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Abstract: Driver behavior and intention recognition affects traffic safety. Many scholars use the
steering wheel angle, distance of the brake pedal, distance of the accelerator pedal, and turn signal as
input data to identify driver behaviors and intentions. However, in terms of time, the acquisition of
these parameters has a relative delay, which lengthens the identification time. Therefore, this study
uses drivers’ EEG (electroencephalograph) data as input parameters to identify driver behaviors and
intentions. The key to the driving intention recognition of EEG signals is to reduce their noise. Noise
interference has a significant influence on EEG driving intention recognition. To substantially denoise
EEG signals, this study selects wavelet transform theory and wavelet packet transform technology,
collects the EEG signals during driving, uses the threshold noise reduction method on EEG signals to
reduce noise, and achieves noise reduction through wavelet packet reconstruction. After the wavelet
packet coefficients of EEG signals are obtained, the energy characteristics of the wavelet packet
coefficients are extracted as input to the Bayesian theoretical model for driver behavior and intention
recognition. Results show that the maximum recognition rate of the Bayesian theoretical model
reaches 82.6%. Early driver behavior and intention recognition has important research significance
for traffic safety and sustainable traffic development.

Keywords: wavelet transform theory; driving intention; EEG signal; noise reduction; Bayesian theory;
sustainable transportation

1. Introduction

The “2018 Global Road Safety Report” issued by the World Health Organization
emphasizes that the number of deaths caused by traffic accidents is still increasing year by
year, and it has become the eighth leading cause of death of people of all ages. In order
to reduce the occurrence of traffic accidents, scholars have conducted research on traffic
implementation, for example, Macioszek, E. studied the traffic capacity of roundabouts [1].
Alessandro Severino et al. studied the safety benefits of flower roundabouts [2]. The
occurrence of traffic accidents is affected by many factors, among which the influence of the
driver is the main factor [3–5]. Sustainable transportation is one of the latest transportation
development concepts in the world today, and safety is one of the keys to sustainable
transportation development. Predicting driver behaviors and intentions in advance plays a
key role in reducing traffic accidents, and it provides a strong guarantee for sustainable
development. This article mainly collects EEG (electroencephalograph) driving signals
during the driving process; predicts driver behaviors and intention; and makes timely
decisions, which can further reduce the occurrence of traffic accidents and provide a
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stronger guarantee for sustainable traffic development. Many studies have been conducted
on sustainable transportation development, and they have focused mainly on energy saving
and carbon emission research [6–8]. Pamucar, D., Deveci, M. and Cantez, F. et al. proposed
to achieve zero carbon emissions from transportation [7]. Al-Thawadi, F.E., Banawi, A. and
Al-Ghamdi, S.G. suggested that using public transport was sustainable [9]. In the present
study, sustainable transportation development is considered from the perspective of energy
saving and improving traffic safety.

Many scholars have studied the intention of drivers, such as Micucci, A., Mantecchini,
L. and Sangermano, M. They examined the relationship between motorcyclists’ understand-
ing of car drivers’ intentions and the perceived factors that affect the state of front and rear
turn signals [10]. Driving intentions can be predicted in advance by predicting behaviors
such as turning left, turning right, and going straight, thereby providing information to
drivers for avoiding traffic conflicts and gaining protection for traffic safety. Predicting
driving intentions in advance can also save time and reduce drivers’ judging time thereby
saving energy and improving safety.

The key problem of driver behaviors and intentions based on EEG signals is noise
reduction; EEG signals are extremely weak, and various signal noises interfere during the
signal acquisition process. Driver behavior and intention data are mixed and cannot reflect
real driver behaviors and intentions. Therefore, noise reduction is indispensable to obtain
clear, accurate driver behavior and driving intention based on EEG signals. This study uses
the wavelet transform principle to layer EEG signals, soft threshold for noise reduction,
and Python for simulation.

At present, popular classification and recognition mainly include the Bayesian method
and the support vector machine (SVM), neural network, and deep learning models.

This research uses Bayesian classification and recognition, which is relatively simple,
with high learning and prediction efficiencies based on the probability learning algorithm.
In this work, driving intentions during the normal driving process are studied, which can
serve as a reference for assisted and automatic driving and lay a foundation for sustainable
transportation development.

The paper mainly includes five parts, the first part is the introduction, the second part
is the literature review, the third is the materials and methods, the fourth part is models
and methods, and the fifth is the discussion and conclusion.

2. Literature Review

Research on drivers’ EEG signals includes driver fatigue detection, driving intention
recognition, driver cognitive response, and driver drowsiness.

Borghini, G., Vecchiato, G., and Colosimo, A. et al. evaluated mental fatigue during
car driving through high-resolution brain electrical activity and neurophysiological indi-
cators [11]. Tran, Y., Wijesuryia, N., and Thuraisingham, R. A et al. detected changes in
driving fatigue through the fast time resolution of EEG signals. They conducted nonlinear
analysis on the alertness and fatigue EEG signals of driving simulation tasks through the
second-order difference map quantified by sample entropy and central tendency measure-
ment. The results indicated that the sample entropy and the second-order difference caused
a significant increase in the regularity of the EEG signals from the alert to the fatigue state
and reduced the variability of such signals [12]. Mohamed, F. et al. initiated an adaptive
fatigue recognition model on the basis of the main axis of EEG frequency, which extracts
EEG signals and recognizes the brain perceptions of various environmental changes and
driver behaviors thereby identifying driver fatigue [13].

Hernández, L.G., Mozos, O.M. and Ferrández, J.M. recognized driver braking intention
by taking EEG signals as input features with SVM models and convolutional neural network
(CNN) models [14]. Trung-hau Nguyen and Wan-young Chung developed a new system
that used EEG signals to detect the driving intention to brake in an emergency with 91%
accuracy [15].
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Huang, Yufei, and Hajinoroozi detected the cognitive performance of drivers by
extracting EEG features as input parameters and adopting deep CNNs [16]. Lin, C.T., Lin,
K.L., and Ko, L.W. et al., extracted the characteristics of EEG signals through nonparametic
weighted feature extraction and detected driver cognitive responses to traffic light signals
through Naive Bayes [17]. Chuang, C.H., Lai, P.C., and Ko, L.W. et al., established a
system to assess the cognitive state of drivers, and they proposed a classification system
for alertness/drowsiness on the basis of EEG signals [18]. Li, G., Lee, B.L., and Chung, W.
detected driver drowsiness through EEG [19].

Lin, F.-C., and L.-W., et al., proposed a self-organizing neuro-fuzzy system on the
basis of generalized EEG to monitor and to predict driver drowsiness through the occipital
area [20]. Lin, F.C., Ko, L.W., and Chen, S.A., et al., detected driver drowsiness by extracting
the frequencies of EEG signals [21]. Gang, Chung, and Wan-Young, et al. found driver
drowsiness by adopting the posterior probability model of SVM based on the characteristics
of brain electrical signals [19]. Rahma, O.N. and Rahmatillah, A. recognized awake and
lethargic states, extracted the relative power of EEG signals as a feature, and optimized
the extreme learning machine by using the common space pattern method to calculate the
variance of the relative power thereby achieving significant effects [22].

Picot, A., Charbonnier, S., and Caplier, A. proposed an online sleepiness detection
method on the basis of EEG; the results indicated that nearly 85% of the correct detection
were obtained [23].

Lin, C.T., Chen, S.A., and Ko, L.W., et al., studied driver distraction detection while
driving through EEG signals. They found that the increased power of theta wave in the
frontal lobe extracted by EEG signal processing can be used as an early detection indicator
of distraction for driver inattention [24].

The above literature investigated and explored driver cognition, drowsiness, fatigue,
and braking intention through EEG signal extraction features, and it improved its positive
effect on driving assistance. However, relatively few studies have explored the EEG signals
of drivers during normal driving.

3. Materials and Methods
3.1. Experiment

A driving simulation experiment platform and EEG signal acquisition platform were
built, EEG signals were collected through the EEG device g.USBamp, and a route was
selected. The two platforms included two parts. One part was a virtual driving platform
composed of simulation software for driving simulation, a computer, and a hardware
system for driving operation. The other part was EEG acquisition equipment, which was
composed of an EEG signal amplifier, power supply equipment, 32 electrodes, electrode
caps, and display equipment for showing EEG signal graphics. Figure 1 showed the driving
virtual environment and the experimental equipment. The EEG signals were collected
while driving at the same time. The driving process of the route included driving intention
operations, such as turning left, turning right, and going straight. Nine drivers were
selected, aged between 20 and 23 years old, had a driving license, and did not have any
brain diseases. Moreover, a relevant pre-experiment training for drivers was conducted.
This experiment was approved by the school ethics committee.
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Figure 1. The driving virtual environment and experimental equipment.

Driving operation was conducted through a driving simulator, and EEG signal infor-
mation was collected simultaneously. The first 3 s and the last 3 s of data from the EEG
signals of the left, right, and straight driving intentions during driving were collected in
EEG. In signal acquisition, a 50-Hz power frequency noise signal was filtered out using
EEG equipment. The collection frequency was 256 Hz, and the time for collecting EEG in-
formation was 3 s. Moreover 16-channel EEG signal information was collected. Meanwhile,
16-channel electrodes mainly included the area above the left and the right hemispheres of
the brain. The 16-channel electrodes were F3, FC3, C3, F1, FC1, C1, Fz, FCz, Cz, CPz, F2,
F4, C2, C4, FC2, and FC4. By testing these electrodes, the corresponding EEG data were
obtained, thereby providing a basis for the analysis of the EEG signals. Table 1 shows the
electrode positions in certain brain areas.

Table 1. Electrode positions in certain brain areas.

Name Codename

Frontal Pole Fp1, Fp2
Frontal F3, F4, Fz
Central C3, C4, Cz
Parietal O1, O2

Occipital F7, F8
Inferior Frontal T3, T4

Temporal T5, T6
Auricular A1, A2

3.2. Analysis of Driving Intention Data

Driving intentions in this experiment had three main kinds: turn left, turn right, and
go straight. The EEG signals of the three driving intentions were collected. The time
window data of the traditional driving intention object generally included 3, 6, and 10 s for
research. This study selected 3 s of data for analysis and research; collected the 3-s EEG
signals of the driver turning left, right, and going straight; and processed and analyzed the
3-s EEG signals. The sampling frequency was 256 Hz, and the EEG signals corresponding
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to the left-turn, right-turn, and the straight-forward driving intentions for 3 s had 768 data
points. Taking the right-turn driving intention as an example, when a driver turned on the
right turn signal, the moment when the driver turned right was determined. The EEG data
of the first 3 s of the right turn were collected as research data, and Python was used to
read the EEG signals. All EEG data were screened; left turn, right turn and straight drive
of different drivers were classified; and EEG data were normalized. Table 2 shows the
EEG data of the right-turn driving intention. Table 3 displays the EEG data of the left-turn
driving intention. Table 4 presents the EEG data of the straight driver behavior.

Table 2. Part of the EEG signal for right-turning driver behavior.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

−0.470793 −0.249510 0.213251 0.375241 0.038111 −0.390818
−0.567436 0.270887 0.391875 −0.414986 −1.106893 −0.890131
−0.075273 −0.224075 −0.203669 −0.202219 −0.349733 −0.329178
−0.161783 −0.160582 −0.344785 −0.356788 −0.163295 −0.094263
−0.144852 −0.383548 −0.270902 0.088163 0.268423 0.108332

Table 3. Part of the EEG data for left-turning driver behavior.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

−0.397875 0.216597 0.6633238 0.056592 0.056592 0.304644
−0.216548 −0.340523 0.787573 0.0832372 0.0832372 0.261192
−0.192910 −0.477439 0.363420 0.305807 0.305807 −0.058086
−0.199765 0.215363 −0.111654 0.381363 0.381363 −0.325223
−0.049635 0.835561 −0.143058 0.021561 0.021561 −0.219865

Table 4. Part of EEG data of straight driver behavior.

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

−0.191059 −0.378736 −0.373933 −0.090514 0.146785 −0.027652
0.603281 0.096405 −0.402995 −0.150650 0.313094 0.105828
0.137631 −0.009734 −0.357019 −0.198795 0.159049 0.177211
−0.217545 −0.172413 −0.158614 −0.060870 0.229063 0.292487
−0.038612 −0.126484 −0.375715 −0.178546 0.045054 −0.259565

4. Models and Methods

EEG signals were decomposed in the wavelet domain, and the wavelet db3 was se-
lected and decomposed into three, four, and five layers. The wavelet was transformed
to obtain wavelet coefficients. Part of the wavelet coefficients was decomposed into EEG
signals and noise, and another part was decomposed into noise signals. Wavelet decom-
position transformed to extract useful EEG signals. Moreover, the decomposed signals
were used as input into the independent component analysis model to continue filtering.
Thereafter, wavelet packet processing technology was used to extract energy as the input
data of the input model for training and testing.

4.1. Wavelet Transform Principle

Wavelet transform is an important tool for time–frequency research. Through wavelet
transform, localized frequency analysis can be performed, which overcomes the shortcom-
ings of the Fourier transform, and it is suitable for processing nonstationary signals. Wavelet
transform is a time–frequency analysis method with multi-resolution characteristics. It can
have good resolution in the time and frequency domains, and it is considerably suitable
for processing EEG signals. Wavelet transform is a localized analysis in the time and
frequency domains. Signals are refined in multiple scales through scaling and translation
operations. Frequency and time are subdivided at low and high frequencies, respectively.
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Various time-varying signals can be effectively decomposed, and signal and noise can
be separated substantially. Commonly used wavelet basis functions include the wavelet
function, wavelet function system, and complex wavelet. The choice of wavelet basis is
founded on which group of wavelet basis obtains the largest wavelet coefficients in which
the variance value is small and which group of wavelet basis is selected. Internationally
renowned wavelet analysis scholar Inrid Daubechies constructed the wavelet function
Daubechies. The wavelet base in the Daubechies series is denoted as dbN, where N is
sequence N = 1, 2, . . . , 10.

The basic wavelet transform principle is to use the wavelet function system to approx-
imate a signal and to obtain the signal through translation or expansion via a basic wavelet
function.

The decomposition of the wavelet one-dimensional transform is as follows:

φ(a,b)(x) =
1√
|a|

φ(
x− b

a
) (1)

W(a,b) =

+∞∫
−∞

f (x)φ(a,b)(x)dx, a, b ∈ R, a 6= 0 (2)

where φ(a,b)(x) is the mother wavelet, a is the translation factor, b is the expansion factor,
and W(a,b) is the wavelet coefficient of the signal, f (x) is energy finite signal. The projection
decomposition of f (x) under these wavelet basis functions is the continuous wavelet
transform

Continuous wavelet and wavelet coefficients are discretized, and the discrete wavelet
function is obtained as follows:

φ(j,k)(x) =
1√∣∣∣aj

0

∣∣∣φ(
x− kb0aj

0

aj
0

) = a−
j
2

0 φ(a−j
0 x− kb0) (3)

W(j,k) = a−
j
2

0

+∞∫
−∞

f (x)φ(a−j
0 x− kb0)dx (4)

Formula (3) represents the discrete wavelet basis function, and Formula (4) represents
the discrete wavelet transform. Each letter has the same meaning as Formulas (1) and (2).

Wavelet transform is divided into three layers, only decomposes the low-frequency
part, and it does not consider the high-frequency part. Signal S = CA3 + CD3 + CD2 + CD1
+ CA1, where S is signal, where CA is the approaching signal—which is the low-frequency
part—and CD is the detail signal, which is the high-frequency part (Figure 2).
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The frequency range of the beta waves in EEG signals is 14–30 Hz, and that of gamma
waves is 30–60 Hz. Therefore, the EEG signals are divided into three layers by db3 wavelets
A3, D3, D2, and D1. The sampling frequency is 256 Hz. According to the sampling theorem,
D1 is the first layer and the frequency range is 64–128 Hz. D2 is the second layer and the
frequency range is 32–64 Hz. D3 is the third layer and the frequency range is 16–32 Hz.
A3 is the third layer and the frequency range is 8–16 Hz. Therefore, the beta and gamma
waves are in the third and second layers, respectively.

4.2. Wavelet Threshold Denoising

Wavelet threshold denoising occurs through wavelet transform, which maintains the
wavelet coefficients higher than the threshold, and sets the wavelet coefficients below
the threshold to zero. In this manner, the useful signal information is preserved and the
noise signal is filtered out. Thereafter, processed wavelet coefficients are reconstructed to
obtain denoised EEG signals. The selection of the threshold and the threshold function is
particularly important.

Threshold selection rules mainly include minimum and maximum thresholds, fixed
thresholds, adaptive thresholds based on the unbiased likelihood estimation principle, and
heuristic thresholds. The four threshold selection rules have their respective advantages
and disadvantages. The minimum–maximum value mainly realizes the minimization of
the maximum mean square error and produces the minimum variance extreme value. The
fixed threshold value aims to select a fixed threshold value according to the characteristics
of signals to reduce noise when it is reduced. The soft threshold estimator determines the
minimum risks and obtains the adaptive thresholds. The heuristic threshold is a threshold
method based on the ideas of adaptive and fixed thresholds.

The two main types of threshold functions are hard and soft. The hard threshold
function compares the wavelet coefficients before the wavelet transform with the threshold
value. The absolute value of the wavelet coefficients is higher than the threshold value,
and that of the wavelet coefficient is set to zero if the absolute value is below the threshold
value.

The hard threshold function is as follows:

ŵi,j =

{
wi,j

∣∣wi,j
∣∣≥ T

0
∣∣wi,j

∣∣< T
(5)

where wi,j is the wavelet coefficient of the original signal, ŵi,j is the wavelet coefficient after
threshold quantization, and T is the threshold.

The soft threshold function compares the wavelet coefficients before the wavelet
transform with the threshold value. Wavelet coefficients, whose absolute value is above or
equal to the threshold, are set to a constant difference, and wavelet coefficients below the
threshold are set to zero. Hard threshold easily loses some useful signals after processing.
Hence, soft threshold is selected to process and to analyze EEG signals. Some studies have
been based on soft and hard thresholds, and they have made improvements [13,14].

The soft threshold function is as follows:

ŵi,j =

{
sign(wi,j)(

∣∣wi,j
∣∣−T)

∣∣wi,j
∣∣≥ T

0
∣∣wi,j

∣∣< T
(6)

where wi,j is the wavelet coefficient of the original signal, ŵi,j is the wavelet coefficient after
threshold quantization, and T is the threshold.

The noise reduction effect is evaluated using the signal-to-noise ratio (SNR) and
minimum mean square error. The smaller the minimum mean square error, the closer the
processed signal to the original signal. The larger the SNR, the more useful the information
and the less noise the information has.

The maximum–minimum threshold method is as follows:



Sustainability 2022, 14, 6901 8 of 12

The maximum–minimum threshold method minimizes the maximum risks. The
original noisy signal is considered similar to the estimation formula of the unknown
regression function. This extreme value estimation minimizes the maximum mean error
in the function. This study uses the maximum–minimum threshold method to obtain
the threshold.

The signal changed by wavelet is filtered using the independent component analysis
method, and the filtered signal is processed via a wavelet packet transform.

Wavelet packet transform decomposes high frequency on the basis of wavelet trans-
form theory.

Python is used to process and to analyze the EEG signal noise reduction of the wavelet
transform and to evaluate the processing effect through the minimum mean square error
and SNR.

Signals before and after noise reduction are compared to one another. Through wavelet
stratification, soft threshold is used for wavelet transform noise reduction analysis. Figure 3
illustrates that the right turn of the F3 channel is used as an example.
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The minimum mean square error obtained using Python to simulate noise reduction
is 0.001697, indicating that the effect is excellent.

4.3. Wavelet Packet Theory and Its Characteristic Analysis

Orthogonal wavelet decomposition aims to decompose the low-frequency coefficients
into two parts, and obtain the low- and high-frequency coefficient vectors. Thereafter,
the new low-frequency coefficient vector is continuously decomposed into low- and high-
frequency coefficient vectors, but the latter is no longer disintegrated. Wavelet packet
decomposition continues to break down high-frequency coefficients. Furthermore, the
high-frequency coefficient vector is decomposed into two parts, different from wavelet
decomposition, and it is considerably detailed. See Figure 4, the abscissa represents the
frequency, and the ordinate represents the amplitude of the signal.
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This study uses wavelet packet energy, and it is a feature vector as input to the Bayesian
recognition model for recognition. Wavelet packet energy is obtained through the wavelet
packet coefficient.

4.4. Driving Intention Recognition Based on Bayesian Theory

Suppose A and B are any two events, and P(A) > 0. Under the condition that event A
has occurred, the conditional probability of event B occurring is as follows:

P(B/A) =
P(A.B)
P(A)

(7)

where P(A) and P(B/A) are the prior and the posterior probabilities, respectively.
Therefore, the multiplicative theorem can be obtained as follows:
If P(A) > 0 and P(B) > 0 for any two events A and B, respectively, then:

P(AB) = P(A)P(B|A) = P(B)P(A|B) (8)

Let A1, A2, . . . , An be any n events, n >= 2, and P(A1, A2, . . . , An) > 0; thus,

P(A1 A2 . . . An) = P(A1)P(A2|A1)P(A3|A1 A2) . . . P(An|A1 A2 . . . An−1) (9)

for any event B, the total probability formula is as follows:

P(B) =
n

∑
i=1

P(Ai)P(B|Ai ) (10)

From the preceding conditional and total probability formulae, Bayes’ theorem can be
obtained as follows:

P(Aj|B) =
P(Aj)P(B

∣∣Aj)
n
∑

i=1
P(Ai)P(B|Ai)

(11)
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Naive Bayes classifier works on the basis of Formula (12):

P(y|x1, . . . , xj) =
P(x1, . . . , xj

∣∣y)P(y)
P(x1, . . . , xj)

(12)

where P(y
∣∣x1, . . . , xj) is the posterior probability, P(x1, . . . , xj

∣∣y) is the likelihood proba-
bility, P(y) is the prior probability, and P(x1, . . . , xj) is the marginal probability.

Assuming that the likelihood probability of feature x follows a normal distribution:

p(xj|y) =
1√

2πσy2
e
−

(xj−µy)2

2σ2
y (13)

The three main categories of driving intention recognition are turn left, turn right,
and go straight. Assuming that the probability of a certain category is the same, prior
probability is as follows:

P(yij) =
1
3

(14)

The following formula is used when recognizing driving intensions:

P(yij/xk) =
P(yij)P(xik/yij)

∑n
j=1 P(yij)P(xik/yij)

(15)

where j represents turning left, going straight, and turning right; i represents the number of
channels; k represents the number of drivers; and xik represents the kth characteristic pa-
rameter of the number of ith channels. yij indicates the category of the ith channel number.

This research selects the first channel (F3) of the left hemisphere of the brain for
research. The analysis results show that when wavelet and wavelet packet decompositions
are divided into five layers, the recognition rate is the highest, and the recognition rate of a
driving intention through Python simulation reaches 82.6%. Table 5 shows the SVM model,
random forest (RF) model, decision tree model, Naive Bayes model, and recognition rates.

Table 5. Model and recognition data.

Model/Recognition Rate Turning Left and Going
Straight

Turning Right and Going
Straight Turning Right and Left

Support Vector Machine 69.2% 69.2% 50%
Random Forest 68.4% 68.4% 72%

Decision-Making Tree 70.7% 70.5% 73.9%
Naive Bayes 71.5% 70.5% 82.6%

5. Discussion and Conclusions

In this study, driving intentions are identified through EEG signals, and the original
EEG signals are denoised through wavelet packet theory. Driving intentions are also
predicted by inputting denoised EEG signals into the Naive Bayes SVM, RF, and decision
tree models. The Naive Bayes model prediction of the driving intentions of turning right
and left is up to 82.6%. In this research, predictions are not made about turning left, turning
right, and going straight at the same time. This part of the research content will be added
to future research. Different noise reduction and recognition methods will also be used
to identify driving intentions in the future. Regarding the age of the drivers, the age
of the drivers selected in the paper is 20–23 years old, and the age stages are relatively
concentrated. In future research, drivers of different ages will be studied and analyzed.

Sustainable transportation development is inseparable from driving intention recog-
nition and assisted and autonomous driving development. Driving intention recognition
can identify driving intentions in advance to reduce the occurrence of traffic accidents. At
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the same time, early driving intention recognition can assist driving and provide a strong
guarantee for autonomous driving, which is the future trend of sustainable transportation
development. The traditional research objective of driving intention is mainly based on
the state of vehicles. State parameters are measured, processed, and analyzed as the input
objects of driving intention recognition. The driving intention recognition model is used,
and EEG signals are the objects of studying driving intentions. In addition, the measures
to estimate driving intentions are directly measured. Compared with the traditional driv-
ing intention research objective, the identification of the characteristic parameters of the
input EEG signals is superior, which is direct and accurate. Numerous interference factors
are present in collecting EEG signals, thereby necessitating the noise reduction of these
signals. Wavelet transform is used to analyze the driving intention data of EEG signals
to reduce noise. Wavelet transform is utilized to analyze and to process nonstationary
signals, frequency localization analysis, and other characteristics are performed, and the
driving intention data of EEG signals are processed and analyzed. EEG signals are divided
into five layers, and the soft threshold method is used thereafter to process the signals.
The minimum mean square error of the signal after noise reduction is 0.001697, thereby
obtaining a good noise reduction effect. The noise reduction of wavelet transform theory
continues to have shortcomings. Specifically, it only decomposes low-frequency signals,
and it cannot decompose high-frequency signals. Thus, wavelet packets are used to extract
energy features from the denoised EEG signals and input them to driving intentions. In the
recognition model, a good recognition effect is obtained, and the maximum recognition
rate reaches 82.6%. In future research, in-depth investigations on noise control are needed
to provide a reference for further sustainable transportation development.
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