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Abstract: The coral reefs are important ecosystems to protect underwater life and coastal areas. It
is also a natural attraction that attracts many tourists to eco-tourism under the sea. However, the
impact of climate change has led to coral reef bleaching and elevated mortality rates. Thus, this
paper modeled and predicted coral reef bleaching under climate change by using machine learning
techniques to provide the data to support coral reefs protection. Supervised machine learning
was used to predict the level of coral damage based on previous information, while unsupervised
machine learning was applied to model the coral reef bleaching area and discovery knowledge
of the relationship among bleaching factors. In supervised machine learning, three widely used
algorithms were included: Naïve Bayes, support vector machine (SVM), and decision tree. The
accuracy of classifying coral reef bleaching under climate change was compared between these
three models. Unsupervised machine learning based on a clustering technique was used to group
similar characteristics of coral reef bleaching. Then, the correlation between bleaching conditions and
characteristics was examined. We used a 5-year dataset obtained from the Department of Marine and
Coastal Resources, Thailand, during 2013–2018. The results showed that SVM was the most effective
classification model with 88.85% accuracy, followed by decision tree and Naïve Bayes that achieved
80.25% and 71.34% accuracy, respectively. In unsupervised machine learning, coral reef characteristics
were clustered into six groups, and we found that seawater pH and sea surface temperature correlated
with coral reef bleaching.

Keywords: coral reef bleaching; climate change; machine learning; sustainable management; predic-
tive model

1. Introduction

Coral reefs are important and valuable ecosystems to protect underwater life and
coastal areas. Moreover, the presence of many coral reefs supports commercial livelihood
for fishing and tourism careers. Healthy coral reefs attract many tourists to eco-tourism
under the sea. In Thailand, the income derived from the marine tourism industry in
southern Thailand drives the GDP growth of country [1]. For this reason, if the level of
marine fertility situation can be predicted, it can lead to an assessment of fishing and
tourism careers subsistence. It also is an able to organize zoning tourism for further
conservation further. Thus, this research presents a modeling and predictive approach to
guideline the healthy coral reefs with consideration of coral reef bleaching. There are many
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causes of coral reef bleaching, but the higher ocean temperatures from climate change
is the leading cause of bleaching and elevated mortality rates [2,3]. The current global
temperature has an increasing trend, with simultaneous slight warming of the ocean waters.
Warmer water is a major contributor to coral bleaching [4–7]. The coral bleaching effect
is caused by climate change and other processes, such as runoff and pollution (storm
generated precipitations can rapidly dilute ocean water and runoff can carry pollutants
that can bleach near-shore corals), overexposure to sunlight (when temperatures are high,
high solar irradiance contributes to bleaching in shallow-water corals), and extreme low
tides (exposure to the air during extreme low tides can cause bleaching in shallow corals).
Thus, the sea surface temperatures are the main factor used for the predictive model in
this work.

Another contributing factor is wind speed, which has an interaction effect with the
seawater temperature. When the wind speed is low, a large amount of solar energy can
penetrate the water surface, and this increases the water temperature [8]. Therefore, when
corals are exposed to very high sunlight in combination with low wind speeds, the algae
in the corals can be harmed by the sunlight, making coral bleaching more likely [9,10].
In addition to the factors mentioned above, many other factors affect coral reefs, such as
the levels of chemical contaminants in the sea that largely have negative effects. Some of
these are natural and some are anthropogenic. Contaminants can cause a change in pH,
which can harm the corals. Coral tissue that is irritated tends to contract and form a gel
layer [11,12]. Thus, an explicit and measurable expression of pH is chosen as one factor for
this proposed modeling.

Predictive models are widely used for prevention and protection activities [10,13–16].
In particular, machine learning techniques have been applied to predict the bleaching of
coral reefs. These techniques determine statistical relationships and patterns in a dataset by
fitting a limited predefined model structure, or by statistical inference [13]. Most studies
have used machine learning on remote-sensed imagery and in geospatial image processing
for predicting coral reef bleaching. This approach is advantageous because it enables
data visualization for monitoring coral reef bleaching. However, this technique requires
costly data processing when an organization or a government agency provides big data
for a retrospective study. Studies have reviewed data collected for coral reefs and coral
bleaching [17,18]. Only a few studies have used machine learning techniques to predict
and model collected data. Thus, this current study applied machine learning techniques,
both supervised and unsupervised learning.

In this study, various alternative models were studied to select the model giving the
highest accuracy. The study used three types of models, namely, Naïve Bayes, SVM, and
Decision tree. The Naïve Bayes model makes probabilistic predictions of a classification
label. Coral damage levels resolve classification problems based on findings are also
predicted by a trained SVM. It is a model uses coefficients to create cluster boundaries.
A decision tree model can be easily interpreted by people as a set of simple rules at the
decision nodes. In this research, the natural factors that change over time are sea water
temperature and wind speed. A further factor that may be influenced naturally or by
anthropogenic effects is the pH of water. The retrospective data for these were collected
from various databases for a period of 5 years. The study area is made up of coastal and
island areas in southern Thailand, and the data were provided from the Department of
Marine and Coastal Resources [19].

This article is organized as follows: Section 2 reviews the study factors of coral reef
bleaching. Section 3 provides the materials and methods used for predictive modelling.
Section 4 presents the proposed methodology Section 5 presents the results and discussion,
and finally, Section 6 concludes the article.

2. Related Works

In this section, we address the study factors of coral reef bleaching. Coral bleaching is
mainly caused by stress due to climate change, in which corals expel symbiotic algae to
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turn white. Coral may bleach for other reasons, like extremely low tides, pollution, or too
much sunlight. For this reason, many studies have addressed the factors effect to coral reef
bleaching [4–7,20,21]. Melissa et al. [20] and Steve et al. [21] studied the temperature factor
affecting coral bleaching. In an experimental study, samples of Acropora Formosa were
taken to study the coral bleaching effects of temperature. The coral samples were divided
into three treatment groups, with some placed in cool water, some in temperature-controlled
water, and some in water with elevated temperature. The duration of the study was 20 days
and some changes were observed on day 5 of the study, suggesting a decrease in coral
algal density in the corals having cool or warm water. However, the corals in controlled
temperature water had an increase in the algae inhabiting the coral. Afterwards, in the study
from day 10 onwards, it became apparent that the warm temperature caused continually
decreasing coral algal density, and this was a major contributor to coral bleaching. This is
because the algae that live in corals escape from their original habitat to find a new habitat
with a suitable water temperature. Thus, the temperature factor has a significant effect on
coral bleaching.

In addition, climate change that leads to warming the ocean leads to higher sea levels
and changes ocean conditions due to decreases in the salinity. Thus, sea water conditions
such as turbidity and pH of water have implications for coral bleaching risk. The turbidity
is partially caused by wind speed.

Paparella et al. [22] studied the effect of wind speed and daily temperature change.
They found that both factors were highly correlated and led to effects on coral bleaching.
The faster winds caused cooling, with the magnitude of temperature decline increasing
with wind speed [8]. Recent researchers found that the pH change led to changes in calcium
carbonate content of corals [11,12]. Tresguerres et al. [23] studied maintaining a steady pH
to function all metabolic processes. They found that acid–base homeostasis mechanisms
affect coral physiological responses. Understanding the physiological interactions between
temperature stress and acid–base homeostasis is critical for predicting coral performance
and acclimatization potential in a changing environment. However, little is known about
how climate change affects acid–base homeostasis in corals. The potential effects of heat
stress on acid–base regulation pose a particular challenge for maintaining coral calcification,
as biomineralization is highly pH-dependent [24,25]. For these reasons, this work selects
three mentioned factors to model forecasting on coral reefs bleaching.

3. Materials and Methods

Coral reefs are crucial for maintaining diverse ecosystems in the sea. Many studies
have investigated the major causes of coral bleaching in various areas of the world [20].
Modern technologies such as machine learning can be used in such investigations. Machine
learning is a part of artificial intelligence that automates analytical model building by using
data, and automatically builds predictive models without being explicitly programmed
for that task, requiring only little human involvement [26–28]. Machine learning is finding
its way into every facet of not only society but also the natural world [6,29]. Most studies
on coral reefs have applied machine learning to detect the health of coral reefs [29–32].
Machine learning algorithms learn to make decisions or predictions based on data. If
the level of the marine fertility situation can be predicted, it can lead to an assessment of
fishing and tourism careers subsistence. These algorithms can be traditionally classified
into three main categories based on learning feedback [28,33]: supervised learning, unsu-
pervised learning, and reinforcement learning. In this study, we focused on supervised and
unsupervised learning.

Supervised learning is used to predict the level of coral bleaching by learning from
previous information. Moreover, this approach has many algorithms that can be used
to build the predictive model. Thus, this work selected three popular algorithms based
on different construction to fit model. Namely, Naïve Bayes, SVM, and decision tree are
built based on probability, functional, and information gain theory, respectively. On the
other hand, unsupervised learning is used to cluster coral reef bleaching that has led
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to organized zoning of the level of healthy coral reefs. Moreover, the association rule
based on unsupervised learning is used to discover the relationship of the study coral
bleaching factors.

3.1. Supervised Learning

Supervised learning algorithms can be used to build mathematical models of a set of
data that contains both inputs and target outputs as training data (i.e., inputs and known
outputs caused by them) [33]. The training data set is used to build a representative model
that has learned the relationship between the input and output. The trained or fitted model
is then used to evaluate its performance in test data. After testing, when an unseen case
is fed into the system, the model can be used to predict the expected output. Recently,
algorithms to train models have been developed for many approaches. We describe the
following supervised learning algorithms for classification tasks that are applied in this
study: Naïve Bayes, Support Vector Machine (SVM), and Decision Tree models. These
procedures will use the R program as a management and analytical tool.

1. Naïve Bayes
Naïve Bayes or Bayesian classifier can be used to predict class membership proba-

bilities, i.e., the probability that a given sample belongs to a particular class [34]. This
type of model also can reach a high accuracy and speed when applied to large databases.
Moreover, training the model requires only a small number of exemplars to learn the model
parameters. The principles of classification are based on the Bayes theorem in conditional
probability:

P(H|X) =
P(X|H) · P(H)

P(X)

where P(H) and P(X) are the probabilities of observing H and X without regard of each
other, while P(H|X) is the conditional probability of H given X, P(X|H) is the conditional
probability of X given H, and P(X|H)/P(X) is called the likelihood ratio or Bayes factor.
The workflow is summarized as follows:

• Represent each exemplar with a parameter vector X = (x1, x2, . . . , xn), where xi is
factor attribute i.

• Compute probability of class label among the m classes C1, C2, . . . , Cm according to
Bayes theorem

P(Ci|X) =
P(X|Ci)P(Ci)

P(X)

where class label in this work is the condition of level coral reefs.
• Compute the probability of each attribute for all class with P(X|Ci)P(Ci) where

P(X|Ci) is calculated from product rule for independent events

P(X|Ci) =
n

∏
k=1

P(xk|Ci)

• Classify an unknown case X to the class Ci which gives the maximal P(X|Ci)P(Ci).

2. Support Vector Machine
SVM is another widely used supervised learning method that reduces the empirical

risk while maximizing the margin from a separating hyperplane to the separated classes [35].
Basically, SVMs are linear classifiers when they use linear kernel functions, which find
a hyperplane to separate two classes of data. Linear kernel functions work effectively
if classes are linearly separated. Nonlinear separation can be done with other kernel
functions. Many mapping functions are available, including linear, polynomial, and radial
basis functions (RBF). Polynomial and RBF kernel functions are commonly used depending
on the training dataset. SVM maps the training exemplar to a point in high-dimensional
space to separate the clusters with a hyperplane that maximizes the margin gaps to the
two categories, while mapping back to the original lower dimensional space would show
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this as nonlinear separation. SVM supports two-class classification. To manage multi-class
classification, there are various strategies, such as one-against-rest and error-correcting
output coding. The advantage of SVM is that it is based on theoretical mathematics and
often provides high-performance classification for both high- and low-dimensional data.

3. Decision Tree
Decision tree is a learning model that performs classification through binary branch-

ings at decision nodes. In the tree, each internal node denotes an attribute and a threshold,
and each branch represents a value range of the attribute, while the final leaf nodes hold
the class labels called. This model was applied using the algorithm in [34], To classify an
unknown sample, the attribute values of the sample are tested against the decision tree,
and the path is traversed from the root to a leaf node, which shows the class label call
for that sample or exemplar [34]. Decision trees can be easily converted into classification
rules, taken from the binary decision nodes. Thus, an unseen case without a class label
can be classified simply by comparing attribute values with the nodes of the decision tree.
The advantages of a decision tree are intuitively appealing knowledge expression, simple
implementation, and high classification accuracy. Thus, we selected this model to compare
its performance with the other candidate models.

3.2. Unsupervised Learning

An unsupervised learning algorithm learns patterns from an unlabeled set of inputs
(there is no target output). Practically, this requires finding patterns, structures, or knowl-
edge from unlabeled data. In this study, we used k-means clustering and association rules
for unsupervised learning.

1. Clustering
Clustering is a method often used in exploratory analysis. Closely similar cases or

exemplars are assigned to the same cluster that should differ from objects in the other
clusters. A popular method is the k-means clustering that we use in this study. The k-means
algorithm takes the training dataset and the number of clusters k as required inputs. The
steps in the k-means algorithm are as follows:

• Select the value of k to estimate group of data. Next, each group of k will be guessed
for the centroids.

• Calculate the distance data between the centroids k and data point for all centroids.Next,
the minimum distance value of centroid k will be chosen to assign the first k clusters.

• Calculate the new centroid for each clusters from Step 2.
• Repeat Steps 2 and 3 until the algorithm converges to an answer.

An advantage of the k-means algorithm is that it is easy to use and the interpretation of
cluster results is also easy. From the k-means algorithm, the k clusters are groups of similar
data, but the choice of k should be determined by testing several alternatives. Commonly,
the within sum of squares (WSS) metric is used to select the value of k. For WSS, the sum of
squares is calculated for squared distance between each data point and the closest centroid,
and these are compared over a range of k values.

2. Association Rules
Association rules record the associations or correlations among a large set of data [35].

The process of rule generation consists of two main steps: finding all frequent items and
creating rules for the frequent items. In the first step, each record of data is counted for the
item frequency, and a cut-off is based on a predetermined minimum support. Later, the
frequent data sets are converted to association rules. The rules must satisfy both minimum
support and minimum confidence.

In this study, we used the Apriori algorithm to generate association rules, in the WEKA
software. Association rules are formed using if/then statements that determine the logical
relationships in coral reef bleaching data. These rules summarize the relationships between
causal factors and the condition of coral reefs. The minimum support and confidence used
in this study were 0.80 and 0.95, respectively.
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4. Research Methodology

In this study, the modeling and prediction of coral reef bleaching associated with
climate change had three phases: data preparation, data modeling, and evaluation and
deployment. The data preparation phase provided the data set in the first step in order
to build the predictive model using machine learning. Next, the data modeling phase
involved the fitting predictive model. The supervised machine learning i.e., Naïve Bayes,
SVM, and decision tree, was used to predict level of coral damage from previous data.
Likewise, unsupervised machine learning was used to cluster and recover the bleaching
factors relationship with k-mean cluster and association rule, respectively. The final phase is
the evaluation and deployment mention validation methods. Each phase was implemented
as described below.

4.1. Data Preparation

This study examined the bleaching of corals in the southern marine area of Thailand.
This area is rich in marine nature and has become a major tourist attraction of the country. In
Thailand, the income derived from the marine tourism industry drives the GDP growth of
country. Coral regions are ecological areas with high biodiversity. However, the occurrence
of coral reef bleaching indicates serious damage to those ecosystems. Thus, this study
tested modeling and predicting of coral reef bleaching to prepare guidelines for managing
or preventing this phenomenon. We used data from the Department of Marine and Coastal
Resources [19] that collects statistical information on marine resources in Thailand, for the
years from 2013 to 2018. This study focused on three factors that affect coral bleaching: pH,
sea surface temperature, and wind speed. We used these factors to model and predict the
level of coral reef bleaching.

The data were collected by performing a staff survey in each quarter to explore the
level of coral reef bleaching, where the level classification of damage was based on the
ratio of total area of coral to area of coral bleaching, in each locality. This study examined
287 coral areas in the southern marine area of Thailand (Figure 1; border shading shows
the coastal and island areas).

Figure 1. The area of study.

The overall condition of coral reefs was defined in five levels: completely damaged
coral, damaged coral, moderately luxuriant coral, luxuriant coral, and perfectly luxuriant
coral. These are also the targeted class labels in classifier models. The meaning of each level
is shown in Table 1. The data set contained the coral colony count showing bleaching. (i.e.,
the percentage of coral reef recorded as bleached), which is an indication of the relative
area of bleaching (Table 1).
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Table 1. The condition of level of coral reef.

Classificaton Percentage Coral Damage of Total Coral (%) Represented Areas

Completely damaged 100% of total coral

Damaged 75% of total coral

Moderately luxuriant 50% of total coral

Luxuriant 25% of total coral

Perfect luxuriant All corals were undamaged.

The obtained data set was prepared for further analysis by removing unnecessary
columns i.e., I.D. for each analysis. Missing values were handled by truncating the data
in that record. Afterwards, the data were consolidated into forms appropriate for data
analysis. Finally, we stored the output data in .csv format for the next step.

4.2. Data Model

The planning process was based on the study of algorithms used for the classification of
coral bleaching conditions. In this study, we modeled with and compared the performances
of three classifier types: Naïve Bayes, SVM, and decision tree. Figure 1 shows the study area.
Moreover, we applied clustering to a group of similar factors and then used the association
rule to determine dependent factors to suggest relevance of data used to examine coral
reef bleaching.

Figure 2 shows steps including data segmentation, modeling, testing, and benchmark-
ing. This study performed modeling in two parts: supervised learning (classification task)
and unsupervised learning.

In the supervised learning part, Naïve Bayes, SVM, and decision trees were trained
in order to select the best model for classifying and predicting the risk of coral bleaching,
based on the aforementioned three causal factors. Naïve Bayes was used to categorize or
classify coral data groups by using probability principles. Next, SVM was used to categorize
coral condition in the areas of this study. Finally, a decision tree could analyze the data
in the form of a tree diagram demonstrating the role of each causal factor or condition in
causing the bleaching of corals. For this part, we divided the data into two sets: training
and test sets (Training set: 70 and Test set: 30). The training dataset was used to fit each
model to these data, while the test data were used to measure classification accuracy of
each trained model in new data not shown to them earlier. Afterwards, the model showing
the highest performance in test data was chosen for subsequent studies.
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Figure 2. Overview of the proposed modeling.

In the unsupervised learning part, clustering was first used to group similar cases.
This step applied the k-means clustering. Next, association rule learning was applied to
determine the associations or correlations among a large set of data items. To determine
factors contributing to coral bleaching in the southern sea regions of Thailand, each group
of clusters was formulated to examine causes of coral bleaching.

4.3. Evaluation and Deployment

Estimating classifier accuracy is crucial because it indicates how reliably it correctly
calls the labels in future data. Thus, this study used 10-fold cross-validation to assess
the classifier accuracies. Moreover, we used another accuracy indicator of the model
performance namely the kappa coefficient. Its value is between 0 and 1, where 0 indicates
no agreement of classifier calls with reference data, and 1 indicates perfectly identical calls
with true labels. Thus, a larger kappa coefficient is better. The performance of the model
was evaluated based on both classification accuracy and kappa coefficient. To examine
the performance of clustering and of the association rules, within sum of squares (WSS)
was used to find the best clustering and supply the grouped data. Afterwards, each group
with similar factors was examined using an association rule with a minimum confidence
threshold of 95%.

5. Results and Discussion

In this study, we used collected data to analyze coral reef bleaching in relation to
climate change by considering three candidate causal factors: seawater pH, water tem-
perature, and wind speed. The results of the preliminary analysis are shown in Figure 3,
where (a), (b), and (c) depict findings for seawater pH, temperature, and wind speed,
respectively. The time interval was divided into four quarters (Q). Each quarter on the
left side of the figure shows the time interval for affecting the coral reef. The reason we
collected four quarters of data is because the changes in the weather during each quarter
results in changes in the parameters measured in the sea, which in turn can result in coral
bleaching each quarter. The average across all quarters on the right side of figure shows
that each of these factors damages coral reefs when the level is elevated.
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(a) Seawater pH factor

(b) Temperature factor

(c) Wind speed factor

Figure 3. The factors affecting the level of coral reef from years 2013 to 2018.

This study modeled and predicted coral reef bleaching by using machine learning
techniques, including both supervised and unsupervised learning. First, supervised learn-
ing of a classification task was used to build models for predicting severity level of coral
reef bleaching in a future situation. Then, unsupervised learning based on clustering and
association rules was applied to a group of similar situations to assess correlations among
each group of coral reef bleaching data. This study used the R program as a management
and analytical tool with R-3.5.1 for Windows and RStudio Version 1.1.456. The results of
supervised learning are listed in Table 2.

Table 2. The classification accuracy results of each model.

Model Accuracy (%) Kappa Coefficient

Naive Bayes 71.34 0.620
SVM 88.85 0.851

Decision Tree 80.25 0.735
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The results show that the SVM model was the most accurate in classifying corals
in the southern marine area of Thailand, having an accuracy of 88.85%, followed by the
decision tree model with an accuracy of 80.25% and the Naïve Bayes model with an
accuracy of 71.34%. This indicates that all three model types were effective in coral bleach
classification in the sea area of southern Thailand. This is in accordance with some previous
studies [26,36] that have used the Naïve Bayes model to predict the risk posed to the health
and resilience of the coral reef system from adverse effects of climate change and harmful
human activities, and the possible success of adaptation strategies. Thus, on the basis of
these results, it is possible to examine relationships and conditions that cause the white
foaming phenomenon in corals. These models can be used to model and predict coral
reef bleaching during climate change. Later on, the data set was used to cluster groups of
records with similar properties. WSS was used to find a suitable number of clusters for
k-means clustering as shown in Figure 4.

Figure 4. The results of WSS across k-values.

As shown in Figure 4, the k-means algorithm was run for k = 2, 3, . . . , 15. The WSS was
computed to determine a suitable k, the number of clusters. WSS was smaller with more
clusters, allowing better splitting of the data for higher similarity within clusters. WSS
declined significantly as the k value increased from 1 to 2. Another substantial reduction
in WSS occurred at k value of 6; thus, from this analysis we selected k = 6. The process of
determining the optimum value of k is known as finding the elbow in the WSS curve.

When we compared the classification accuracy of the condition of coral reef to a
previous study [19] based on zoning features, we found that the proposed model provides
more details of the condition as shown in Figure 5.
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(a) The proposed model (b) The previous work

Figure 5. Comparison of the proposed model with general clustering for data from the Department
of Marine and Coastal Resources. (Department of Marine and Coastal Resources, Thailand, 2020).

We found that using the presented model could provide details of the area that should
be monitored and maintained because of relatively high coral fertility. Each group was
discovered with the association rules from the Apriori algorithm. We found that pH
depends on sea surface temperature. If the sea surface temperature increases, then the
pH reduces [37–40]. Due to current climate change, it is likely that sea acidity and its
temperature may continue to increase in the future [41].

In summary, this work applied the supervised machine learning with finding the fitted
predictive model to predict the level of healthy coral reefs. The SVM model is the best
model to classify bleaching status when we know the value of pH, sea surface temperature,
and wind speed. In addition, the unsupervised machine learning using k-mean cluster lead
to the explicit zoning of coral reefs bleaching. This method also discovered the relationship
among the study factors of coral reef bleaching using the association rule approach. This
discovery knowledge can be used as a guideline for the protection of coral reefs.

6. Conclusions

Coral reef bleaching is an important sign of marine ecosystem destruction, which
affect subsistence and businesses in the marine aspect. Although climate change is the main
cause and is unmanageable in a short time, the protection of coral reefs can still be obtained
to prevent further damage. The past information can be used to guide coral safeguarding
for the future. Thus, machine learning is suitable for use in decision support for coral reef
protection. In this study, we demonstrated building a model for predicting the bleaching
of coral reef by using machine learning. We applied three supervised learning algorithms,
namely, Naïve Bayes, SVM, and decision trees, to select from these the model with the best
classification performance. The SVM presented the best performance for classifying the
level of coral reefs bleaching with 88.85% accuracy. The classifier calls indicated severity of
bleaching. The developed model could be used to predict the level of coral reef bleaching
under climate change. Unsupervised learning was used to obtain knowledge from previous
coral reef bleaching data. The level of coral reef bleaching should be classified into six levels
based on retrospective data. In addition, we found that the pH level is associated with
the sea surface temperature. Thus, this study provides additional evidence that machine
learning models are a viable and useful approach to monitoring and analyzing coral reef
bleaching under climate change.
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