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Abstract: Thermoluminescence characteristics of natural rhyolite have been studied. Dose response
at a wide dose range of 0.5–2000 Gy has been determined. Minimum detectable dose and thermal
fading rate are evaluated. Glow curve deconvolution is conducted after determining the best read-out
conditions. The repeated initial rise (RIR) method is used to detect the overlapping peaks, and a glow
curve deconvolution procedure is used to extract the thermoluminescence parameters of rhyolite.
According to the findings, rhyolite glow curves show five interfering peaks corresponding to five elec-
tron trap levels at 142, 176, 221, 298, and 355 ◦C, respectively, at a heating rate of 3 ◦C/s. The obtained
kinetic order for the deconvoluted peaks showed mixed-order kinetic. The reported results might be
useful to introduce rhyolite as a natural sustainable material for radiation dosimetry applications.

Keywords: rhyolite; sustainable natural material; thermoluminescence; kinetic parameters

1. Introduction

Thermoluminescence dosimetry (TLD) is a proper method for assessing ionizing
radiation dosage. TLD materials come in a broad range of physical shapes, allowing for
evaluating various radiation characteristics at dosage levels ranging from micro to kilo
Gray. The tiny physical size of TL dosimeters and the point that no cables or additional
equipment are required during dose measurement are significant benefits. As a result, they
are well-suited to many dosimetric applications [1–3].

Sustainable materials are those that can be obtained in enough amounts without
exhausting the non-renewable resources or altering the environment natural resources.

These materials can range from bio-based polymers derived from polysaccharides to
highly recyclable materials, such as glass, which can be reused indefinitely without the
need for additional mineral resources. Recyclable materials, such as waste composites,
are used in many industrial applications, such as in stabilization and solidification of
radioactive waste [4]. Reuse of cement kiln dust and polystyrene waste could contribute
to environmental protection [5]. Cement can be used as a shielding material with modifi-
cation by using various additives, such as cellulosic waste [6,7], bitumen [8,9], glass [10],
polymers [4,11,12], nanomaterials [13,14], and cement wastes [5,15].

Natural minerals are used for a large variety of purposes in modern science and
technology, which enhances human life. Quartz is a typical natural mineral with several
benefits in a variety of TL dosimetry applications, such as for determining a substance’s
radiological history [16,17], monitoring of nuclear accidence [18], and food irradiation
control [19]. Thermoluminescence characteristics of gamma irradiated sandstone showed
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that its linear dose-response covers the range of 1–50 Gy followed by sub-linearity at a high
dose level [20]. Based on radiation induced free radicals, Egyptian limestone was used as
an effective and low-cost electron paramagnetic resonance (EPR) gamma dosimeter [21].
Thermoluminescence characteristics of sedimentary natural calcite in Gebel El Galala,
Egypt, revealed an average TL sensitivity of 322.356 Gy−1 mg−1 with minimum detectable
dosage of 976.221 µGy and a wide range of linearity, from 1.1 to 330 Gy in response to
beta particle irradiation [22]. For the sake of retrospective dosimetry, thermoluminescence
properties of natural tuff were investigated in the dose range 0.5–5 Gy, where linear dose-
response is obtained [23].

Rhyolite is an igneous rock that extrudes and has a high silica content. It is generally
pink or grey in appearance, with tiny grains that are difficult to notice without a hand
lens. Rhyolite is made up of quartz, plagioclase, and sanidine, with some hornblende
and biotite thrown in [24]. Thermoluminescence emission of rhyolite was recently studied
without in-depth investigation of the its full dosimetric properties and kinetic parameters
involved [25].

A thorough understanding of the kinetic parameters is required for reliable research
of thermoluminescent materials for usage in diverse nuclear applications.

The kinetic parameters, on the other hand, are a crucial aspect in describing the physi-
cal characteristics of TL materials. This may be done by looking at the thermoluminescence
curve of the TL materials after they have been exposed to ionizing radiation. When elec-
trons are liberated from the traps during heating, they recombine with trapped holes,
causing light to be emitted. A collection of glow peaks is formed based on the amount of
trapping bands in the material, which serves as a fingerprint for each substance. The kind
of incident radiation and its energy, as well as the geological origin of minerals, chemical
forms, kinds of impurities, and flaws, all influence the glow peaks [26].

The current study aims to investigate the capability of using rhyolite as a natural
thermoluminescent dosimeter material. Thermoluminescence characterization, as well as
its structural and compositional analysis, will also be investigated.

2. Material and Methods

Rhyolite rock was obtained from the Makkah area, Kingdom of Saudi Arabia, around
190 km southeast of Taif, in the mountainous region, at 20.64◦ N longitude and 42.12◦ E
latitude. This rock sample was crushed into 100 µm granules and then washed with
distilled water to remove organic contaminants. Magnetic separation was used to remove
magnetic particles from the sample after it was dried. The powder was annealed at 400 ◦C
in a muffle furnace for 2 h to eliminate any past radiation exposure, then quickly cooled to
room temperature.

At room temperature, a Bruker S8 TIGER XRF spectrometer was used to identify the
elemental composition of rhyolite samples while a Rigaku Ultima 4 XRD was used for
crystallographic phase identification. An Optica FT-IR Spectrometer was used to measure
Fourier transformation infra-red (FTIR) absorption spectra of prepared samples in the
spectral range 400–4000 cm−1. According to a qualitative XRF examination of the natural
rhyolite sample, silicon was the predominant ingredient (53%), with lesser amounts of
aluminum (15.8%), potassium (15.2%), calcium (2.5%), and a variety of other elements as
impurities.

For the sake of shaping and forming small rigid disks, 25 mg average weight suitable
for the TLD reader samples are compressed at 3 tons using a hydraulic press. The obtained
small rhyolite disks of 2 mm diameter and 1 mm thickness are shown in Figure 1.

A Harshaw TL-reader model 3500 (Harshaw, WI, USA) was used for the thermolu-
minescence measurements. The temperature range for the recorded TL glow curves was
50–400 ◦C, with the heating rate of 3–25 ◦C/s.

The 60Co irradiation source (GC220), factory-made by the Canadian Atomic Energy
Authority, was utilized to gamma irradiate the samples at 0.3 Gy/s. The source is provided
by the Egyptian National Center for Radiation Research and Technology.
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Figure 1. Rhyolite compressed disks at 3 tons.

3. Results and Discussions
3.1. Structural Analysis (XRD and FTIR)

The X-ray diffraction pattern (XRD) for natural rhyolite is shown in Figure 2. Crystal-
lographic phase identification and line profile analysis were performed using the Maud
computer program by Luca Lutterotti [27]. Sodium aluminum silicate (42.193 ± 0 wt. %),
potassium aluminum silicate (32.826 ± 1.079 wt. %) and silicon oxide (24.982 ± 0.671 wt. %)
are three identified phases corresponding to three minerals: albite—low, microcline—
intermediate, and quartz—low, respectively. The obtained peaks are matched to the as-
signed peaks regarding the forementioned three phases, which were obtained from the
crystal structure database of the American Mineralogist [28–30].
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Figure 2. The x-ray diffraction pattern (XRD) for natural rhyolite.

The line profile fitting estimates that the sodium aluminum silicate phase has triclinic
structure with crystallite size of 73 nm and the lattice parameters, a, b, c, α, β, and γ of
8.14, 12.79, 7.16 Å, 94.26, 116.62, and 87.80◦, respectively. The potassium aluminum silicate
phase also has triclinic structure with crystallite size of 73 nm and the lattice parameters,



Sustainability 2022, 14, 6918 4 of 13

a, b, c, α, β, and γ to be 8.60, 13.00, 7.20 Å, 89.98, 115.93, and 89.43◦, respectively. Silicon
oxide phase has trigonal structure with crystallite size of 73 nm and the lattice parameters,
a and b of 4.92 and 5.41 Å, respectively.

Figure 3 shows the FTIR transmission spectrum of the natural rhyolite under investi-
gation. The observed absorption peak at 3435.91 cm−1 can be attributed to the OH group’s
stretching and bending vibrations [31,32], while the those observed at 1093 cm−1 and
661 cm−1 are attributed to the stretching and bending vibrations of the Si-O in quartz,
respectively. The most intense bands recorded at around 1100 cm−1 and 460 cm−1, are
associated with the asymmetric stretching vibrations Si-O(Si) and bending vibrations O-
Si-O present in silicate tetrahedra, respectively. The doublet 800–780 cm−1 is related to
the symmetric stretching vibrations of Si-O-Si bridges [33]. This doublet is found in low-
temperature quartz and is utilized as the analytical band for determining the phase’s
quantitative properties [34]. The Al-O-Si vibration in aluminum silicate is shown by the
absorption band at 1384.16 cm−1 [35].
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Figure 3. The FTIR transmission spectrum of the investigated natural rhyolite.

Metal cation vibrations, such as Na+ and Al+, are responsible for the bands detected
at 588.41, 532.27, 463.94, and 428.08 cm−1 [36–38]. These findings are matched with those
obtained with XRD study.

3.2. Glow Curves

The recorded glow curves of 50 Gy gamma irradiated natural rhyolite disks at 3 ◦C/s
heating rate display one intensified TL peak around 135 ◦C, as shown in Figure 4.
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Figure 4. Thermoluminescence glow curve of 50 Gy gamma irradiated natural rhyolite disk heated at
3 ◦C/s heating rate.

The dosimetric properties, such as the effect of heating rate, dose-response, minimum
detectable dose, reproducibility of the obtained response, and thermal fading, will be
studied as follows.

3.3. The Effect of Heating Rate

The impact of various heating rates on natural rhyolite disks irradiated with 50 Gy
gamma radiation is shown in Figure 5. The acquired findings verified that as the heating
rate was increased, the dosimetric peak was pushed to a higher temperature.
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Figure 5. The effect of heating rate on the thermoluminescence glow curve of 50 Gy gamma irradiated
natural rhyolite.

Due to increased interfering of sub-peaks at higher heating rates, the width of all
dosimetric peaks at its half maximum increases [39]. This is due to a temperature discrep-
ancy between the TL reading tray (planchet) and the sample’s real recorded temperature
at high heating rates. As a result, the peak seems to be at a greater temperature than it
actually is. Slow heating rates, on the other hand, do not cause this because heat is more
homogenously distributed in the sample, as a result of which there is no change in the peak
temperature [40]. Figure 6 shows the results of TL response at various heating rates from 1
to 25 ◦C/s, where the maximum value was recorded at the 3 ◦C/s heating rate.
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3.4. Dose Response

As shown in Figure 7, the variation of the induced TL with gamma dose over the range
1–20 Gy displays a linear fitting (R2 = 0.999) described by the formula I = (1.011 ± 0.026) D;
followed by a supralinearity behavior up to 2000 Gy described by the formula
I = (202.35 ± 20.98) D1.28±0.02, where I refers to the intensity of the TL signal and D is
the irradiation dose. The strong value of R2 suggested that the studied material possesses
a homogeneous delivery of deep electron traps, providing a linear dose-response across
the irradiation dosage range studied. The following formula can be used to compute the
linearity index f(D) at a given dosage D [41]:

f(D) =
[S(D)− S0]/D
[S(D1)− S0]/D1

(1)

where S0, S(D), D1, and S(D1) denote the TL response at zero dose, S(D), dosage in the
linear area; and S(D1) denotes the TL response corresponding to dose D1; respectively. The
value of f(D) equals one for linear behavior, higher than 1 for supralinearity, and lower than
1 for sublinearity.

The calculated f(D) versus irradiation dose from 0.5 to 2000 Gy confirmed the linear-
supralinearity criteria within this range because f(D) equals approximately one for the
range of 0.5–25 Gy, while supralinearity behavior for the residual dose range up to 2 kGy
where the values of f(D) are greater than unity are shown in Figure 8.

The unified interaction model has been used extensively to model the behavior of f(D).
Many experimental measurements have also shown that as the glow peak temperature
rises, the supralinearity of the various glow peaks rises. This can be explained based
on the increased charge carrier migration distances during the recombination (heating)
stage resulting in increased effects of track interaction and, in turn, increased luminescence
recombination efficiency [42,43].

3.5. Thermal Fading

The TL-response of Dosimeters is affected by a variety of environmental conditions.
The temperature of the surrounding medium is maybe the most critical. After irradiation,
heat can liberate electrons from its traps, a process known as thermal fading. The trapping
parameters affecting this process are the frequency factor (s) and activation energy (E) [44].
Figure 9 shows the thermal fading behavior of 50 Gy gamma irradiated rhyolite disks
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during a 28-day period. These samples were annealed before the irradiation process and
stored at room temperature (20–25 ◦C) with a humidity of 40–50%.
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After 24 h, 52 h, one week, and two weeks, the results showed a 32 percent decrease,
52 percent reduction, and 57 percent reduction. During the remaining research time of
two weeks, no additional thermal fading was noticed. In the case where the TL readout is
delayed, these data will aid in estimating the precise absorbed dosages.

3.6. Reproducibility

Another key criterion in determining reusability of the recommended TL material is
its reproducibility for dosimetry applications. The average TL intensity of a collection of
annealed rhyolite disks was measured after numerous cycles of 50 Gy gamma irradiation.
Based on a standard deviation of six measurements, the obtained data in Figure 10 show that
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the rhyolite dosimeter has acceptable reusability, with roughly 4% variance in successive
measurements.
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3.7. Minimum Detectable Dose (MDD)

By using the dose calibration factor (F), the average background reading (B∗), and its
standard deviation (σB), the following formula provided by Furetta et al. can be used to
compute the rhyolite disks’ minimal detectable dose (MDD) (2000) [45].

MDD = (B∗ + 2σB)F (2)

Rhyolite has dose calibration factor F = 0.98 (0.75) Gy g nC−1, the average background
signal B* = 0.40 nC g−1, and its standard deviation σB = 0.06 nC g−1. The calculated values
of the MDD based on the above equation are about 0.5 Gy. Thus, natural rhyolite can
measure low gamma doses up to 0.5 Gy.
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3.8. Kinetic Parameters Determination
3.8.1. Repeated Initial Rise (RIR) Method

This method was developed by Garlick and Gibson in 1948 and is wildly used for
determining the activation energy (E) [46]. The RIR method is based on the fact that at
low temperatures, where TL intensities are less than 10–15% of the maximum intensity
corresponding to a specific cut-off temperature, the change in charge carrier concentration
in the traps is minimal and independent of the kinetic parameters [47]. The TL-intensity
I(T) can be formulated as:

I(T) = const.e−E/kT (3)

The plot of ln (I) against 1/kT where k is the Boltzmann constant, gives a straight line
where the activation energy (E) can be determined from the slope. This approach may recur
with various stopping temperatures Tstop to acquire a large number of activation energies,
and then the number of peaks in the glow curve can be determined if there are many peaks.
The irradiation sample was heated at a continuous pace until it reached a certain cut-off
temperature Tstop, at which point a thermoluminescence decay was recorded. Several
heating and cooling cycles have produced a set of data I(T) spanning the temperature range
of 333–673 K.

For a section of the data acquired at stopping temperatures of 100, 110, 130, 140, and
150 ◦C, Figure 11 depicts the relationship between ln (I) vs. 1/kT. The activation energy
value is anticipated by the slope for each stopping temperature. The graph of the acquired
values of the activation energy E vs. Tstop is shown in Figure 12. The obtained results
displayed that the activation energies are nearly similar in five places (plateau region),
indicating that the glow curve has five overlapping peaks with average activation energies
of 0.77 ± 0.01, 0.86 ± 0.01, 1.01 ± 0.01, 0.99 ± 0.00, and 1.78 ± 0.01 eV, respectively.
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3.8.2. Computerized Glow Curve Deconvolution (CGCD) Method

The glow curves of natural rhyolite have been deconvoluted into five interfering peaks
using the general order kinetics equation given by Kitis et al. [48].

I(T) = nos exp
(
− E

kT

)[
(b − 1)skT2

βE
× exp

(
− E

kT

)
(1 − ∆) + 1

]− b
b−1

(4)

where I is the glow-peak intensity, s (s−1) is the frequency factor, E (eV) is the activation
energy, n0 is the initial concentration of trapped carriers, T (K) is the absolute temperature,
k (eV K−1) is the Boltzmann constant, ∆ = 2 kT/E, and β is the heating rate. The deconvolu-
tion process was carried out using the Korean atomic energy institute’s TL-ANAL tool [49].
As initial approximations, the number of peaks (five) and the corresponding values of their
activation energies (obtained by the RIR method) were entered into the algorithm. The
calculated value of the figure of merit (FOM) for all TL glow peaks determines the accuracy
of the study [50]. The fit is satisfactory if the FOM values are between 0.0 and 2.5 percent,
2.5 and 3.5 percent is minor fit, and >3.5% is bad fit.

Figure 13 shows the glow curve deconvolution of a natural rhyolite sample irradiated
with 50 Gy and recorded at a 3 ◦C/s heating rate. The glow curve deconvolution findings
are summarized in Table 1. The computed standard deviation of the mean owing to many
measurements or fitting peaks during the deconvolution process is incorporated in the
considered activation energy data, which is the uncertainty type A. The acquired findings
indicated that the glow curve of rhyolite material has five overlapping peaks created at 142,
176, 221, 298, and 355 ◦C, respectively, at a heating rate of 3 ◦C/s, and that the activation
energies are compatible with the RIR method’s results. The obtained kinetic order for the
deconvoluted peaks showed mixed-order kinetic.
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50 Gy.

Table 1. The kinetic parameters for natural rhyolite.

Peak Number
Peak Temperature RIR Method CGCD Method

(◦C) E (eV) E (eV) s (s−1) b

1 142 0.77 ± 0.01 0.78 ± 0.02 4.60 × 108 1.07
2 176 0.86 ± 0.01 0.87 ± 0.02 8.29 × 108 1.41
3 221 1.01 ± 0.01 1.02 ± 0.05 3.02 × 109 2.04
4 298 0.99 ± 0.00 0.98 ± 0.01 4.46 × 107 1.66
5 355 1.78 ± 0.01 1.76 ± 0.02 2.00 × 1013 2.02

4. Conclusions

In this paper, natural rhyolite material is shaped into small disks to be used as a ther-
moluminescence dosimeter. Chemical composition and crystal structure of its composite
phases showed that sodium aluminum silicate (42.193 ± 0 wt. %), potassium aluminum
silicate (32.826 ± 1.079 wt. %), and silicon oxide (24.982 ± 0.671 wt. %) are the three
identified phases of rhyolite composition. Linear dose response up to 25 Gy followed
by supralinearity up to 2000 Gy are obtained. The obtained TL characteristics of rhyolite
showed that this material has linear dose response up to 25 Gy, followed by supralinearity
up to 2000 Gy, as well as relatively high fading rate of 57% after two weeks with no more
thermal fading noted. Low detection limit of roughly 0.5 Gy and reasonable repeatability of
about 4% variation in successive measurements are noted. These characteristics may qualify
rhyolite as the sustainable natural material used in this study for a variety of applications
involved radiation dose assessment.
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