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Abstract: The management of seismic risk is an important aspect of social development. However,
urbanization has led to an increase in disaster-bearing bodies, making it more difficult to reduce
seismic risk. To understand the changes in seismic risk associated with urbanization and then adjust
the risk management strategy, remote-sensing technology is necessary. By identifying the types
of earthquake-bearing bodies, it is possible to estimate the seismic risk and then determine the
changes. For this purpose, this study proposes a set of algorithms that combine deep-learning models
with object-oriented image classification and extract building information using multisource remote
sensing data. Following this, the area of the building is estimated, the vulnerability is determined, and,
lastly, the economic and social impacts of an earthquake are determined based on the corresponding
ground motion level and fragility function. Our study contributes to the understanding of changes in
seismic risk caused by urbanization processes and offers a practical reference for updating seismic
risk management, as well as a methodological framework to evaluate the effectiveness of seismic
policies. Experimental results indicate that the proposed model is capable of effectively capturing
buildings’ information. Through verification, the overall accuracy of the classification of vulnerability
types reaches 86.77%. Furthermore, this study calculates social and economic losses of the core
area of Tianjin Baodi District in 2011, 2012, 2014, 2016, 2018, 2020, and 2021, obtaining changes in
seismic risk in the study area. The result shows that for rare earthquakes at night, although the death
rate decreased from 2.29% to 0.66%, the possible death toll seems unchanged, due to the increase
in population.

Keywords: remote sensing; earthquakes; exposure evaluation; risk assessment; vulnerability assess-
ment; seismic risk management; Tianjin Baodi; China

1. Introduction

Urbanization refers to the transformation of rural populations into urban populations,
the migration of rural people into cities and people no longer working in agriculture [1].
Towns and cities are formed and increase in size with this process. In recent decades,
industrialization and modernization have accelerated the process of urbanization, and, as a
result, the proportion of the urban population has been increasing worldwide, notably in
China. China’s urbanization rate has increased steadily over the last decades. In 1950, 13%
of people in China lived in cities. By 2010, the urban share of the population had grown to
45% [2]. The Seventh Population Census of China, conducted in 2020, showed that about
63.9 % of the total population lived in cities in 2020.

However, as urbanization continues, the accumulation of the urban population
and wealth will directly increase the risk of disaster and pose challenges for disaster
mitigation [3–5].
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For China, earthquakes are the most damaging of all natural disasters. Over the past
decade, more than 50% of deaths from natural disasters in China were caused by earth-
quakes [6]. As a consequence of the influence of the Pacific Rim and Eurasian seismic belts,
China has the most frequent continental earthquakes in the world and faces a significant
risk of earthquake disasters [7,8]. Additionally, statistical data show that 41% of large
Chinese cities, 33% of prefecture-level cities, and 30% of county-level towns are located in
earthquake-prone areas [9].

With the rapid development that has occurred in recent years, China’s earthquake
disaster mitigation strategy has paid more attention to pre-disaster prevention [10]. This is
consistent with the Sendai Framework’s focus on disaster preparedness and its emphasis on
understanding disaster risk, strengthening disaster risk governance, managing disaster risk,
and strengthening preparedness for an effective response [11]. Considering the changes in
seismic risk associated with urbanization is critical in improving seismic risk management
capabilities and the mitigation of seismic risk [12].

Generally, the seismic risk analysis models used by organizations or institutions
around the world, such as The Global Earthquake Model (GEM) [13] and the Federal
Emergency Management Agency (FEMA) [14], involve the quantification of three main
components, namely hazard, exposure, and vulnerability [15]. Assuming that seismic
hazard remains stable in the near future, then the seismic risk is primarily affected by
changes in disaster-bearing bodies and their vulnerability.

Furthermore, because social and economic losses due to earthquake disasters are
mainly determined by the destruction of structures, it is worth paying closer attention to
changes in the building stock.

In recent years, remote sensing technology has become widely used in seismic risk
assessment and management due to its ability to obtain large-scale geospatial information
quickly and effectively [16]. The international Group on Earth Observations put forward
the idea of estimating the seismic vulnerability of buildings through remote sensing data in
the work task of 2009–2011. Polli et al. [17] and Zhai Yongmei [18], respectively, proposed
earthquake disaster risk estimation workflows based on remote sensing images in 2009. Ini-
tially, researchers focused on distinguishing building types based on their height and shape
and how to extract geometric properties from remote sensing data about building shapes
using remote sensing [19,20]. To improve the accuracy of exposure information extraction,
combining statistical data, ground surveys, street views, and digital surface models with
proxies obtained from remote sensing data has become a popular approach [20–29]. As well
as this, to gather data for the risk assessment of historic monuments, the Wireless Sensors
Network (WSN) system is paramount [30–32].

Most of the intelligent analysis algorithms that were developed as a result of the
continuous evolution of computer vision tasks, from image-level understanding to pixel-
level understanding, were developed to solve the problem of extracting information from
remote sensing data.

Traditional feature learning methods often rely on creating features based on specific
expertise and therefore often show reduced reusability. In addition, sophisticated methods
may be required to handle irregular or complex data [33]. In contrast, deep learning meth-
ods learn deep features from the data themselves, which means expertise is not required,
and the results based on deep features are much better than shallow methods. In visual
recognition, convolutional neural networks outperform other deep learning models [34].
In principle, a CNN is a network that usually consists of many layers of operations, such as
convolution, pooling, nonlinear activation functions, and normalizing, that can be divided
into a feature extractor and a multilayer perceptron (MLP) [35]. In 2012, Alexnet [36] re-
freshed people’s understanding of CNN. Then, the VGG frame [37] and Resnet model [38]
were successively proposed. For semantic segmentation, Fully Convolutional Networks
(FCNs), based on VGG and first proposed in 2015 [39], were the first to realize end-to-
end segmentation. Several other models, including U-net [40], SegNet [41], PSPNet [42],
DeepLab [43–45], and Mask R-CNN [46], are also capable of accurate segmentation, which
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is commonly used in remote sensing classification [47–50].Overall, although the research
on urbanization process analysis [51–58] and seismic risk assessment [17–29] using remote
sensing data has achieved many results, the specific research does not address the changes
in seismic risk caused by urbanization and the connection between the two. Accordingly,
there is no established methodology within the field of remote sensing applications for
understanding the seismic risk associated with urbanization.

Therefore, in this paper, a practical method of observing the changes in seismic risk
under urbanization based on remote sensing data is proposed. The objectives of this study
are as follows: (i) To improve the remote sensing data analysis method for earthquake
bearing-body detection by integrating deep learning semantic segmentation and ensemble
learning classification. (ii) To propose a comprehensive workflow for identifying seismic
risk change under urbanization processes using remote sensing data. The remainder of this
paper is organized as follows: Section 2 provides an overview of the study area and its
materials. A method for identifying structural vulnerabilities that integrates object-oriented
classification and deep-learning-based segmentation is described as well. Section 3 presents
the experimental results in the study area. Section 4 discusses improvements and future
directions. A comprehensive summary is given in Section 5.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the study area of this article: the central area of the District Baodi,
Tianjin, China, with an approximate population of more than 200,000 people and an area of
35 km2, located at 39◦43′ N,117◦18′ E [59].

Figure 1. (a) Location of the study area in China. (b) Baodi District of Tianjin. (c) Location of the
study area in Baodi. (d) Satellite map of the study area.

Tianjin is in the central part of the North China Plain. The city is a port city and the
only megacity in China to have experienced a major earthquake in recent decades. Tianjin’s
District Baodi is a short drive from Beijing, Tangshan City, and the Tianjin downtown
area [59]. The agriculture, industry, and tourism here have flourished over the past few
decades, and the district has grown from a village to a county, then to a district [60].
However, the district is at risk of earthquakes. Throughout its history, District Baodi
has been affected by many major earthquakes, including those of magnitude 7.8 in 1976
Tangshan and 8 in 1679 Sanhe-Pinggu [8]. These earthquakes caused extensive damage
to Baodi, and the earthquake intensity was as high as VIII CSIS (China seismic intensity
scale) in most areas [61]. An east-west fault in the region, the Baodi fault, shows evidence



Sustainability 2022, 14, 6132 4 of 25

of activity in the Quaternary [62]. Over the last ten years, District Baodi was affected by
three earthquakes that measured magnitude 3.7, magnitude 4.0, and magnitude 3.3, on
14 January 2005, 18 June 2012, and 26 August 2012, respectively [8].

2.2. Data Sources

In this study, very high resolution (VHR) images, as well as medium-resolution
images were collected. They are mainly from Gaofen-2 and Sentinel-2 sensors. ALOS-1 and
WorldView-1 satellite data and Google Earth imagery were used as supplements in the years
2011, 2012, and 2014, as Gaofen-2 and Sentinel-2 satellites were not available over these
years. At the same time, the census data and statistical yearbook data of the corresponding
years were also collected, and the WorldPop [63] data were used as a reference for the
spatial distribution of the population. Table 1 shows the information from the data source.

Table 1. Source of datasets.

Dataset Source Spatial Resolution Time Scale

GF-1/6 China Center For Resources Satellite Data and Application
http://36.112.130.153:7777/DSSPlatform/index.html (accessed on 9 March 2022)

2 m/8 m 2014–2020
GF-2 1 m/4 m 2016–2021
ZY-3 2 m/6 m 2012–2016

Sentinel 2 https://scihub.copernicus.eu/ (accessed on 9 March 2022) 10 m 2015–2021
Point of interest https://lbsyun.baidu.com/ (accessed on 9 March 2022) - 2018, 2020
Questionnaire Field survey - 2019

Statistical Yearbook http://stats.tj.gov.cn/ (accessed on 9 March 2022) - 2011–2021
Census data http://stats.tj.gov.cn/ (accessed on 9 March 2022) - 2010, 2020, 2021

In addition, four separate datasets were built for the four main tasks in this study:
(i) footprint segmentation of single buildings, (ii) shadow segmentation of single build-
ings, (iii) rural building groups, and (iv) vulnerability classification of single buildings.
Three of the datasets were instance segmentation datasets, and one was a multi-feature
classification dataset.

Based on VHR satellite imagery and ground surveys located approximately 50 km
from the study area, we produced data in shapefile format for 62,185 buildings. As shown
in Figure 2, the footprint of a building is highly detailed. Building property information is
given in the form of vulnerability type, usage, and floor numbers. Using ArcGIS Pro, we
turned these data into a dataset that can be used as a basis for training building instance
segmentation models, as well as for building vulnerability classification models.

Figure 2. 3D visualization of single building datasets.

http://36.112.130.153:7777/DSSPlatform/index.html
https://scihub.copernicus.eu/
https://lbsyun.baidu.com/
http://stats.tj.gov.cn/
http://stats.tj.gov.cn/
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Additionally, 720 samples of rural building groups were derived from Sentinel 2 data,
and shadow contours of 3250 buildings from GF2. Figure 3 illustrates an example of the
instance segmentation dataset.

Figure 3. Example of the instance segmentation dataset.

To verify the final results, this study conducted a field survey in the study area during
2019–2020, collected a sample of 823 buildings, as shown in Figure 4, and created a sample
of building structures by utilizing Baidu Maps API libraries.

Figure 4. Field survey samples and examples of structure types: (a) shear wall structure (dwelling),
(b) RC structure (hospital), (c) brick wood (dwelling), (d) RC structure (dwelling), (e) confined
masonry (dwelling), (f) field survey samples.
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2.3. Overall Workflow

In this section, the proposed workflow is described in detail. The seismic risk assess-
ment process involves the quantification of three major input components, namely, seismic
hazard intensity, exposure, and vulnerability [15].

Our understanding of the change in seismic risk resulting from urbanization relies on
the assumption that the seismic hazard remains relatively stable; thus, the change in seismic
risk is due to changes in the hazard-bearing body. When a disaster occurs involving an
earthquake, social and economic losses are determined by the destruction of buildings. This
form of structural change is the focus of our study. The primary role of remote sensing data
in this study is to extract building information from images taken over several years. Object-
oriented classification and deep-learning-based instance segmentation are integrated into
the pipeline to efficiently accomplish this task.

As shown in Figure 5, the overall workflow includes four main parts. Part 1: Building
object segmentation and feature extraction. The footprints of single buildings and rural
building groups are extracted from high- and medium-resolution imagery, respectively.
The image feature extraction is carried out with the building’s footprint as the object unit.
Part 2: Calculating the proxies in each object unit, according to the extracted object features,
and then conducting vulnerability classification to obtain the disaster-bearing body dataset.
Part 3: Calculating structural losses and the resulting economic and population losses at
three ground motion intensity levels. Finally, repeat the above work for different years to
obtain the results regarding changes in seismic risk during the urbanization process. In
addition, to extract the building footprint and features and the vulnerability classification
of the structure, multiple machine learning classifiers need to be pre-trained. This part can
be regarded as Part 0 of the whole process.

Figure 5. The overall workflow consists of four major sections: part 0 to pre-train the segmentation
and classification models, part 1 to extract image features, part 2 to classify structural vulnerability,
and part 3, a seismic risk assessment.
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2.4. Building Feature Extraction

The acquisition of building parameters is probably the most time-consuming, tedious,
and expensive part of each seismic risk assessment [64]. In this study, three BMask R-CNN
classifiers were trained to extract footprints from single buildings and rural building groups,
respectively. The footprints of single buildings are taken as object units for multi-feature
extraction. The footprint of rural building groups can be directly applied to the classification
of vulnerability and the calculation of inventory, according to the survey data.

The third BMask R-CNN classifier extracts the shadows of single buildings to calculate
the height and number of floors. Other information on single buildings is extracted by
eCognition v9.3, Trimble, CA, USA. A pretrained random forest classifier is used for
structure vulnerability classification.

2.4.1. Mask R-CNN Framework

Mask R-CNN is a flexible object instance segmentation framework that efficiently
detects objects in an image while simultaneously generating a high-quality segmentation
mask for each instance [46]. Based on Faster R-CNN [65] and Fast R-CNN [66], Mask
R-CNN adds a branch to predict an object mask while preserving the branch for bounding
box recognition, thereby achieving pixel-level instance segmentation. Since Mask R-CNN
is easy to generalize to other tasks, it has been widely adopted in remote sensing object
classification. As shown in Figure 6, the original network structure of MASK R-CNN
includes several components. The multiscale feature maps are extracted from the input
image through the backbone part based on ResNet and the feature pyramid network (FPN).
These features are shared by the RPN part and the RoIAlign layer. The feature map fed
to the RPN is further extracted to generate candidate ROIs. After filtering, the obtained
feature maps are used as proposals. The feature maps from the backbone part and the RPN
part are properly aligned with the input based on bilinear interpolation [46] through the
RoIAlign layer. Finally, the aligned feature map enters two branches in the head part: one
is a fully convolutional mask prediction branch, and the other branch is divided into two
sub-branches for class prediction and bounding box regression [67].

Figure 6. Structure and main components of Mask R-CNN framework [46].

2.4.2. BMask R-CNN Framework

When performing pixel-level instance segmentation based on Mask R-CNN, predic-
tions are made based on the local information. Although large receptive fields are obtained
through the deep framework, which helps to extract features and improve the accuracy
of classification, the information details, such as the shape information of the object, are
still elusive.
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To solve the problem of coarseness and indistinctness in the prediction output, Cheng,
T.H. et al. [68] proposed a boundary-preserving Mask R-CNN to exploit boundary informa-
tion and guide more precise mask prediction.

By adopting boundary features and boundary prediction, BMask R-CNN optimizes
the mask head in Mask R-CNN, as illustrated in Figure 7. The new mask head is called the
boundary-preserving mask head.

Figure 7. The overall architecture of boundary-preserving Mask R-CNN (BMask R-CNN). The dotted
arrow denotes 3 × 3 convolutions, and the solid arrow denotes identity connection unless there is a
specified annotation in the boundary-preserving mask head. “×4/×2” denotes a stack of four/two
consecutive convs [68].

Boundary-preserving mask heads synchronously learn object boundaries and masks.
First, features from the mask sub-network can provide high-level semantic information
for learning boundaries. Then, after obtaining the boundaries, the shape information and
abundant location information in boundary features can help to achieve more precise mask
predictions [68].

Since a boundary learning head branch is added to the multiple Mask R-CNN tasks,
the loss function of the model also needs to accordingly increase a component. Here, ref.
[68] proposes a combination of dice loss [69] and binary cross-entropy to optimize the
boundary learning

Lb (pb, yb) = LDice (pb, yb) + λLBCE (pb, yb) (1)

in which LBCE (pb, yb) is binary cross-entropy loss, with λ as a hyperparameter to adjust the
weight. pb and yb representing the predicted boundary for a particular category and the
corresponding boundary ground truth, respectively.

The Dice coefficient is used to measure the spatial overlap or similarities between the
two sets. Here, the consistency between the predicted boundary and the corresponding
boundary ground truth is compared. Since Dice loss is insensitive to the number of
foreground/background pixels, it alleviates the class-imbalance problem. The calculation
formula of Dice loss is as follows:

LDice(pb, yb) = 1−
2 ∑H×W

i pi
byi

b + ε

∑H×W
i

(
pi

b
)2

+ ∑H×W
i

(
yi

b
)2

+ ε
(2)

where H and W are the height and width of the predicted boundary map, respectively; i
denotes the i-th pixel, and ε is a smooth term to avoid zero division.

Finally, after adding a boundary-preserving branch to Mask R-CNN, the combined
multi-task learning loss functions are as follows:

L = Lcls + Lbox + Lmask + Lb (3)
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where Lcls, Lbox, and Lmask represent the loss of classification, localization, and segmentation
mask, respectively, which are identical to those in [46].

2.4.3. Post-Processing of Building Footprint

After obtaining the footprints of single buildings and rural building groups from
high-resolution and medium-resolution images, respectively, the post-processing of both
results must be performed. This mainly includes the following processes:

(i) Eliminating non-structural misclassification by setting an area threshold;
(ii) Intersecting single buildings and building groups, keeping single buildings in the

rural building group, and eliminating redundancy in the two output footprints;
(iii) Calculating the actual building area of the rural building group.

In a typical rural residential setting in the study area, a class of simple structures with
intact roofs often causes buildings to be misclassified. A good example of this is shown
in Figure 8, where the roofs indicated in the red frame generally correspond to actual
buildings, whereas other roofs may be simple structures or serve only as shelter from the
sun and rain. To estimate the total amount of rural buildings, we apply the empirical
formula based on the ratio of the total land area of the rural buildings group to the total
area of the rural buildings.

Figure 8. (a) Blue boxes indicate a single household, while red boxes indicate buildings to be counted;
(b) red outline indicates rural building groups.

For our study area, the relationship between the group area of rural buildings and the
number of households is as follows:

group area = 652.77 m2 × number of households + 1.4366 m2 (4)

Further, according to the average floor area of each household, the building stock to
be counted can be obtained.

2.4.4. Estimating Floor Numbers

The height of a building is an effective way of assessing its seismic capacity and is
essential to the calculation of its area [16]. This can be extracted by applying the shadow
length of the building structure in the high-resolution optical image [18–20,27], SAR image
imaging geometric characteristics [18], LiDAR data [27], or DSM data [25–27]. Since high-
resolution LiDAR data and DSM data were not obtained in this study, the number of floors
in the building was inferred from the building shadows in the GF-2 data.

As illustrated in Figure 9, taking a regular building model as an example, according to
the angle of solar irradiation and the angle of satellite observation, the geometric relation-
ship between the building and its own shadow mainly presents two situations [70]. When
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the sun and the satellite are located on the same side of the building, the building itself
partially occludes its own shadow. When the satellite and the sun are located on both sides
of the building, the shadow of the building can be fully exposed to the viewing direction.

Figure 9. Building shadow geometry; the red and blue lines indicate the line-of-sight directions of
the sun and satellites, respectively: (a) side view of satellite and sun on the same side; (b) top view of
satellite and sun on the same side; (c) side view of satellite and sun on different sides; (d) top view of
satellite and sun on different sides.

According to the basic trigonometric function principle, the formula to calculate the
height of the building in two different cases can be obtained [70]:

H = L1 tan ω (5)

here, H represents the height of the building, L1 represents the length of the unobstructed
shadow, and ω is the sun elevation angle. Considering the situation where the shadow
is occluded when the sun and the satellite are on the same side, it is necessary to infer H
according to L2 and L3, as follows:

H = L2
tan ωtanθ cos(β− ϕ)

tanθ cos(β− ϕ)− tanω cos(α− ϕ)
(6)

H = L3
tanωtanθ sin(β− ϕ)

tanθ sin(β− ϕ)− tanωsin(α− ϕ)
(7)
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where θ is the altitude angle of the satellite, α is the azimuth of the satellite, β is the azimuth
of the sun, and ϕ is the azimuth of the building. The computational difficulty is significantly
simpler when the satellites and the sun are on different sides of the building.

2.4.5. Occupancy and Population Disaggregation

We assume that the change in the POI of functional facilities is stable and that the
increase or decrease in POI in each year is purely dependent on the existence of buildings.
Based on the POI obtained in 2018 and 2020, the POI information has been assigned to the
building through spatial analysis. By 2020, there were 110 medical institutions of various
types, 63 educational institutions at all levels, 24 shopping malls, 39 enterprises exceeding
their designated sizes, and 238 manufacturing companies found in the research area.

Samples from the on-site investigation were used to count the density of people in
various buildings. These were divided into daytime and nighttime counts.

Table 2 represents the Indoor Population Density of different occupancy (people per
square meter).

Table 2. Indoor Population Density of different occupancies (people per square meter).

Occupancy Office Factory Business Education Medical Residency Other

Day 0.03 0.01 0.09 0.52 0.3 0.01 0.03
Night 0.001 0 0 0.12 0.1 0.033 0.001

2.5. Vulnerability Classification

Based on footprints of single buildings, object feature extraction was carried out in
eCognition [71]. Then, a pretrained Random Forest (RF) [72] classifier was adopted to
classify the vulnerability type of buildings. The selected features are shown in Table 3.

Table 3. Selected Features.

Type Features Data

Extend Area, length, length/width, width, border length VHR image
Shape Asymmetry, compactness, density, elliptic fit, rectangular fit, main direction, shape index, roundness

Texture GLCM (homogeneity, contrast, dissimilarity, entropy, Ang. 2nd moment, mean, Std.Dev.) Multi-Spectral DataLayer Values mean, standard deviation, HSI transformation

2.6. Loss Assessment

In this study, approaches to loss assessment are based on structural damage. Moreover,
this study aims to determine the number of deaths and direct losses due to structural
damage caused by ground motions. Explicitly addressing the damage and loss caused by
secondary disasters such as surface fault rupture, landslides, soil liquefaction, fire, etc.,
as well as damage to infrastructures such as bridges and roads, is outside the scope of
this paper.

2.6.1. Structural Damage

Structural damage assessment based on vulnerability analysis is the basis for quan-
tifying economic loss and casualty. The vulnerability of structures that are exposed to
earthquake loading expresses the likelihood of the occurrence of certain damage levels
caused by seismic action [15].

Furthermore, the fragility model can be assumed to be a reliable measurement of dam-
age to a respective set of buildings with similar structural taxonomy of dynamic behavior.

Building damage states are divided into five levels, which are intact, slightly dam-
aged, moderately damaged, severely damaged, or collapsed, according to the damage to
structural members or the entire structure. The division points of five kinds of failures
correspond to the four limit state divisions of the structure in turn, and those from LS1 to
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LS4 gradually become more serious. The fragility model relates building response to seis-
mic demand inputs and follows the lognormal assumption [73], as given by Equation (8),
which refers to the conditional probability of various limit states of the structure under
different earthquakes.

F (x, µ, σ) = P(LS|x) = Φ ((ln (x/µ))/σ) (8)

here, Φ is a standard normal cumulative distribution function and x denotes seismic motion
intensity, which is taken as peak ground acceleration (PGA). Parameters µ and σ are the
fragility model median and standard deviation of ln (x). Table 4 presents the parameters of
the fragility model used for different structural typologies in this study.

Table 4. Fragility model parameters.

Typology
LS1 LS2 LS3 LS4

Source
µ σ µ σ µ σ µ σ

Brick wood 0.2997 0.093 0.2005 0.1397 0.216 0.2175 0.2228 0.2837 [74]
Confined masonry 0.139 0.845 0.292 0.709 0.510 0.608 1.372 0.828 [75]
Reinforced concrete 0.267 0.785 0.540 0.548 0.841 0.506 1.629 0.558 [75]

shear wall 0.130 0.170 0.150 0.240 0.20 0.470 0.250 0.810 [76]
Bottom RC 0.122 0.2 0.145 0.2 0.213 0.2 0.461 0.2 [75]

According to the parameters of LSs (s = 1, 2, 3, 4), Equation (8) calculates the probability
that the structure will reach LSs. Then, the probability of each DSi (i = 0, 1, 2, 3, 4) of the
seismic intensity can be calculated:

PDS0 = 1 − P(LS1|x) (9)

PDS1 = P(LS1|x) − P(LS2|x) (10)

PDS2 = P(LS2|x) − P(LS3|x) (11)

PDS3 = P(LS3|x) − P(LS4|x) (12)

PDS4 = P(LS4|x) (13)

Based on the hazard level of the study area, we calculated the loss at three different
levels of ground motion intensity. The three ground motion levels correspond to rare earth-
quakes, moderate earthquakes, and frequent earthquakes, respectively. The probability of
exceedance during 50 years is 2–3%, 10%, and 63%, respectively.

2.6.2. Economic Loss

In this paper, the method used to calculate direct economic loss according to the
damage state, loss ratio, and replacement price refers to the provisions of China Code GB/T
18208.4-2011 (Seismic Field Work Part IV: Disaster Direct Loss Assessment) [77]. According
to this code, the formula proposed in this study for the calculation of direct earthquake
economic loss for H types of structures is as follows:

(1) The direct economic loss LA of H building structure types and D damage levels in a
certain area is calculated as follows:

LA = ∑H ∑D Ph Ad Rd (14)

Ad denotes the total area of the h-type structure with damage stated; Rd is the loss
ratio when the h-type structure has a damage state of d; and Ph is the replacement price of
the h-type structure.

(2) The direct economic loss LB of the indoor property is calculated as:

LB = ∑H ∑D Ph Ad Rd (15)
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where Td is the ratio of the indoor property loss when the damage level of the h-type
structure is d; Ph is the replacement unit price of the h-type structure; and µ1 is the ratio of
the indoor property value of the building structure to the structural replacement price.

(3) The direct economic loss LC of decoration damage is calculated as follows:

LC = ∑H ∑D γ1 γ2 γ3 Qh Ad Sd (16)

Sd denotes the decoration loss ratio when the damage level of the h-type structure is d;
Qh denotes the decoration price of the h-type structure; γ1 represents the correction factor,
considering the difference in economic development levels; γ2 represents the correction
factor considering building occupancy; and γ3 represents the proportion of high-level
decoration. γ1 and γ2 values are specified in [77].

2.6.3. Social Loss

In this study, death and injury calculations were carried out according to the rela-
tionship between the damage state of the house and the casualty rate of people, without
distinguishing between structure types; the calculation formula is as follows:

Nd = ∑D ρ Ad RDd (17)

NI = ∑D ρ Ad RId (18)

Nd and NI denote the numbers of dead people and injured people, RDd and RId
represent the death and injury rate of people under different damage levels, Ad is the area
of the building structure under the damage level, and ρ is the density of people in the room.
The fatality rate values used in this study are listed in Table 5.

Table 5. Casualty rates of different damage states.

Casualty Rate Moderate Damage Severely Damaged Destroyed

Death Rate 0.001% 0.5% 3%
Injury Rate 10% 15% 30%

2.7. Evaluation Indicators

The performance of the proposed algorithms was assessed using six metrics, namely,
IoU, precision, recall, F1-score for segmentation tasks, and Overall Accuracy and Kappa
coefficients for vulnerability classification.

IoU =
TP

TP + FP + FN
(19)

Precision =
TP

TP + FP
(20)

Recall =
TP

TP + FN
(21)

F1 =
2 ∗ percision ∗ recall

percision ∗ recall
(22)

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(23)

Kappa =
P0 − Pe

1− Pe
(24)

where TP is the value of the true positives, FP is the value of the false positives, TN
is the value of the true negatives, and FN is the value of the false negatives. P0 is the
relative observed agreement among raters. Pe is the hypothetical probability of chance
agreement [78].
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3. Results

In this section, the results obtained by applying the workflow and method mentioned
in Section 3 to the study area in Section 2 are presented. The results of the extraction of
disaster-bearing body information and the estimation of seismic risk will be described, as
well as the evaluation of the outputs.

3.1. Building Information Extraction Result

The building segmentation of the study area data is performed by the BMask-RCNN
model presented in Section 3. Table 6 shows the extraction accuracy of single buildings and
rural building groups. In terms of IoU, precision, recall, and F1 score, rural group buildings
exhibit a lower extraction accuracy than single buildings. Extraction examples of single
buildings and rural group buildings are presented in Figures 10 and 11. The results show a
small number of errors and missing records.

Table 6. Extraction Accuracy Evaluation.

Buildings IoU Precision Recall F1 Score

Rural building
group 0.792079 0.898876 0.869565 0.883978

Single buildings 0.855615 0.924855 0.91954 0.92219

Figure 10. Example of single building extraction results.

The accuracy of height and floor estimation is shown in Figure 12a,b. An excellent
linear fitting relationship exists between the height estimate and the real value, and the
error of the height estimate is within one meter. The difference between the estimated
number of floors and the actual number of floors may be as large as three stories, and the
error for from 5- to 10-story buildings is larger.

According to field sampling data, the Overall Accuracy for the building vulnerability
classification reached 86.77%, and the Kappa coefficient was 0.6538. Figure 13 shows
the distribution of building structures over different years. In Figure 13, the brick–wood
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structures represented by the color red are gradually disappearing in the study area. In
the extraction results for 2011, 2012, and 2014, brick–wood structures occupied the largest
portion of the study area. According to the extraction results, only a few brick–wood
structures survived in 2016.

Figure 11. Example of the rural building group.

Figure 12. Accuracy of height and floor estimation: (a) height and floor estimation;
(b) layers estimation.

However, the shear wall structures indicated in blue have been increasing since
2016. Meanwhile, brick–wood structures are being replaced with shear wall structures in
this process.

Nevertheless, the overall pattern at the center of the study area has not changed
dramatically, and the road between building blocks remains generally unchanged. This
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area of buildings remains unchanged and includes many functional facilities, including
schools, hospitals, malls, offices, etc.

Figure 13. Distribution of building footprints over different years in the study area.

Furthermore, based on the above results, the construction area of various structures
in different years can be estimated. In 2020, the construction area of shear wall structure
buildings reached 15 times that of the area in 2011, from 0.842 km2 to 12.643 square km2.
The proportion changed from 9.22% to 64.66%. Figure 14 illustrates how the area of each
structure type changes over the years of this study. From 2011 to 2014, the construction
area of various types of buildings remained stable, while the area for shear wall structures
steadily increased. The construction area of brick wood buildings dramatically declined
in 2016. However, the shear wall structure continued to grow into 2018 and saw a surge
in 2020.

Grids are used to estimate the density of the building area. Figure 15 was made by
applying a 200 × 200 m grid. Comparing Figures 13 and 14, Figure 15 also illustrates that,
after experiencing a plateau in 2011, 2012, and 2014, the results in 2016 and 2018 show
the disappearance of low-density building areas. Meanwhile, the results for 2020 and
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2021 demonstrate the emergence of high-density building areas near the boundary of the
study area.

Figure 14. Construction area of buildings in different years.

Figure 15. Construction area over different years in the study area, in a 200 m grid.

Table 7 shows the estimated total population for each year.



Sustainability 2022, 14, 6132 18 of 25

Table 7. Estimated total population.

Year 2011 2012 2014 2016 2018 2020 2021

Day 240,344 240,260 258,043 268,555 274,613 360,118 369,280
Night 203,244 203,182 233,786 230,443 241,556 477,837 505,323

3.2. Estimation of Seismic Risk Changes

Based on the methods outlined in Section 3 and the results presented in Section 3.1,
estimates of losses under different ground motion levels, including direct losses in economic
terms and deaths due to seismic activity during night and daytime, were further obtained
for the study area. Table 8 provides a summary of the losses.

Table 8. Estimated economic and social losses.

Level Year 2011 2012 2014 2016 2018 2020 2021

Rare
Eco loss (billion RMB) 57.7964 57.7817 61.1094 54.6339 54.8115 66.6552 68.0225

Night death toll 4662 4660 4762 3421 3270 3348 3362
Day death toll 4526 4524 4658 4371 4355 4480 4484

Moderate
Eco loss (billion RMB) 40.8394 40.8280 42.8254 36.9838 36.8194 43.3709 44.1346

Night death toll 1896 1895 1939 1437 1384 1388 1390
Day death toll 1630 1629 1670 1540 1530 1554 1555

Frequent
Eco loss (billion RMB) 8.0140 8.0123 8.7140 8.4178 8.6097 11.8013 12.1698

Night death toll 40 40 43 44 45 45 45
Day death toll 35 35 37 37 37 37 37

Figure 16 illustrates the trend in earthquake losses over many years based on different
levels of ground motion intensity. The estimated results of losses include death tolls
when earthquakes occur during the daytime as well as at night, as well as a death toll per
10,000 people when earthquakes occur at night. A direct economic loss is also incurred.

Figure 16. Variation trend of loss under different ground-motion intensity levels. The blue, orange and
green lines represent rare earthquakes, moderate earthquakes, and frequent earthquakes, respectively:
(a) estimated death toll when an earthquake occurs during daytime, (b) estimated death toll when
the earthquake occurs at night, (c) estimated death toll per 10k people when an earthquake occurs at
night, (d) estimated direct economic loss.

In general, for frequent earthquakes, there was little change in losses from 2011 to
2021, except for an increase in direct economic losses after 2018. In terms of loss estimates
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from moderate earthquakes, as well as those from rare earthquakes, the trends were almost
identical in recent years.

Firstly, it should be noted that the number of deaths caused by earthquakes occurs
during the day and night, with one obvious trend being that the results in 2016 decreased
compared with those before 2014 and began increasing thereafter. Additionally, after 2016,
the death toll when the earthquake occurred at night was much lower than the death
toll when it occurred during the day. A rare earthquake occurring at night will cause
1300 fewer deaths in 2021 than it did in 2011, which represents a reduction of one-third.
Second, the death rate has declined from 2011 to 2021. For example, the death rate per
10,000 people resulting from a rare earthquake declined from 229 in 2011 to 66 in 2021. It
can be said that the death rate decreased from 2.29% to 0.66%. Similarly, the death rate for
every 10,000 people affected by the moderate earthquake declined from 93 to 27.

Third, the economic losses showed a slight upward trend between 2011 and 2014 and
began to decline in 2016. There was an inflection point in 2018, and economic losses began
to rise after that year.

Figure 17 demonstrates the death toll of a rare earthquake that occurred at night.
According to the results of the death toll estimation, the spatialized results for 2011 to
2014 indicate that this stage is mainly characterized by lower values uniformly distributed
within space. In the 2016 and 2018 results, some low-value areas disappeared, while the
original high-value areas remained. Additionally, the results for 2020 and 2021 indicate
several increasing potential deaths.

Figure 17. Spatial distribution of population deaths caused by rare earthquakes occurring at night, in
a 200 m grid.
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4. Discussion

In this paper, we describe a new task regarding the perception of changes in seismic
risk due to urbanization, based on remote sensing data. By applying multi-source remote
sensing image data for different years and combining auxiliary information, we were able
to monitor the earthquake-bearing body changes within the study area as the urbanization
process continued and subsequently estimate seismic risk changes. Our work is based on
the assumption that the seismic hazard remains relatively stationary over ten years.

Building structure information was extracted using the improved Mask R-CNN in-
stance segmentation model, and the random forest classification algorithm was applied
after instance segmentation to obtain a classification result. Furthermore, a method of
earthquake disaster loss assessment was used to calculate the societal and economic losses
over different years based on the three earthquake intensity levels.

First, building object types were divided into single buildings and rural building
groups. Based on the BMask R-CNN model, we obtained relatively reliable results for both
building object types.

Several factors affect the extraction accuracy of single buildings:
The shadows cast by tall buildings and tall plants block the view of the buildings;

these are the major reasons for misclassifications. Additionally, some low buildings that
blend into the background environment are not identified. A third reason is that we use
annotated data with very fine edges and an edge-preserving model to construct a finer
outline of the building geometry. However, since the sample data have such a large number
of edges, it is still challenging to achieve the same level of building segmentation.

Factors that influence building segmentation accuracy in rural areas include:
In some cases, the plastic sheds surrounding rural buildings are similar in color, tone,

and geometric size to the buildings, which confuses their classification. As in single build-
ings, some backgrounds, such as barren land, cause misclassifications and omissions. More-
over, some independent buildings are also incorrectly classified as rural group buildings.

A redundant processing operation is carried out at the intersection between rural
group buildings and single buildings, based on the results of the single building extraction.

Although the results for estimations of the height of the building are relatively accurate,
there is a certain amount of variance in the estimation of the number of floors of the building.
This can be attributed to several factors: (i) There is a wide range of story heights in factory
buildings with a single floor, ranging from 3 m to 10 m. (ii) Additionally, classifications
of building use types do not always reflect the attributes of each specific building use.
An example would be a university campus, which contains a wide variety of buildings,
all of which are classified as one occupation, or a gymnasium that may be in a high-rise,
one-story structure. Furthermore, the height of the teaching building in schools is often
higher than that of the office. (iii) The third point is that the top floor of some buildings has
a decorative roof, and the number of floors is rounded off incorrectly.

Confusion between structures primarily exists among confined masonry, reinforced
concrete, and shear wall structures. This is particularly true for low-rise dwellings, which
usually have a variety of structural types and a close geometrical arrangement. Since
high-rise buildings are commonly shear wall structures, the number of stories plays an
important role in improving their classification accuracy.

As seen from the result, there has been a significant change in the building stock within
the study area from 2011 to 2021. This change could be attributed to several factors. First,
the gross floor area of buildings decelerated between 2014 and 2016 but subsequently grew
rapidly. A second characteristic of the change in building types is the decreased number of
brick wood structures, followed by a significant rise in the number of shear wall structures,
while other types of buildings continue to steadily change. Moreover, most of the buildings
that were reduced or added were residential. Third, the renewal of buildings occurs in a
variety of areas throughout the city, from the center to the edge.

The above analysis results are consistent with the period of demolition and recon-
struction in this area in the past. According to the statistical yearbook of the Baodi District,
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the district launched a relocation and reconstruction project in October 2015, involving
25,000 households and 66,000 residents, with an investment of 43.3 billion RMB yuan
(approximately 6551 million EURO). A total of 35 urban villages and 21 dormitories were
demolished in 2016, and, in 2020, 35 replacement communities were built, which are
currently in operation.

In this study, the calculation to estimate building area change was based on the extrac-
tion of the building’s footprint, the estimation of the number of floors, and the classification
of building types. Additionally, a change in the building use is implied. This is a major
difference from previous methods of monitoring urbanization expansion by identifying
impervious layers. We also consider this to be a fundamental issue in our research, and it
forms the basis for the determination of variations in specific earthquake losses.

There are still some limitations in our study that need to be acknowledged. Dur-
ing remote sensing analysis, first, we adopted a large private dataset to train the image
segmentation model and classification model, which is a time-consuming procedure that
needs to be performed carefully. This localized dataset has proven to be indispensable
in our research. Second, even though high-rise buildings and one-story rural dwellings
are classified with high accuracy, building structure type confusion exists among confined
masonry and reinforced concrete.

In calculations of population and economic losses, no earthquake simulation would
enable the results to be verified, as in the case of [79]. This means that the results of the
calculation presented in this paper are only theoretically reliable. Second, since the study
area is relatively small, we perform calculations by setting a consistent PGA value rather
than using the conventional seismic hazard model [80,81].

In future work, we will study transfer learning techniques to reduce the dependence
on sample size and examine the attention module. We will also study the subdivision
of the vulnerability function, as well as the spatialization of population data based on
remote sensing.

5. Conclusions

Identifying and mastering the changes in earthquake risk due to urbanization is crucial
to effectively adjust countermeasures to reduce earthquake losses and execute earthquake
emergency preparedness in a targeted manner. To achieve this goal, we propose an inte-
grated workflow incorporating deep learning and ensemble learning methods for remote
sensing image analysis. As an example, the urbanization process of the Baodi core area in
Tianjin was studied using remote sensing images taken in recent years. The type of build-
ing and changes in building area were analyzed from the extracted building information,
and the economic and social losses resulting from these changes were calculated at three
ground-motion intensity levels. Yet, the seismic loss calculation was made based on certain
parameters; additional factors such as geology, soil type, distance from the seismogenic
fault, seismic wave propagation, and secondary hazards were not taken into consideration.

According to our research, the study area has changed from a county seat to a dormi-
tory town of a big city as a result of urbanization. In the study area, the development of
commercial real estate eliminated low-quality housing and nearly doubled the number of
people that could be accommodated, but the growth rate of functional infrastructure was
relatively low.

New residential buildings have resulted in a reduction in the rate of night-time earth-
quake deaths in this area. The spatial distribution of the probability of a fatality also
changes accordingly. However, there is a possibility that the number of deaths caused by
rare earthquakes may not significantly decrease, given the dramatic increase in population.
This may be overlooked in the context of urbanization.

Earth observation data complement ground-collected data and play a pivotal role in
risk assessment and reduction [82]. Moreover, our study demonstrates that remote sensing
data can be a valuable resource to observe changes in seismic risk as a result of urbanization.
Although there are still some areas for improvement, the method based on remote sensing
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data can be used as a tool for updating seismic risk management plans and urban planning
in other parts of China in the future.
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