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Abstract: Effective landslide hazard prevention requires accurate landslide prediction models, and
the data-driven approaches based on deep learning models are gradually becoming a hot research
topic. When training deep learning models, it is always preferable to have a large dataset, while most
available landslide monitoring data are limited. For data missing or data sparseness problems, con-
ventional interpolation methods based on mathematical knowledge lack mechanism interpretability.
This paper proposes that numerical simulations can be used to expand the deep learning dataset we
need. Taking the Jiuxianping landslide in the Three Gorges Reservoir Area (TGRA) as the geological
background, a finite element numerical model was established, and the landslide displacement time
series data were solved considering the boundary conditions of reservoir water level change and
precipitation. Next, based on three metrics: Euclidean distance, cosine similarity, and dynamic time
warping (DTW) distance, the time series similarity between the displacement data obtained from
simulation and data obtained from actual monitoring were verified. Finally, the combined deep
learning model was built to predict the displacement of the Jiuxianping landslide. The model was
trained on both the simulated and monitored datasets and tested by the last 12 monitored data
points. Prediction results with the testing set showed that the models trained using the expanded
training set from numerical simulations exhibited lower prediction errors, and the errors had a more
concentrated distribution. The results suggest that this landslide displacement prediction method
combining numerical simulation and deep learning can solve the problem of inadequate datasets due
to low monitoring frequency, as well as provide an interpretation of the physical mechanism for data
vacancy filling.

Keywords: landslide displacements; deep learning; numerical simulations; time series similarity

1. Introduction

Landslides are one of the most devastating geological hazards in the world, causing
significant loss of life and severe property damage [1–6]. Complex geological conditions
and variable environmental factors combined with human activity-induced disturbances
often lead to the sudden occurrence of landslides: for example, the rock slide disaster
in Guinsaugon, Philippines in 2006 [7], the Oso landslide disaster in Oso, Washington,
USA in 2014 [8], the landslide of the construction waste landfill in Guangming New
District, Shenzhen, China in 2015 [9]. China has been one of the countries with the highest
frequency of geological disasters in the world. According to relevant statistics from the
National Bureau of Statistics (http://www.stats.gov.cn/tjsj/ndsj/, 6 April 2022), more
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than 100,000 geological disasters occurred in China in the last decade (from 2011 to 2020),
of which landslides accounted for more than 70%.

As the evolution of landslides is complex, nonlinear and uncertain, early warning of
landslides is an important approach to disaster risk reduction, and the accurate prediction
of landslide hazards is a challenging topic as well. The prediction methods for landslides
proposed by scholars in past studies can be mainly classified into mechanism- and model-
based methods and data-driven methods [10]. The Japanese scholar Saito proposed the
method of slope damage time prediction based on creep theory at an early stage [11,12].
Further researches were conducted to predict the timing of rock falls and rock slides based
on long-term deformation monitoring [13,14]. In addition, there were proposed methods
based on inverse velocity [15], displacement gradient [16], and landslide triggers [17]. These
mechanism- and model-based methods can provide explanations in terms of landslide
mechanisms, but can be complex, time-consuming, and not very generalizable [18].

Recent studies have shown that data-driven methods can be applied to landslide dis-
placement prediction. The data-driven methods include various machine learning and deep
learning models and their respective improvements, such as artificial neural network [19],
support vector machine (SVM) [20], extreme learning machine (ELM) [21], long short-term
memory network (LSTM) [22], graph convolutional network (GCN) [23], and more. Guo
et al. [24] proposed a BP neural network based on wavelet analysis and the gray wolf
optimization algorithm, which was successfully applied to the displacement prediction
of the Outang landslides. SVM models are commonly used in landslide susceptibility
mapping [25], but some improved SVM models have also shown good results in landslide
displacement prediction [26,27]. Wang et al. [28] proposed a method for intelligent interval
prediction of landslide displacements using a double exponential smoothing method and
PSO-ELM model, considering the uncertainty of landslide systems. Deep learning models
have been gradually applied to the study of landslide displacement prediction in recent
years, mainly including various variants of recurrent neural networks and convolutional
neural networks. Xu et al. [29] used empirical mode decomposition method to decompose
the Baijiabao landslide displacement into trend component and periodic component, and
applied LSTM to the prediction of periodic terms. Zhang et al. [30] successfully predicted
the deformation characteristics by capturing the displacement history information of the
Jiuxianping landslide with a gated recurrent unit (GRU). Jiang et al. [31] presented a GC-
GRU-N model combining GCN and GRU, which exhibited stronger landslide displacement
prediction capability than other models.

These data-driven models are widely used as they can predict landslide displacements
without too much prior knowledge. However, as various deep learning models have more
and more layers and increasingly complex structures, the interpretability of the models
is becoming worse. Moreover, the big data that matches the deep models are rarely seen
in the field of geohazards. Most landslide displacement predictions use only a few dozen
to a few hundred data points [32–34], including numerous landslide prediction studies
in the Three Gorges Reservoir area (TGRA) in China [10,21,22,32,33,35]. It is obvious
that this situation cannot meet the requirements of “big” data and “deep” learning [36].
At this time, attention can be focused on numerical simulation approaches, which can
uncover the laws behind physical phenomena and provide the training data required by
deep learning models [37]. Again, taking the TGRA landslides as examples, some studies
based on numerical simulation fully considered the physical and mechanical properties of
landslides, combined with environmental triggers, and explored the landslide deformation
mechanism in this area, and the results were in good accordance with the actual monitoring
data [38–40]. In view of the fact that numerical simulations can explain the internal physical
mechanism of landslides, it is worth considering the use of numerical simulation methods
to obtain the data sets we need.

In this paper, we propose a landslide displacement prediction method based on the
combination of numerical simulation and deep learning, using the Jiuxianping landslide
of TGRA as the engineering geological background. Figure 1 presents the flowchart of
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the analysis. The finite element numerical model is used to generate the training data of
landslide displacement needed for deep learning, and the trained deep learning model
using simulated displacement data shows good results on the testing set composed of
measured data. The prediction is more accurate compared to the model trained with
real measurement data. The results of this study provide a new concept for the study of
landslide hazard prediction.
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2. Jiuxianping Landslide
2.1. Regional Background and Geological Structure

The Jiuxianping landslide site is located on the left bank of the Yangtze River in
Yunyang County, Chongqing, and about 11.3 km away from Yunyang County (Figure 2).
The plane shape of the landslide is nearly circular, the left and right edges are bounded
by gullies, and the back edge is bounded by steep bedrock walls. The landslide body
has an elevation of about 95 m at the front edge and 385 m at the back edge, a length
of about 1200 m, a middle width of about 850 m, an average thickness of about 40 m, an
area of about 1.44 km2, and a volume of about 5.7 × 107 m3, and it was a large bedding
rock landslide with the front edge wading. There are three monitoring sections in the east,
middle and west of the landslide. This paper selected the monitoring data and geological
data of the II-II′ section in the middle of the landslide for study.
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Figure 2. Geographical location (a,b) and topographic map (c) of the Jiuxianping landslide.

The site of the Jiuxianping landslide is located on the north side of the Huangbaixi
syncline, with no fracture structure development. Both the landslide body and bedrock are
composed of grayish-white sandstone, purplish-red muddy siltstone and silty mudstone
of the Jurassic Suining Formation, and the surface of the landslide is covered with gravel
mixed with silty clay. The upper and middle parts of the Jiuxianping landslide have a dip
of about 15◦ to 30◦, and the front edge of the landslide has an upward warping. The main
sliding direction of the II-II′ section of the Jiuxianping landslide is approximately 144◦

(Figure 3). The front of the landslide is exposed or partially submerged intermittently by
the rise and fall of the reservoir water level, which fluctuates between 145 m and 175 m.
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2.2. Monitoring Results

Surface deformation observations of the Jiuxianping landslide began in 2016. Figure 3
illustrates the surface deformation of the landslide at various locations. The front edge of
the landslide is reverse deformed by the erosion of the Yangtze River, providing favorable
conditions for damage (Figure 4a). Cracks in the mountain road continue to widen and the
ground uplifts slightly (Figure 4b). Visible cracks and deformations appear in the walls
and steps of the buildings (Figure 4c,d).
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Figure 4. Images of landslide surface deformation. (a) Front of the landslide. (b) Mountain road
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As shown in Figures 2 and 3, in order to monitor the deformation of the Jiuxianping
landslide in real time, five GNSS displacement monitoring stations, YY206, YY207, YY208,
YY209 and YY210, were arranged on the slope surface along the II-II′ section line. Since
June 2016, the five monitoring stations have collected displacement data from these points,
and the monitoring frequency of the available data is once a month. At the same time, daily
reservoir levels as well as precipitation in this region were recorded.

Figure 5 shows the precipitation, reservoir level and accumulative displacement data
for the Jiuxianping landslide from June 2016 to June 2021. The displacement curves display
that the front and central parts of the Jiuxianping landslide have been in an unstable state
for several years, with deformation continuing to increase stepwise. It can be seen from
Figure 5 that the landslide deformation is related to the cyclical changes of the reservoir
level and rainfall. The three monitoring points closer to the bank (YY208, YY209, YY210)
have a sharp increase in displacement between May and July, which coincides with an
increase in rainfall and rapid drawdown of the reservoir water level. In contrast, during the
months with less rainfall and periods of rising reservoir levels, slow drawdown and smooth
running, the slope displacements are virtually unchanged. Such results are consistent with
the findings of previous studies on landslides in the Three Gorges reservoir area [41–43].
Data from monitoring sites YY206 and YY207, which are far from the riverbank, indicate
that the ancient landslide accumulation near the back edge of the landslide is in a more
stable state.
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3. Coupled Numerical Simulation Schemes
3.1. Numerical Model

The changes in the stress and seepage fields of the Jiuxianping landslide under
the action of the cyclic rise and fall of the reservoir water level and rainfall were sim-
ulated using SIGMA/W, the 2D finite element stress-deformation analysis module of
GeoStudio 2018 [44]. Likewise, the II-II′ geological section of the Jiuxianping landslide was
selected to build the numerical model. Before proceeding with the coupled stress and pore
water pressure simulations, a branch of the SEEP/W module was created to calculate the
initial steady state seepage field. Next an in situ analysis branch was created to obtain the
initial stress field. The results of these two branches were employed as the initial stress
and initial pore water pressure conditions for the coupled stress and pore water pressure
calculations [45].

As shown in Figure 6, the established finite element model that consists of the sliding
mass, sliding zone and bedrock is divided into 2666 cells and 2771 nodes. The cells in
the bedrock part are slightly sparse, and the cells in the sliding zone and sliding mass
parts are suitably refined. This model simplifies the surface clay blanket and the stable
accumulation at the back of the landslide. The model’s stress–strain boundary conditions
include displacement constraints in the x direction for the left and right boundaries, and
displacement constraints in the x and y directions for the lower boundary. The model’s
hydraulic boundary conditions include a variable head boundary below the elevation
of 175 m on the ground surface of the model for simulating reservoir levels, a variable flow
boundary above the model’s surface elevation of 175 m for simulating precipitation, and a
constant head of 350 m on the left boundary of the model.
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3.2. Simulation Schemes and Parameters

The soil-water characteristic curve (SWCC) and the hydraulic conductivity function
(HCF) are important components of the analysis of the saturated–unsaturated medium
mechanics. Using GeoStudio’s existing sample functions, the SWCC of the landslide body
can be estimated by testing the saturated water content. With the SWCC obtained, the
HCF can be estimated in GeoStudio software based on the Van Genuchten method [46] by
testing the saturated permeability and the residual volume water content of the landslide
materials. The Van Genuchten model can be expressed in Equations (1) and (2).

kw = ks

{
1− (aψ)n−1 ·

[
1 + (aψ)n]−m

}2

[
1 + (aψ)n]m/2 (1)

m = 1− 1
n

(2)

where kw represents the hydraulic conductivity, ks represents the saturated hydraulic
conductivity, ψ is the range of the matric suction, and a, m, and n are all curve-fitting
parameters. The SWCC and HCF of the Jiuxianping landslide materials are shown in
Figure 7; the physico-mechanical properties and permeability coefficients of the materials
are shown in Table 1. The stress of the sliding zone and sliding mass were calculated
using the Mohr–Coulomb yielding criterion, and the linear elastic model was applied
to the calculation of the bedrock, due to its small deformation. All material parameters
were selected according to the geological investigations and indoor tests; values from the
relevant literature were also consulted [47–50].

The numerical simulation test was conducted based on the monitoring data of the
Jiuxianping landslide from 1 June 2016 to 1 June 2021. The duration of the simulation was
set as 1800 days, and every 30 days was set as a calculation step. A total of 60 displacement
series data were calculated in this way, and with the initial 0 displacement, a displacement
time series of the length 61 was obtained from the simulation in order to examine the match-
ing degree of the real monitoring displacement and simulated displacement. Considering
that the reservoir level had just experienced a rapid drawdown when monitoring first
started (1 June 2016), the head boundary for calculating the steady state seepage field was
thus set as 160 m. The reservoir level and precipitation used in the coupled calculations
were all the actual observed values, as illustrated in Figure 5.
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Table 1. Main parameters of the landslide materials used in numerical simulation.

Materials
Unit

Weight
(kN/m3)

Elastic
Modulus

(MPa)

Cohesion
(kPa)

Poisson
Ratio

Friction
Angle

(◦)

Permeability
Coefficient

(m/d)

Sliding mass 23.8 306 800 0.25 33.9 0.12
Sliding zone 18.4 12.5 20.2 0.28 18 0.468

Bedrock 25.2 1120 - 0.22 - 0.005

3.3. Simulation Results

For further verification of the validity and reliability of the numerical model, three
points on the surface of the model were monitored. The points were located at the elevations
of 340 m, 270 m and 190 m, corresponding to the landslide displacement observation
points YY208, YY209 and YY210, respectively. Since the accumulated displacement at
YY206 and YY207 was quite small, these two points will not be further investigated in
this paper. Figure 8 presents the simulation results of the cumulative displacement at
the three monitoring points under the coupling effect of rainfall and reservoir water level
fluctuations. In addition, the actual measured data are compared with the results of the
numerical simulation.

The final cumulative displacements at the three points of the model were 95.97 mm,
130.62 mm, and 155.82 mm under the coupling of rainfall and reservoir water level, respec-
tively. The final cumulative displacements at the monitoring points on the landslide surface
were 151.64 mm, 156.10 mm, and 150.90 mm, respectively. It can be seen that the actual
displacement of the Jiuxianping landslide is in fact relatively consistent at all points, with
the actual cumulative displacements at YY208, YY209 and YY210 all between 150–160 mm.
From the numerical simulation results, the final cumulative displacement at YY210 is more
consistent with the actual, with the same five rising stages and five calmer stages, while the
simulated displacements at YY208 and YY209 are both smaller than the actual.

The precipitation and reservoir level fluctuations change the seepage field of the slope,
and the change in the seepage field leads to the change in pore water pressure in the
slope [51]. Figure 9 shows the pore water pressure of the Jiuxianping landslide during
a 360-day period in the numerical simulation. From the results of numerical simulation,
the pore water pressure changes in the landslide during the period are mainly concentrated
in the front part, which is influenced by the rise and fall of reservoir water level, and
not significantly influenced by rainfall. One report in the literature [52] elaborates the
deformation mechanism of TGRA landslides influenced by reservoir water level. When
the reservoir water level rises, the buoyancy force increases, and the pore water pressure
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of the area below the water level of the front edge of the landslide increases, producing a
dynamic water pressure that points towards the slope, also called seepage force, preventing
the slide of the landslide and increasing its stability. When the reservoir water level falls,
this dynamic water pressure becomes directed outward on the slope, reducing the strength
of the sliding zone and the structural surfaces, causing the rock mass to slide as a whole
under the action of gravity. In the numerical simulation software, the further away from
the bank, the less the seepage field changes, the less the pore water pressures are affected
and the less the deformation that occurs. This is the reason why the simulated cumulative
displacements at YY209 and YY210 points are smaller than the real value.
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Although the numerical simulation did not achieve the strict overall deformation of
the landslide, it can be noted that the simulated displacement at point YY210 was very
close to the real displacement curve and can be considered for further study based on the
simulated displacement at this point.

4. Displacement Time Series Similarity

Numerical simulations were carried out in the previous section to obtain displacement
data of equal length to the actual monitoring data. It is evident that both the displacement
data obtained after monitoring and that obtained after simulation are in accordance with
the characteristics of time series. To investigate how close the simulated and measured data
from monitoring site YY210 are in terms of time series, several methods and metrics will be
used in this section to examine the similarity and correlation between the simulated and
actual monitoring displacement time series data.

4.1. Numerical Similarity

First, we want to know how similar the two time series are numerically, a problem
that can also be understood as how far apart each of the points in the sequences are in the
two-dimensional plane. To measure the distance between points, the Euclidean distance
is a useful metric that is widely applied in many fields [53–55]. The Euclidean distance
is derived from the Minkowski distance, first proposed by the mathematician Hermann
Minkowski. Suppose there are two time series P = (x1, x2, . . . , xn) and Q = (y1, y2, . . . , yn)
in an n-dimensional space; then, the Minkowski distance can be expressed in Equation (3).

DM(P, Q) =

 n

∑
i=1
|xi − yi|p

 1
p

(3)

where p is a constant, and the Manhattan distance is obtained for p = 1, the Euclidean
distance for p = 2, and the Chebyshev distance when p tends to infinity. So, the Euclidean
distance is defined in Equation (4). The smaller the Euclidean distance, the better the
numerical similarity of the two time series.

DE(P, Q) =

√
n

∑
i=1

(xi − yi)
2 (4)

A simple calculation gave an average Euclidean distance of 14.39 mm for the two time
series data; that is, the average error of the displacement obtained from the simulation was
about 9%.

4.2. Orientation Similarity

In addition to wanting shorter distances at each point, we also expect the two series
curves to have a similar trend, which means that the curves rise or fall at the same time. The
cosine similarity focuses more on the difference between two vectors in terms of direction
rather than distance. Placing the points of the two time series in a plane coordinate system,
the line between each point and the origin of the coordinate axis is a vector. The cosine of
the angle between every two vectors can represent their cosine similarity. Given two time
series P = (x1, x2, . . . , xn) and Q = (y1, y2, . . . , yn), their cosine similarity can be defined
as:

Dcos(P, Q) =
∑n

i=1 xiyi√
∑n

i=1 x2
i

√
∑n

i=1 y2
i

(5)

The closer the cosine is to 1, the higher the cosine similarity of the two series data,
which means that they are more consistent in their orientations. The average cosine
similarity between the simulated and monitored displacement time series was calculated
to be 0.989, which indicates that they are highly similar in direction.
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4.3. Shape Similarity

As can be seen, for time series similarity measurements, the Euclidean distance-based
metric is insensitive to the shapes of the series, and the cosine similarity-based metric
is powerless to calculate the distance between points. Consider a simple but integrated
approach to measuring the similarity of these two time series, the dynamic time warping
(DTW) method. DTW was proposed by Japanese scholar Itakura in the 1960s [56]. This
algorithm is based on the idea of dynamic programming, which solves the problems
of speech template matching, being one of the most popular algorithms in the speech
recognition field.

DTW is a dynamic programming method that minimizes the distance between two
sequences by finding the smallest alignment matching path; thus, DTW can calculate
distances for sequences of different lengths, avoiding the problems that might occur with
time series offsets [57]. Given two time series (the two time series are not necessarily of equal
length, m and n are not necessarily equal) P = (x1, x2, . . . , xm) and Q = (y1, y2, . . . , yn), let
Am×n =

(
aij
)

m×n denote the distance matrix of P and Q, where aij is calculated based on
the distance metric, usually using the square of the Euclidean distance:

aij =
(
xi − yj

)2 (6)

The ultimate goal of the dynamic programming method is to find a path through a
number of grid points in the grid, and the grid points through which the path passes are the
points where the two sequences are aligned for calculation. Defining W = w1, w2, . . . , wk
as the dynamic time warping path between the time series P and Q, where wk =

(
aij
)

k is
the k-th element of the path, then the path W needs to satisfy the following conditions:

max{m, n} ≤ K ≤ m + n− 1
w1 = a11, wk = amn
0 ≤ k− i ≤ 1, 0 ≤ l − j ≤ 1

(
if wk = aij andwk+1 = akl

) (7)

Obviously, the dynamic time warping path is not unique. The path that has the

minimum value of
√

∑k
i=1 wi among all of the dynamic time warping paths is called the

best dynamic time warping path, and the corresponding distance is the dynamic time
warping distance. Defining DTW(P, Q) as the DTW distance between P and Q, then it
follows that:

DTW(P, Q) = min


√√√√ k

∑
i=1

wi

 (8)

In addition, this part also adopts two metrics, root mean square error (RMSE) and
mean absolute error (MAE) for comparison.

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

where, n represents the sample size, and yi and ŷi are the monitored displacement and
simulated displacement (or fitted data), respectively. The smaller the metrics, the higher
the similarity between the evaluated objects.

The results of the similarity evaluation based on the DTW method are summarized
in Figure 10 and Table 2. To demonstrate the DTW similarity between the simulated and
monitored displacements, a fitted curve of the cubic function of the monitored displace-
ments was added as a comparison (Figure 10a). The expression of this fitted cubic function
is y = −0.00007x3 − 0.0328x2 + 4.6788x − 3.1025, and its coefficient of determination is
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R2 = 0.98. Figure 10b shows the alignment paths of the two displacement curves. The red
line in Figure 10c represents the best dynamical time warping path between the monitored
and simulated displacement curves. Because of the constraints of Equation (7), it can only
be extended to the right, up, and to the upper right.
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Table 2. Root mean square error (RMSE), mean absolute error (MAE) and DTW distance between the
curves.

Metric RMSE (mm) MAE (mm) DTW Distance (mm)

Monitored-Simulated 17.58 14.39 633.47
Monitored-Fitted 6.91 5.06 642.84

As can be seen from the results presented in Table 2, the RMSE and MAE between
the fitted function curve and the monitored displacement are 6.91 mm and 5.06 mm,
respectively, which are much smaller than the RMSE and MAE between the simulated
displacement and the monitored displacement. However, the evaluation method based on
the DTW distance gives a completely different result. The total DTW distance between the
fitted function curve and the monitored displacement is 642.84 mm, which is even slightly
higher than the total DTW distance between the simulated and monitored displacements
of 633.47 mm. Such results indicate that, from a dynamic programming perspective, there
is a higher shape similarity between the simulated and monitored displacement curves
than between the fitted and monitored displacements. This demonstrates, to some extent,
the high feasibility of machine learning modeling and calculation by using simulated
displacement time series data instead of measured displacement data, as there is a high
level of similarity between them in terms of time series.

5. Displacement Prediction Deep Learning Model

Long-term landslide displacement monitoring can acquire a large amount of slope
surface deformation data. The time series data obtained are nonlinear and dynamic, and
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the predicted data are inextricably linked not only to the inputs to the system at the current
moment, but also to the inputs to the system in the past. Considering the dynamic and non-
linear nature of landslide evolution, this study proposes a deep learning model coupled
with the one-dimensional (1-D) convolutional neural network (CNN), bidirectional gate
recurrent unit (BiGRU), and attention mechanism (AM) to mine and predict the acquired
landslide displacement data. The architecture of the CNN-BiGRU-AM deep learning model
is displayed in Figure 11.
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5.1. Deep Learning Model Construction
5.1.1. CNN Module

For time series data, this study first extracts local features from the displacement
data using a 1-D CNN, which consists of a convolutional layer, a pooling layer and a
fully connected layer. The model first uses a convolutional kernel for feature extraction,
followed by a rectified linear units (ReLU) function for activation and a max-pooling layer
for pooling. The 1-D CNN outputs a sequence of data as input to the BiGRU module. The
convolution and pooling layers are calculated based on the following equations.

ci = f (ωixi + bi) (11)

pi = max(ci) (12)

where ci represents the output of the convolutional layer, f (•) represents the activation
function, xi is the input of the convolutional layer, ωi is the weight, bi is the bias, and pi is
the output of the max-pooling layer.

5.1.2. BiGRU Module

The recurrent neural network (RNN) is suitable for processing time series data because
of the unique memory units. However, RNN suffers from gradient disappearance and
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gradient explosion when dealing with long sequences. Many variants of RNN have since
emerged, such as LSTM and GRU [58–60], and GRU is simpler in structure and faster in
training than LSTM. Instead of introducing an additional memory unit, it introduces an
update gate to control how much information the current state ht needs to retain from the
previous state, and how much new information it needs to receive from the candidate state.
ht can be expressed as:

ht = zt � ht−1 + (1− zt)� g(xt, ht−1; θ) (13)

where zt ∈ [0, 1]D is the update gate.

zt = σ(Wzxt + Uzht−1 + bz) (14)

The GRU uses only one gate in place of the input and forgetting gates. In GRU, the
function g(xt, ht−1; θ) is defined as:

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (15)

where h̃t indicates the candidate state at the current moment, and rt ∈ [0, 1]D is the reset
gate. rt is used to control whether the calculation of the candidate state h̃t depends on the
state ht−1 at the previous moment. In summary, the state of the GRU network is updated
in the following way:

ht = zt � ht−1 + (1− zt)� h̃t (16)

BiGRU consists of two GRU networks with the same inputs, only the information is
passed in different directions. This structure enhances its ability to address nonlinear time
series, and allows for more sufficient training. The hidden state of the BiGRU at moment t
is defined as:

ht =
→
ht ⊕

←
ht (17)

where,
→
ht and

←
ht are the hidden states of the forward and backward GRUs, respectively, at

moment t, ⊕ represents the stitching of vectors.

5.1.3. AM Module

The main concept of AM derives from the process of human visual attention [61].
When faced with a long sequence, the model focuses on the important parts of the input
sequence and ignores the minor parts by introducing AM to achieve better results than a
model without attention. The output of the attention layer is defined using the following
equations:

M = Sigmoid(ot) (18)

α = so f tmax
(

ωT M
)

(19)

O = otα
T (20)

where ot is the output of the BiGRU, which is transformed by the sigmoid function with
weights ωT weighted and summed through so f tmax output to obtain α as the coefficient of
attention. At last, α and ot are multiplied to obtain the attention value O.

5.2. Model Training and Prediction

The coupled CNN-BiGRU-AM deep learning model in this study was built and trained
using the deep learning library Keras. The training samples of the model were derived
from the displacement data of 1800 days in the numerical simulation. By setting every
single day as a step and saving the data of each step, a displacement time series with a
length of 1801 including the initial zero displacement was obtained. To prove the benefits
of training based on numerical simulation data, the results of training and prediction based
on actual measured data were also added for comparison. As shown in Table 3, when
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training with monitored displacement data, the training set was the first 49 points of the
monitored data. When training with simulated displacement data, the training set was
the first 1470 points of the simulated data. The date span of the training set data was from
June 2016 to June 2020. The last 12 data points of the monitored displacements were set
as the common testing set, spanning the dates from July 2020 to June 2021, representing
approximately 20% of the entire monitored data set.

Table 3. Division of training set and testing set.

Data Set Date Span Data Length

Training set Monitored data June 2016–June 2020 1470
Simulated data June 2016–June 2020 49

Testing set Monitored data July 2020–June 2021 12

Partial hyperparameters used for model training are shown in Table 4. Since the size
of the training sets differed between the two tasks, the hyperparameters used for the two
training missions were slightly different. The hyperparameters used were designed to
make the model as optimal as possible. When training with simulated displacement data, a
dropout module with a factor of 0.1 was added to prevent overfitting. The optimization
metric for the training task was the MSE between predicted values and targets, and the
training optimizer used the Adam algorithm. A one-step prediction method was used to
predict the displacement at the next moment.

Table 4. Partial hyperparameters for two training tasks.

Hyperparameter Dropout Batch Size Filter Length GRU Units

Training with monitored data 0 16 4 32
Training with simulated data 0.1 64 4 32

In addition to RMSE and MAE mentioned in Section 4, MAPE will also be used as an
evaluation metric for displacement prediction accuracy in this section. The MAPE metric
can be calculated by Equation (21).

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (21)

where n represents the sample size, yi and ŷi are the monitoring and predicted values respec-
tively. The results and predicted errors of the proposed deep learning model, which was
trained by monitored and simulated displacements, respectively, and tested by monitored
displacement, are shown in Figure 12 and Table 5.

From Figure 12 it can be observed that the CNN-BiGRU-AM model can predict the
trend of the testing set data well after being trained on both the monitored data and
the simulated data. The difference is that the models trained with data from numerical
simulations are more accurate than those trained with actual monitored data, since the
predicted displacement curve based on the simulated data set is closer to the measured
data curve. This is also supported by the error metrics in Table 5. The prediction errors for
MAE, RMSE and MAPE with the monitored training set were 3.99 mm, 4.17 mm and 2.68%,
respectively, while the prediction errors for MAE, RMSE and MAPE with the simulated
training set were 1.23 mm, 1.50 mm and 0.85%, respectively. It is clear that the displacement
data obtained from the numerical simulations are not only reliable, but also help to train
the model to significantly reduce prediction errors.
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Table 5. Errors of the predicted displacement with CNN-BiGRU-AM.

Metric MAE (mm) RMSE (mm) MAPE (%)

Prediction with monitored training set 3.99 4.17 2.68
Prediction with simulated training set 1.23 1.50 0.85

Figure 13 provides the absolute error distribution of the predicted values. Figure 13a
provides the frequency distribution of the prediction errors. Most of the prediction errors
obtained based on the simulated dataset were less than 2 mm, while the prediction errors
obtained based on the monitoring dataset training were basically in the range of 2–6 mm.
In Figure 13b, the box plot gives the interquartile range of the prediction errors; the orange
points indicate the median value of the errors and the red curve is the fitted normal
distribution curve of the errors. When model training is carried out using the training
dataset generated by numerical simulation, it results in a more concentrated statistical
distribution of prediction errors.

It is noted that not much effort was spent on hyperparameter optimization of the
model in this study. We believe that the deep learning model will achieve more satisfactory
results if the parameters are optimized specifically. Moreover, the purpose of this paper
was to investigate the feasibility and precision of using numerical simulation to obtain a
big data set for deep learning, so only displacement time series were considered. If more
geological observation data can be integrated for the model training, the displacement
prediction results will be more accurate.
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6. Discussion

We demonstrated a prediction method for landslide displacement combining numer-
ical simulation and deep learning methods in this paper. Aiming at the lack of big data
volume in the field of geological hazard prediction such as landslides, this study explored
the scientificity and feasibility of expanding the deep learning dataset using numerical
simulation. We built a finite element numerical model considering the real precipitation
and reservoir level conditions, and this model was used to generate and expand the train-
ing set required for the deep learning model. The results suggest that this is an effective
method for augmenting finite data and is superior to conventional, mathematically based
interpolation methods because of its interpretability of mechanism. In practical engineer-
ing applications, we believe that the proposed method can solve the following problems:
(1) the small amount of monitoring data obtained when the frequency of field monitoring
is low, potentially resulting in models insufficiently trained with an inadequate training set;
and (2) the problem of missing monitoring data or abnormal data that is often caused by
equipment or personnel problems during monitoring.

This study is a preliminary attempt to combine numerical simulation with deep
learning and apply it to landslide hazard prediction, and the authors believe that there are
still some aspects to be improved and worthy of deeper exploration. Firstly, the numerical
model in this paper is constructed only based on one geological section, and the limited
monitoring points can hardly reflect the global trend of landslides. In addition, there is still
a certain deviation between the landslide displacement given in the numerical simulation
and the actual monitoring displacement, and it is difficult to estimate the strength change of
the landslide materials over time, which will affect the precision of the numerical simulation.
The environmental triggers of the landslide are not taken into consideration as inputs of the
deep learning model, which also has an influence on the accuracy of landslide displacement
prediction.

7. Conclusions

In order to solve the problem presented by a small amount of effective landslide moni-
toring data in practice, we first adopted a mechanism-based approach to expand the limited
landslide displacement monitoring data. Utilizing the geotechnical engineering software
GeoStudio, a finite element model with coupled pore water pressure was used to conduct
numerical simulations of the Jiuxianping landslide. The reservoir water level changes and
precipitation over a period of 60 months were considered, and the displacements of the
three monitoring points of the landslide during this period were calculated to obtain the
corresponding displacement time series data.

The results of the numerical simulations showed that the farther the monitoring point
was from the Yangtze River bank, the smaller the accumulated displacement was, and the
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less obvious the step-like displacement changes were. This can be attributed to the limited
influence of changes in the seepage field caused by reservoir level changes in the numerical
simulations, whereas in fact the Jiuxianping landslide emerged as a sliding whole.

Three time series similarity metrics—numerical similarity, orientation similarity and
shape similarity—were used to evaluate the similarity between the simulated displace-
ment time series and the measured displacement time series at the YY210 point. The
numerical similarity based on the mean Euclidean distance, the directional similarity
based on the mean cosine value and the shape similarity test based on the DTW distance
were 14.39 mm, 0.989 mm and 633.47 mm, respectively, which indicated a high time series
similarity between the simulated and measured displacement data of the YY210 monitored
point.

Ultimately, a displacement prediction deep learning model for Jiuxianping landslide
was constructed. This combined model comprised a 1-D CNN module, a BiGRU module
and an attention mechanism, and was supported by 1470 simulation samples extracted
from the finite element model. The deep learning model predicted the next moment
displacement by mining the historical displacement patterns, and showed good prediction
results on a testing set consisting of measured data. For comparison purposes, the original
displacement monitoring data were also used for training and testing. The results of the
testing set revealed that the model trained on the simulated data had a stronger prediction
ability and smaller prediction errors.

Author Contributions: Conceptualization, W.X. and Y.P.; Methodology, W.X. and H.X.; Formal
Analysis, J.C. and Y.K.; Investigation, W.X., H.X. and Y.K.; Data Curation, W.X., H.X. and Y.K.;
Writing—Original Draft Preparation, W.X., Y.Y. and J.T.; Writing—Review and Editing, W.X. and J.C.;
Funding Acquisition, J.C., Y.P. and Y.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (2021YFB3901403, YFC2900400), the Special Project for Performance Incentive and Guidance of
Scientific Research Institutions in Chongqing (cstc2021jxjl120007), the Visiting Scholar Fund of State
Key Laboratory of Mine Disaster Dynamics and Control (Grant No.2011DA105287-FW201903), and
the National Natural Science Foundation of China (52027814).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vu, V.N.; Binh, T.P.; Ba, T.V.; Prakash, I.; Jha, S.; Shahabi, H.; Shirzadi, A.; Dong, N.B.; Kumar, R.; Chatterjee, J.M.; et al. Hybrid

Machine Learning Approaches for Landslide Susceptibility Modeling. Forests 2019, 10, 157.
2. Catane, S.G.; Veracruz, N.A.S.; Flora, J.R.R.; Go, C.M.M.; Enrera, R.E.; Santos, E.R.U. Mechanism of a low-angle translational

block slide: Evidence from the September 2018 Naga landslide, Philippines. Landslides 2019, 16, 1709–1719. [CrossRef]
3. Lin, F.; Wu, L.Z.; Huang, R.Q.; Zhang, H. Formation and characteristics of the Xiaoba landslide in Fuquan, Guizhou, China.

Landslides 2018, 15, 669–681. [CrossRef]
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