0)
Air quality-particulate matter 2 (±0) 1.5 (±0.5) 2.5 (±0.5) 2 (±1)
Toxic facilities 2 (±0) 2 (±0) 3 (±0) 2.5 (±0.5)
FRS sites 2 (±0) 2 (±1) 3 (±0) 2.5 (±0.5)
Water quality risk 2 (±0) 2.5 (±0.5) 3 (±0) 2.5 (±0.5)
Air polluting facilities 2 (±0) 2.5 (±0.5) 3 (±0) 2.5 (±0.5)
Change in pervious surfaces 2006–2016 2 (±0) 2.5 (±0.5) 2.5 (±0.5) 2.5 (±0.5)
Open space 2 (±0) 3 (±0) 2.5 (±0.5) 2.5 (±0.5)
Local food environment 2 (±0) 2.5 (±0.5) 3 (±0) 3 (±0)

* Rating guide Applicability for local scale Statistical contribution Accessibility Simplicity for replication

1
(Not applicable)

1
(No contribution)

1
(Difficult to

find/clean data)

1
(High computational

skill required)

2
(Applicable)

2
(Low significance)

2
(Time-consuming

but available)

2
(Medium computational

skill required)

3
(Significant)

3
(Easily accessible)

3
(Easily computable)

The “*” refers to the rating guide (also marked with “*”) at the bottom of the table.
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