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Abstract: Road runoff contains high levels of pollutants, such as heavy metals and hydrocarbons. If
they are directly discharged into sensitive water bodies, they will cause irreversible pollution and
damage to the water environment. Furthermore, the leakage of hazardous chemicals into sensitive
waters will lead to serious consequences, so determining how to deal with road surface runoff
has become an urgent problem. This research adopts a scheme for collecting and processing road
runoff in a water source protection area using artificial wetlands. After optimizing and improving
the general vertical flow of the wetland structure, a composite wetland structure and a relatively
novel tandem wetland structure are proposed. An indoor model is established for experiments on
various main wetland structure schemes. The results show that the two newly proposed wetland
structures improve the possibility of water level control in general vertical flow structures. At the
same time, the movement distance of the water flow in the wetland structure is changed to improve
the treatment effect of runoff. The removal effect of composite and tandem wetland structures for
heavy metals, petroleum substances, and COD (chemical oxygen demand) is significantly better
than that of general vertical flow structures. Among them, the composite structure is better than the
tandem structure at removing heavy metals, petroleum substances, and COD. However, due to the
water discharge method of the structures, the latter has a better effect than the former in the treatment
of suspended substances.

Keywords: constructed wetland; road runoff; water source protection area; wetland structure;
substrate filler

1. Introduction

In recent years, with the increase in the mileage of highway construction, an increasing
number of researchers at home and abroad have begun to pay attention to the impact of
highway construction on the surrounding natural environment. In highway construction
and operation, road runoff carrying pollutants into the local water body will have a certain
negative impact on the local environment. Pollutants in road surface runoff come from
the scouring action of rainwater, which mainly includes solid suspended substances (SSs),
heavy metals (Cu, Zn, Pb, etc.), nutrients, oils, and some other organic matter [1–4]. To study
these problems in depth, and then to solve them, researchers have studied the characteristics
of pollutants in runoff. Some researchers highlighted that RDS (road-deposited sediments)
pollution and first flush on runoff are the main two sources of pollutants in road runoff [5].
In road-deposited sediments, most of the heavy metals are attached to particles, the size
of which is less than 0.15 mm. Among them, the concentration of Cu and Pb in fine
particles is relatively high, while zinc (Zn) has a higher concentration in the coarse and
fine particles [6,7]. Some experiments collected runoff samples from overpass sections,
university districts, residential areas, and sidewalks to obtain the concentration of heavy
metals and study the outflow laws of heavy metals in the path flow [8]. Kim et al. [9]
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measured the pollutants in the bridge runoff of Gongju during seven rainfall events and
found that the average concentrations of COD (chemical oxygen demand) and SS in each
rainfall event varied significantly, ranging from 45.48 to 198.95 mg/L and from 24.73 to
305.34 mg/L. The concentrations of PAHs (polycyclic aromatic hydrocarbons) and heavy
metals in asphalt pavement runoff were measured by Gjessing et al. [10], and it was found
that the concentrations of Pb, Zn, TOC (total organic carbon), and COD in asphalt pavement
runoff were 3~5 times higher than those in cement concrete pavement. Especially when the
road passes through the water source protection area, it will have a bigger influence on the
local natural environment if the road surface runoff is not purified. Therefore, there is an
urgent need to purify the road runoff before discharging it.

At present, the most commonly used measures for the treatment of road runoff
worldwide are vegetation control, retention ponds, constructed wetlands, infiltration
systems, etc. The SWMM (storm water management model) of the US Environmental
Protection Agency was used to simulate the infiltration of plant filter belt runoff, and the
results show that plant filter belts have a strong diluting effect on the pollutants in the
road-stream [11]. Some researchers have compared the pollutant concentration of road
runoff after treatment with plant filter belts and those without treatment. The results
show that plant filter belts can effectively remove particulate pollutants (including Pb, Zn,
and PAH) in runoff [12]. Vegetation filters (VFSs) and grass (GS) are proven to be highly
effective in removing total suspended solids (TSS) [13]. In the study of the relationship
between the purification effect of grass planting and the runoff speed, Deletic et al. [14]
found that the runoff speed is inversely proportional to the effect of removing suspended
solids. Vegetation control is a good method for controlling road runoff owing to its wide
applicability, along with its convenient design and construction, but it is easy to cause the
accumulation and blockage of pollutants using this method.

The detention tank is divided into the dry detention tank and wet detention tank to
remove pollutants. Some researchers are studying the treatment effect of the coagulant
in the sedimentation tank on road runoff. Research shows that the total removal rate of
particles and metals in the coagulation process reaches 90%, and the dissolution of Cr, Cu,
and Pb reaches 40% [15]. Cheng et al. [16] proposed and studied a first-flush capture and
detention tank to receive rainwater runoff from asphalt pavement, and the results showed
that the equipment has a 90% TSS removal rate. Studies by R. et al. [17] show that both dry
and wet retention ponds are effective in removing heavy metals and other contaminants.
Comings et al. [18] showed that the removal rates of SS, Pb, and Zn in wet retention ponds
were 70%, 70%, and 40%, respectively. A study by Swedish researcher Lundberg et al. [19]
found that, as the treatment time increased, the removal of COD from the retention ponds
was almost zero and other pollutants could not be removed.

The infiltration system is an effective way to deal with road surface runoff by filtering
and intercepting. The main forms are a seepage well, an open seepage pit, a seepage ditch,
a porous road surface, and a multi-stage infiltration system [20]. Research by Wu et al. [21]
highlighted that most of the runoff pollutants in vegetation depressions are removed owing
to osmosis, and the average event mean concentrations of total suspended solids (TSS),
total nitrogen (TN), and total phosphorous (TP) can be reduced by 53%, 67%, and 25%,
respectively. Other studies have shown that the porous pavement structure can effectively
reduce the concentration of pollutants in runoff [22]. Pagotto et al. [23] showed that the
removal rate of SS, heavy metal Pb, and hydrocarbons was up to 85%, 78%, and 92%,
respectively, in a porous pavement structure. However, the porous pavement is more
prone to blockage, and the pavement often needs to be replaced during maintenance. The
maintenance cost is high, so the applicability of the pavement structure is poor. Infiltration
systems are generally more suitable for areas with low groundwater levels. Due to the many
factors affecting treatment efficiency, the current application range is temporarily small.

In the process of road runoff purification, the constructed wetland has the advan-
tages of a large hydraulic treatment load, a large variety of pollutants being removed, a
good comprehensive purification effect, and coordination with the ecological environment.
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Through comparative experiments, Zhou et al. [24] found that constructed wetlands can
effectively remove heavy metal elements in road runoff. Through tracking and monitoring,
Gill et al. [25] found that the removal rate of heavy metal elements Cd, Cu, Pb, and Zn
in runoff from wetland was much higher than the theoretical calculation, and the wet-
land could effectively remove heavy metal elements in runoff. Choi et al. [26] designed
and proposed a hybrid constructed wetland to treat road runoff. The monitoring results
show that the removal efficiency of total suspended solids (TSS), COD, total nitrogen (TN),
total phosphorous (TP), and heavy metals in the mixed constructed wetland is at least
60%, which is 0–10% higher than that of a single constructed wetland. Senduran et al. [27]
designed a pocket wetland to treat runoff in the Lake Sapanca catchment area, and the
average removal efficiency for the total suspended solids (TSS), total nitrogen (TN), total
phosphorous (TP), Cu, and Zn in the runoff was 52%, 26%, 63%, 7%, and 55%, respectively.
Jinhui et al. [28] designed a horizontal subsurface flow constructed wetland using adsorp-
tion medium/substrate, and through water quality testing, the average removal efficiency
of total suspended solids (TSS), COD, total Kjeldahl nitrogen, NH4+-N, and total phos-
phorous (TP) was 86.5%, 68.1%, 78.25%, 95.2%, and 64.85%, respectively. Terzaki et al. [29]
monitored the treatment of road runoff for two years by constructing wetlands using the
surface flow and underground flow. The results showed that the two types of wetland
structures have excellent removal effects on COD, total suspended solids (TSS), total ni-
trogen (TN), total phosphorous (TP), Cu, Ni, Pb, and Zn. Research facts show that the
constructed wetland can effectively remove various pollutants in road runoff, and also has
the advantages of low construction cost and long service life. Furthermore, it has a certain
landscape effect and can beautify the road environment [30].

However, currently constructed wetlands exhibit problems such as difficult water
level control, slow runoff treatment rates, and the possibility of the treated sewage causing
secondary pollution. Therefore, this paper analyzes the structural characteristics of the
currently commonly used constructed wetlands, proposes two new wetland structure opti-
mization schemes on the basis of the existing general vertical subsurface wetland structure,
and creates an indoor model for experiments testing the runoff purification effects.

2. Materials and Methods
2.1. Design of Constructed Wetland
2.1.1. Structure Types of Constructed Wetland

According to the flow model of the water body, a constructed wetland can be divided
into three basic types: a surface flow wetland, a horizontal subsurface flow wetland, and a
vertical subsurface flow wetland. The components of each wetland mainly include matrix
fillers (such as soil, sand, and gravel), aquatic plants, and various microorganisms. After
runoff flows into various wetlands, it is subjected to comprehensive purification treatment
by precipitation, filtration, adsorption, ion exchange, plant absorption, and microbial
degradation [31].

2.1.2. Structural Designs of Constructed Wetland

Considering the high requirement of water quality in the water source protection
area, to improve the treatment effect of runoff as much as possible and to reduce the
amount of land required, the type of wetland is designed as a subsurface flow constructed
wetland. This experiment mainly designs three kinds of wetland structures, which are the
general vertical flow wetland structure, the compound subsurface flow wetland structure,
and the serial subsurface flow wetland structure. The specific structures are shown in
Figure 1 below.
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metal ions and petroleum pollutants will be absorbed by plant roots and degraded by soil 
microorganisms. Finally, they will be added to the groundwater through the original soil 
via the filter layer. This structure may lead to rainwater infiltration from the top of the 
wetland to overflow over time, thus affecting the purification effect. Therefore, based on 
the principle of the communicating device, we designed the wetland as a composite con-
structed wetland structure that combines vertical and horizontal subsurface flow (as 
shown in Figure 1b). This structural design causes the height of the runoff inlet, concrete 
partition wall, and outlet to gradually decrease, so that when the runoff is too high, the 
excess water can overflow through the top of the concrete wall into the wetland on the 
other side, solving the problems existing in the structure of the general vertical flow wet-
land. However, due to the increase in water movement distance, the purification process 
will be prolonged, and the runoff treatment rate will be reduced. 

The hydraulic characteristics of constructed wetlands, such as water level control and 
water movement distance, also affect the purification efficiency of wetlands [32,33]. There-
fore, we proposed a tandem subsurface flow wetland structure (as shown in Figure 1c). 
The structure uses a water trough to connect two vertical subsurface wetlands in a series, 
which improves the runoff treatment rate by reducing the movement distance of the wa-
ter. This construction has the advantages of water level control, purification effect, and 

Figure 1. The constructed wetland structure designed in this experiment: (a) general vertical flow
wetland structure, (b) compound constructed wetland structure, and (c) tandem subsurface flow
wetland structure.

In the vertical flow wetland structure (as shown in Figure 1a), large particles of
suspended solids from runoff are deposited on the surface of the planting layer; then, heavy
metal ions and petroleum pollutants will be absorbed by plant roots and degraded by
soil microorganisms. Finally, they will be added to the groundwater through the original
soil via the filter layer. This structure may lead to rainwater infiltration from the top of
the wetland to overflow over time, thus affecting the purification effect. Therefore, based
on the principle of the communicating device, we designed the wetland as a composite
constructed wetland structure that combines vertical and horizontal subsurface flow (as
shown in Figure 1b). This structural design causes the height of the runoff inlet, concrete
partition wall, and outlet to gradually decrease, so that when the runoff is too high, the
excess water can overflow through the top of the concrete wall into the wetland on the other
side, solving the problems existing in the structure of the general vertical flow wetland.
However, due to the increase in water movement distance, the purification process will be
prolonged, and the runoff treatment rate will be reduced.

The hydraulic characteristics of constructed wetlands, such as water level control
and water movement distance, also affect the purification efficiency of wetlands [32,33].
Therefore, we proposed a tandem subsurface flow wetland structure (as shown in Figure 1c).
The structure uses a water trough to connect two vertical subsurface wetlands in a series,
which improves the runoff treatment rate by reducing the movement distance of the water.
This construction has the advantages of water level control, purification effect, and runoff
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processing rate, yielding a strong practical performance. Therefore, in this paper, a novel
wetland structure scheme is proposed in the design of the constructed wetland.

2.2. Laboratory Test Model Creation

The test model is made of a stainless steel plate, according to the structural scheme of a
general vertical flow wetland, composite subsurface flow wetland, and tandem subsurface
flow wetland, as shown in Figure 2. (The unit in the figure is cm).
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Figure 2. Model section size diagram (unit: cm).

The matrix material in the planting layer was sandy soil, mixed with 50% medium
and coarse sand, and 50% natural soil; reeds and cattails were selected as the plants for the
planting layer; in the filter layer, the gravel had a particle size of 8~16 mm. The physical
adsorption layer in the composite structure and the tandem structure used activated carbon
as the adsorption material. The thickness of the implant layer was 30 cm, the physical
adsorption layer was 15 cm, and the filter layer was 15 cm. The cleaned matrix materials
were filled into the model according to the order of matrix layers.

The experiment was divided into three groups: general vertical flow wetland structure,
compound constructed wetland structure, and tandem subsurface flow wetland structure;
parallel experiments were performed using three identical indoor models for each structure,
and the purification effects of the three wetland scheme structures on the pollutants were
tested, respectively.

2.3. Preparation of Road Runoff Water

The road runoff water used for the test was prepared by dissolving the sediments
on the road and mixing them uniformly in tap water. Due to the influence of runoff and
wind, most of the road sediments were distributed on both sides of the road, within a
width of about 50 cm from the curb. Therefore, the road surface sediments cleaned in this
experiment came from the 50 cm width of the road surface on the left side of the road at
Wanjiali South Road, Yuhua District, Changsha City, China, which were mainly dust. After
cleaning, a filter was used to remove large particles, such as leaves. The substance was then
sealed and stored.

2.4. Detection Indicator

The indicators for water quality testing included SS, heavy metals (Pb, Zn, and Cu),
COD, and petroleum. By detecting the concentration of each indicator in the initial water
sample and the purified water sample, the removal effect was studied.

The testing methods and main testing equipment of each index are shown in Table 1.
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Table 1. Road runoff detection indicators and detection equipment.

Serial Number Detection Indicator Referenced Standards Testing Equipment

1 SS GB 11901-89 [34] Oven, balance
2 Zn GB 7475-87 [35] GDYS-201M multi-parameter water quality analyzer
3 Pb GB 7475-87 GDYS-201M multi-parameter water quality analyzer
4 Cu GB 7475-87 GDYS-201M multi-parameter water quality analyzer
5 COD HJ 828-2017 [36] GDYS-201M multi-parameter water quality analyzer
6 Petro SL 93.2-94 MAI-50G infrared oil meter

2.5. Test Setup
2.5.1. Determination of Test Time

In order to determine when the test stabilized the removal rate of pollutants in the
runoff, three sets of runoff treatment tests were carried out using a series structure model,
and the test times were 60 min, 120 min, and 180 min, respectively. Then, we calculated
the removal rate of Zn, Pb, and Cu at each time in the 60 min, 120 min, and 180 min test
groups, respectively. The removal (Cs) rate was calculated as follows:

CS =
C0 − Ci

C0
× 100% (1)

where C0 denotes the concentration of pollutants in the original water sample, and Ci
denotes the concentration at each time point.

The test results are shown in Figure 3:
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It can be seen from the figure that the changes in the removal rate of pollutants in the
three groups of tests stabilized after 30 min. This showed that the treatment of runoff in
this test could reach stability within 60 min, so each group of tests adopted 60 min as the
test time.

2.5.2. Experimental Procedure

In order to obtain the raw water sample required for the test model, we dissolved
2.5 kg of the sediment in approximately 160 L of water and stirred it. The sewage was
then added to the model, and the time from the start of water addition to the outflow was
recorded. When the water flowed out of the water outlet of the model, water samples were
collected every 10 min for a total of 60 min, and were numbered in sequence of 0 min,
10 min, 20 min, 30 min, 40 min, 50 min, and 60 min.

3. Results and Discussion

The test results of the pollutant concentration in each group of experiments are sum-
marized in Figure 4. For the convenience of description, in Figure 4, the general vertical
flow wetland structure, compound structure, and tandem structure are abbreviated as
GVFS, CS, and TS, respectively.

In Figure 4, the concentration of SS and COD was higher at 0 min, and the concentra-
tion decreased significantly after 10 min of treatment in the constructed wetland, which
was particularly obvious in the composite structure and tandem structure wetlands. The
initial concentrations of heavy metals Pb, Zn, and Cu were not high, and the concentrations
decreased significantly after wetland treatment. In particular, after 60 min of treatment
with the two newly designed constructed wetland schemes, the concentrations of Pb and
Cu in the effluent samples were almost 0 mg/L.

To more intuitively understand the treatment effects of different structures on pollu-
tants, the pollutant removal rate at each time from 0 min to 60 min and the average removal
rate within 60 min were calculated. The calculation results are shown in Figures 5 and 6.

From the analysis of Figures 5 and 6, we can see:
The pollutant removal rate of each group of structures showed a similar change over

time. The removal rate increased in the first 30 min, and then fluctuated within a certain
range. This indicates that the structure of each scheme can effectively purify road runoff,
and the removal rate of various pollutants will gradually stabilize in the short term.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 13 
 

It can be seen from the figure that the changes in the removal rate of pollutants in the 

three groups of tests stabilized after 30 min. This showed that the treatment of runoff in 

this test could reach stability within 60 min, so each group of tests adopted 60 min as the 

test time. 

2.5.2. Experimental Procedure 

In order to obtain the raw water sample required for the test model, we dissolved 2.5 

kg of the sediment in approximately 160 L of water and stirred it. The sewage was then 

added to the model, and the time from the start of water addition to the outflow was 

recorded. When the water flowed out of the water outlet of the model, water samples were 

collected every 10 min for a total of 60 min, and were numbered in sequence of 0 min, 10 

min, 20 min, 30 min, 40 min, 50 min, and 60 min. 

3. Results and Discussion 

The test results of the pollutant concentration in each group of experiments are sum-

marized in Figure 4. For the convenience of description, in Figure 4, the general vertical 

flow wetland structure, compound structure, and tandem structure are abbreviated as 

GVFS, CS, and TS, respectively. 

In Figure 4, the concentration of SS and COD was higher at 0 min, and the concentra-

tion decreased significantly after 10 min of treatment in the constructed wetland, which 

was particularly obvious in the composite structure and tandem structure wetlands. The 

initial concentrations of heavy metals Pb, Zn, and Cu were not high, and the concentra-

tions decreased significantly after wetland treatment. In particular, after 60 min of treat-

ment with the two newly designed constructed wetland schemes, the concentrations of 

Pb and Cu in the effluent samples were almost 0 mg/L. 

  

(a) (b) 

Figure 4. Cont.



Sustainability 2022, 14, 5951 8 of 12
Sustainability 2022, 14, x FOR PEER REVIEW 8 of 13 
 

  
(c) (d) 

  
(e) (f) 

Figure 4. The concentration of different pollutants varies over time in different wetland structures. 

(a) Cu; (b) COD; (c) SS; (d) Pb; (e) Petro; (f) Zn. 

To more intuitively understand the treatment effects of different structures on pollu-

tants, the pollutant removal rate at each time from 0 min to 60 min and the average re-

moval rate within 60 min were calculated. The calculation results are shown in Figures 5 

and 6. 

Figure 4. The concentration of different pollutants varies over time in different wetland structures.
(a) Cu; (b) COD; (c) SS; (d) Pb; (e) Petro; (f) Zn.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 13 
 

0 10 20 30 40 50 60
0

20

40

60

80

100

R
em

ov
al

 r
at

e(
%

)

minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

R
em

ov
al

 r
at

e(
%

)

minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 
(a) (b) 

0 10 20 30 40 50 60

40

50

60

70

80

90

100

110

R
em

ov
al

 r
at

e(
%

)

minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 
(c) 

Figure 5. Pollutant removal rate of each structure: (a) general vertical flow wetland structure, (b) 
compound constructed wetland structure, and (c) tandem subsurface flow wetland structure. 

SS Pb Zn Cu COD Petro
0

20

40

60

80

100

120

R
em

ov
al

 r
at

e(
%

)

Detection Indictor

 General vertical flow
 Compound structure
 Tandem structure

 
Figure 6. The average removal rate of pollutants in 60 min. 

  

Figure 5. Cont.



Sustainability 2022, 14, 5951 9 of 12

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 13 
 

0 10 20 30 40 50 60
0

20

40

60

80

100

R
em

ov
al

 r
at

e(
%

)
minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

R
em

ov
al

 r
at

e(
%

)

minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 
(a) (b) 

0 10 20 30 40 50 60

40

50

60

70

80

90

100

110

R
em

ov
al

 r
at

e(
%

)

minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 
(c) 

Figure 5. Pollutant removal rate of each structure: (a) general vertical flow wetland structure, (b) 
compound constructed wetland structure, and (c) tandem subsurface flow wetland structure. 

SS Pb Zn Cu COD Petro
0

20

40

60

80

100

120

R
em

ov
al

 r
at

e(
%

)

Detection Indictor

 General vertical flow
 Compound structure
 Tandem structure

 
Figure 6. The average removal rate of pollutants in 60 min. 

  

Figure 5. Pollutant removal rate of each structure: (a) general vertical flow wetland structure,
(b) compound constructed wetland structure, and (c) tandem subsurface flow wetland structure.

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 13 
 

0 10 20 30 40 50 60
0

20

40

60

80

100

R
em

ov
al

 r
at

e(
%

)
minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 

0 10 20 30 40 50 60
40

50

60

70

80

90

100

110

R
em

ov
al

 r
at

e(
%

)

minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 
(a) (b) 

0 10 20 30 40 50 60

40

50

60

70

80

90

100

110

R
em

ov
al

 r
at

e(
%

)

minute(min)

 SS  Pb  Zn  Cu  COD  Petro

 
(c) 

Figure 5. Pollutant removal rate of each structure: (a) general vertical flow wetland structure, (b) 
compound constructed wetland structure, and (c) tandem subsurface flow wetland structure. 

SS Pb Zn Cu COD Petro
0

20

40

60

80

100

120

R
em

ov
al

 r
at

e(
%

)

Detection Indictor

 General vertical flow
 Compound structure
 Tandem structure

 
Figure 6. The average removal rate of pollutants in 60 min. 

  

Figure 6. The average removal rate of pollutants in 60 min.

The three structural schemes had good treatment effects on suspended solids, with
removal rates of 93.74%, 96.41%, and 97.05%, respectively. The removal rates of Zn were
84.55%, 95.19%, and 92.75%; the removal rates of Cu were 71.14%, 94.00%, and 92.91%;
the removal rates of Pb were 86.46%, 100%, and 100%; the removal rates of petroleum
were 55.35%, 68.81% and 66.30%; and the removal rates of COD were 40.01%, 90.36%,
and 72.93%.

The composite and tandem wetland structures were significantly better than the
general vertical flow structure for the removal of various pollutants. The reason for this
is that after the runoff enters from the left, it undergoes physical filtration, plant root
absorption, and microbial degradation after the first purification. Then, it penetrates
vertically into the bottom of the first-level wetland and into the gravel filter layer. Finally,
the runoff flows from the filter layer up to the second-level wetland and out of the wetland
after the second purification. In the whole process, the runoff undergoes two purification
processes. It is worth noting that, in the treatment of suspended matter, since the composite
structure will drain upwards and the water flow will disturb the sandy soil, the treatment
effectiveness is not as high as for the tandem structure.

In this study, the two novel constructed wetland structures that we proposed had a
good purification effect on pollutants in road runoff. In our actual engineering investigation,
we found that constructed wetlands could also be used as aquatic habitats in urban areas,
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as shown in Figure 7. This wetland is located in the South Second Ring Road of Guangzhou.
It is mainly used to collect and purify the road surface at the toll station and the bridge deck
runoff on the ramp bridge. There are few pollutants in the urban road surface runoff, so the
artificial wetland can be used as an aquatic habitat to maintain the urban ecological balance.
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The wetland uses two surface-flow artificial wetlands connected by a natural ditch
to implement the graded treatment of runoff. The first-level wetland is used for the
preliminary purification of runoff, and lotus flowers are planted in the wetland. When
the water level in the first-level wetland is full, it flows into the second-level wetland
through natural ditches and is further filtered here. Plants such as reeds are planted in
the second-level wetland. Plants in wetlands grow well and attract many animals to settle
there, so it is possible to apply artificial wetlands to aquatic habitats. When constructed
wetlands are degraded from water treatment functions to ecosystems, they are especially
likely to be used as animal habitats to maintain biodiversity [37].

4. Conclusions

This paper combines the advantages and disadvantages of typical structures for the
treatment of road runoff and proposes a scheme for collecting and processing road runoff in
the water source protection area using artificial wetlands. Two schemes for optimizing the
wetland structure were proposed. To simulate the purification effect of the three wetland
structures in the treatment of road runoff, an indoor test model was constructed. The
results show:

(1) Based on the general vertical subsurface flow wetland, two optimization schemes
for the wetland structure are proposed. They are a U-shaped composite subsurface flow
wetland, combining vertical and horizontal subsurface flow, and a series subsurface flow
wetland structure, with two vertical subsurface flow wetlands in a series. The structure
improves the shortcomings of the general vertical flow wetland’s water level control
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difficulties and the treatment effect of runoff by changing the flow distance of the water
flow in the matrix filler.

(2) The decontamination effect of the general vertical flow, composite underflow, and
tandem underflow wetland structures were compared by testing the quality of influent and
effluent water. The removal effect of the new structures is obviously better than that of the
general vertical flow structure. The new structures are similar in the removal rate of heavy
metals and petroleum substances, and the removal rate of each heavy metal index is above
90%. In particular, the removal rate of Pb was close to 100%. The removal rate of petroleum
substances was slightly worse, but still reached 68.81% and 66.30%, respectively. The
removal rate of COD was quite different, 90.36% and 72.93%, respectively. The compound
type is better than the series type in terms of removal efficiency.

(3) In general, the removal effect of the composite wetland structure is the best,
followed by the tandem type, but the former is slightly worse than the latter in terms
of the removal effect of suspended matter. The reason for this phenomenon may be related
to the water outlet method of the structure. The structure uses upward drainage, and the
water flow disturbs the sandy soil material, which causes the turbidity of the effluent body
to increase.
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