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Abstract: This article is the result of the authors’ work on the method of calculating the effective
thermal conductivity of moist capillary-porous materials used in wall partitions. The proposed
methodology was developed based on the theory of generalized conductivity and geometric modeling
of the structure. Materials are considered as heterogeneous ternary systems consisting of a solid
skeleton, gas and liquid, and all components are simultaneously taken into account in the calculation.
In this work, additional equations are constructed that allow calculation of the effective thermal
conductivity of capillary-porous materials with over sorption moisture, thus extending the scope
of application of the method to the entire possible range of changes in moisture content. The
details of calculating the thermal conductivity of moist capillary-porous materials are demonstrated
using experimental data for wall ceramics samples. It is shown that the proposed equations are
capable of predicting the thermal conductivity of moist capillary-porous materials with sufficient
accuracy. Knowledge of the thermal conductivity of materials in conditions of their actual moisture
is fundamental in the sustainable design of new buildings as well as thermo-renovation and dump
protection of historic ones.

Keywords: effective thermal conductivity; capillary-porous materials; moisture content; structure
modelling; theory of generalized conductivity; sustainable design of building partitions

1. Introduction

Thermal properties of building partitions are one of the basic aspects considered
in the context of sustainable construction development, which focuses on reducing the
consumption of energy and natural resources. They are considered key factors in increasing
the energy efficiency of the building sector by reducing energy consumption for both
heating in winter and cooling in summer, thus reducing greenhouse gas emissions. This
issue is extremely important for the design of new buildings, but also for sustainable
renovation of historic ones. The main parameter describing thermal properties of building
partitions is the thermal conductivity of the materials applied, which strongly depends on
their moisture content.

The results of numerous field studies, e.g., [1–4], show that the moisture content ψ of
capillary-porous materials of outer walls in operated buildings exceeds the values adopted
in the design process. The increased moisture content leads to a deterioration of outer
walls’ technical conditions. First of all, the thermal insulation of walls decreases, for whose
determination it is necessary to know the values of the thermal conductivity of the materials
used depending on their moisture content and the nature of moisture distribution over the
volume. The thermal conductivity of the same material with the same moisture content may
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differ several-fold depending on the distribution of moisture in the material [5]. For this
and other reasons mentioned in [5–7], experimental assessment of the thermal conductivity
of moist capillary-porous materials does not always yield satisfactory results. Therefore,
it is necessary to develop engineering methods for calculating the thermal conductivity
of materials based on mathematical modeling of the joint processes of heat and moisture
transfer. The ability to freely simulate the value of the thermal conductivity of a material
at different levels of moisture content will not only enable the sustainable design of new
buildings but can also be used to solve problems related to renovation, such as thermal
insulation and damp protection of historic buildings.

As in [7], moist capillary-porous materials are considered by us as inhomogeneous
three-component systems consisting of a solid skeleton 1, gas (vapor–air mixture) 2 and
liquid (water) 3. The methods of generalized conductivity combined with geometric
modeling of the structure are used [5] when constructing dependences to determine the
effective thermal conductivity of such systems.

Liquid and gas in the pore space of the solid skeleton of the model were presented as
a binary system whose structure depends on the moisture content, determined from the
ratio of the moisture content ψ to porosity P of the material ψP = ψ/P. To clarify the type
of binary system structure, it is necessary to determine the relationship between the actual
value ψP and some boundary values ψ′P and ψ

′′
P (ψ′P<ψ

′′
P), at which there is a transition

from one structure to another. A rough estimate of the boundary values ψ′P and ψ
′′
P can be

performed according to the graphs given in [5] and constructed for only one value of the
porosity of the material P ≈ 0.72. A more accurate estimate of these values was considered
in [7,8]. If the ratio is established ψP ≤ ψ′P, then the liquid is distributed in the form of
isolated inclusions. When ψ′P ≤ ψP ≤ ψ

′′
P, the liquid becomes a continuous component of a

binary system. Finally, at ψP = ψ
′′
P, a continuous distribution of the vapor–air mixture will

change to a distribution in the form of isolated inclusions in the center of the cells.
The calculation of the effective thermal conductivity of a material in the entire range of

changes in the moisture content can be performed by the method of sequential conversion
of a three-component system to a binary one [5]. According to this method, a binary system
consisting of a gas and a liquid (pore space) is considered first, and then the next binary
system of a solid skeleton and a pore space is considered. In such a case, the final result of
the calculations will give an underestimated assessment of the thermal conductivity [7].
Another drawback is that the thermal conductivity of a binary system of a vapor–air
mixture and a liquid is proposed to be determined by the formulas obtained under the
condition that the contact angle is θ = 0◦. It is known [8,9] that ideal wetting is not typical
for porous building materials and θ > 0◦.

These disadvantages lead to significant errors in calculations [7], and to eliminate
them, a more reasonable approach should be used, which simultaneously takes into account
the thermal conductivities and volumetric concentrations of all three components at contact
angles θ from 0

◦
to 90

◦
. By using this approach, equations were obtained to determine the

effective thermal conductivity of materials with isolated and continuous liquid inclusion
structures [7]. However, with the moisture content of the pores ψ′P and ψ

′′
P, a smooth

transition from one structure to another was not ensured, which led to some inaccuracies
in calculations. In this work, additional equations are constructed that render it possible
to calculate the effective thermal conductivity of capillary-porous materials in the entire
possible range of changes in the pore moisture content and eliminate the shortcomings
of the work [7]. Details of calculating the thermal conductivity of moist capillary-porous
materials are considered and are demonstrated by examples using experimental data for
samples of wall ceramics.

2. Equations for Determining the Effective Thermal Conductivity of Moist Porous
Materials with Closed Gas Inclusions

In the case of closed gas inclusions, the model of the real structure of a moist porous
material constructed taking into account the assumptions of the theory of generalized
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conductivity [5] for the eighth part of the unit cell has the form shown in Figure 1a. The
total heat flux G, consisting of interconnected fluxes G1 . . . G4, flowing through unit cell
individual elements, the total area of which S = L2, passes through the considered unit cell
parallel to its lateral faces.

Figure 1. The eighth part of a unit cell with an isolated inclusion of gas and components of the total
heat flux G1 . . . G4 (a); connection diagram of the resistances of individual elements during adiabatic
(b) and isothermal (c) division of the unit cell; 1, 2, 3—solid, gas, and liquid components, respectively.

Let us consider the derivation of the dependence for determining the effective thermal
conductivity λa of a given unit cell when it is divided by infinitely thin adiabatic planes
parallel to the heat flux G and impenetrable for individual components of the heat flux
(G1 . . . G4). As a result, the volume of the unit cell was broken into 8 homogeneous elements.
The thermal resistance of the i-th element is calculated by the formula

Ri =
li

λiSi
(1)

where li—length of the heat flux (height) of the i-th element, m;
λicoefficient of thermal conductivity of the i-th element, W/(m·K);
Sicross-sectional area of the i-th element, m2.
The heat flux G1 passes through the element of the rigid skeleton having a length

l1 = L, transverse cross-section S2 = ∆2, and thermal conductivity λ1. According to
Formula (1), we have the resistance

R1 =
L

λ1∆2 . (2)

The heat flux G2 with a cross section S2 = 2∆(L− ∆) passes through the liquid and
solid components with resistances

R2 =
L− ∆

λ32∆(L− ∆)
, R3 =

∆
λ12∆(L− ∆)

. (3)
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The heat flux G3 with a cross section S3 = (L− ∆)2 − ∆2
g passes only through the

liquid component with resistance

R4 =
L

λ3

[
(L− ∆)2 − ∆2

g

] . (4)

Finally, the heat flux G4 with a cross section S4 = ∆2
g passes through the gas and liquid

components with resistances

R5 =
∆g

λ2∆2
g

, R6 =
L− ∆g

λ3∆2
g

. (5)

The connection diagram of the unit cell resistances is shown in Figure 1b. In this case,
the total thermal resistance of the unit cell R is determined as follows:

1
R

=
1

R1
+

1
R2 + R3

+
1

R4
+

1
R5 + R6

. (6)

The total thermal resistance of an element of the volume V = L3, filled with a homo-
geneous substance with thermal conductivity λa, is found by the formula

R =
L

λaL2 =
1

λaL
. (7)

Upon rewriting Formula (6) taking into account (7) and (2)–(5), after simple transfor-
mations, we obtain the dependence for determining the effective thermal conductivity of a
three-component system with the gas component in the form of an isolated inclusion, with
adiabatic division of the unit cell

λa

λ1
= c2 +

2ν2c(1− c)
1− c + ν2c

+ ν2

[
(1− c)2 − c2

g

]
+

ν1ν2c2
g

ν2cg + ν1
(
1− cg

) (8)

where c = ∆/L, cg = ∆g/L, ν1 = λ2/λ1, ν2 = λ3/λ1.
In what follows, we will show the derivation of the equation for determining the

effective thermal conductivity of the same three-component system with the isothermal
division of the unit cell. We divide the unit cell, shown in Figure 1a, by two planes
perpendicular to the total heat flux into three layers of different thicknesses. The thickness
of the first (upper) layer is h1 = ∆g, the second (middle) layer is h2 = L− ∆− ∆g, and the
third (lower) layer is h3 = ∆. In each layer, the components are separated by adiabatic
planes parallel to the general heat flux. As a result, the first layer consists of three elements,
and the second and third layers of two elements, the thermal resistance of which can be
determined by Formula (1).

For the first layer, we obtain the following resistances:

R1 =
∆g

λ1∆2 , R2 =
∆g

λ2∆2
g

, R3 =
∆g

λ3

(
L2 − ∆2 − ∆2

g

) . (9)

For the second layer, we have the following two resistances:

R4 =
L− ∆− ∆2

λ1∆2 , R5 =
L− ∆− ∆2

λ3

(
L2 − ∆2

) . (10)
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We also have two resistances for the third layer:

R6 =
∆

λ1

[
L2 − (L− ∆)2

] , R7 =
∆

λ3(L− ∆)2 . (11)

The connection diagram of thermal resistances of the three layers of a unit cell is
shown in Figure 1c. For such a scheme, the total thermal resistance of the unit cell R can be
written as follows:

1
R

=

[(
1

R1
+

1
R2

+
1

R3

)−1
+

(
1

R4
+

1
R5

)−1
+

(
1

R6
+

1
R7

)−1
]−1

. (12)

After substituting the resistances determined by formulas (9)–(11) into relation (12)
and taking into account Formula (7), we obtain a dependence for determining the effective
thermal conductivity λiz of the three-component system with isothermal division of the
unit cell shown in Figure 1a

λiz
λ1

=

 cg

c2 + ν1c2
g + v2

(
1− c2 − c2

g

) +
1− с− сg

c2 + ν2(1− с2)
+

c

c(2− c) + ν2(1− с)2

]−1

(13)

where, as in Formula (8), c = ∆
L , cg =

∆g
L , ν1 = λ2

λ1
, ν2 = λ3

λ1
.

With a known volumetric concentration of the solid skeleton m1, the value of c can be
determined by formula [10]

c = 0.5 + sin
[

arcsin(2m1 − 1)
3

]
. (14)

On the other hand, if the value of c is known, then one can determine m1 [10]

3c2 − 2c3 = m1 (15)

as well as the porosity of the material

P = 1−m1 = 1− 3c2 + 2c3. (16)

As for the value of cg, it is necessary to show the scheme for its calculation. With
a known value of c and a wetting angle θ, we determine the boundary value of the
pore moisture content ψ

′′
P using the results of [7]. If the contact angle is unknown, then

based on the data for quartz sand, sandstone [9], and polymer [8], it can be taken as
equal to 45◦. For example, using Formula (6) of [7], for θ = 45◦ and c = 0.5, we obtain
ψ
′′
P = (5 + 13с)/[6(1 + 2с)] = 0.9583. Then the volumetric concentration of closed gas

inclusions in the pores is equal to 1 − ψ
′′
P = 0.0417 and, respectively, in the material

m2g =
(
1− ψ

′′
P
)

P = 0.02135. By definition, cg = 3
√m2g = 0.2774. With a decrease in the

contact angle θ, the value of cg increases. Thus, for θ = 0
◦

and c = 0.5, we have cg = 0.4029.
Note that the inequality cg < 1− c holds for 0◦ ≤ θ ≤ 90◦ and 0 < c < 1.

Calculations by formulas (8) and (13) give the lower λа and upper λiz estimates of
the effective thermal conductivity of a moist porous material, and its final value should be
determined as the arithmetic mean λ = 0.5(λа + λiz).

In what follows, we consider the derivation of the formula for a system whose gas
and liquid components are continuously distributed, interpenetrating each other. The
pore moisture content ψP is between two boundary values ψ′P ≤ ψP ≤ ψ

′′
P. In this range,

according to the percolation theory [5], two independent approaches are possible. In the
first approach, the structure of the gas component is specified as the main one, whereas in
the other, the structure of the liquid component is specified.
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3. Thermal Conductivity of a Three-Component System with a Specified Structure of
the Gas Component

This case in the form of the eighth part of the unit cell is shown in Figure 2. When
deriving the dependences, it is assumed that the size ∆g = cgL found for a closed gas
inclusion in the center of the cell does not change (cg = const) with an increase in the
volume concentration of gas m2 > m2g. Then, the increase in m2 leads to an increase only
in the size ∆m of the gas channels connecting the gas inclusion of size ∆g in the center of
the cells. In this case, the condition ∆m ≤ ∆g must be met.

Figure 2. The eighth part of a unit cell with a specified structure of a continuous gas component; 1, 2,
3—solid, gas, and liquid components, respectively.

After the division of the unit cell shown in Figure 2 with adiabatic planes and the
implementation of the procedure used to find Formula (8), a dependence is obtained to
determine the effective thermal conductivity λa (lower estimate) of the three-component
system with a continuous inclusion of the gas component

λa
λ1

= c2 + 2ν2c(1−с−сm)
1−c+ν2c + ν2

[
(1− c− cm)

2 −
(
cg − cm

)2
]
+ 2ν1ν2ccm

ν2cm+v1(1−c−cm)+v1v2c

+
2ν1ν2cm(1−c−cg)

ν1(1−cm)+ν2cm
+

v1v2(c2
g−с2

m)
v1(1−cg)+v2cg

+ v1c2
m

(17)

where ν1 = λ2/λ1, ν2 = λ3/λ1, c = ∆/L, cg = ∆g/L, cm = ∆m/L.
After dividing the same unit cell by isothermal planes into four layers and determining

the thermal resistances of each layer, and after transformations, as in the derivation of
Formula (13), we obtain the dependence for determining the effective thermal conductivity
λiz (upper estimate) of the three-component system under consideration

λiz
λ1

=

[
cm

c2+ν1[c2
g+2cm(1−cg)]+ν2[1−с2−с2

g−2cm(1−cg)]
+

cg−cm

c2+ν1c2
g+ν2(1−c2−c2

g)
+

1−c−сg

c2+ν1с2
m+ν2(1−c2−c2

m)
+ c

c(2−c)+v1c2
m+v2[1−c(2−c)−c2

m ]

]−1
(18)

where, as in (17), ν1 = λ2/λ1, ν2 = λ3/λ1, c = ∆/L, cg = ∆g/L, cm = ∆m/L.
Let us determine the value of cm at a known volumetric gas concentration m2 ≥ c3

g.
Figure 2 shows that the volume of the pore channels is Vm = 3∆2

m
(

L− ∆g
)
. On the other

hand, the same volume is equal to V2 − ∆3
g, where V2 is the total volume of gas in the cell.

After dividing these volumes by the cell volume V = L3, we come to the equation

3c2
m
(
1− cg

)
= m2 − с3

g, (19)

solving which we find the value of cm.
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According to Formula (19), at m2 = c3
g we have cm = 0. This indicates the disappear-

ance of gas channels connecting the gas inclusions in the center of the cells. The range
of formulas (8) and (13) is obtained by formulas (17) and (18). In this case, formulas (17)
and (18) provide a transition from a structure with a continuous gas phase (Figure 2) to a
structure with isolated gas inclusions (Figure 1).

4. Thermal Conductivity of a Three-Component System with a Specified Structure of
the Liquid Component

In this case, the unit cell has the form shown in Figure 3. For the cell under consid-
eration, the formulas for calculating the lower λa and upper λiz estimates were obtained
for the evaluation of the effective thermal conductivity of moist capillary-porous materials
using the method described above.

Figure 3. The eighth part of a unit cell with a specified structure of a continuous liquid component; 1,
2, 3—solid, gas, and liquid components, respectively.

After dividing the unit cell (Figure 3) with adiabatic planes, we obtain

λa
λ1

= c2 + v2(cn − c)2 + 2ν2c(сn−с)
1−c+ν2c + 2ν1ν2c(cx−cn)

ν2(1−cx)+v1(cx−c)+v1v2c

+ 2ν1ν2(cx−cn)(cn−c)
ν2(1−cx)+ν1cx

+ v1v2(cx−сn)
2

v2(1−cx)+v1cx
+ 2v1v2c(1−cx)

v2(1−cn)+v1(cn−c)+v1v2c

+ 2v1v2(cn−c)(1−cx)
v2(1−cn)+v1cn

+ ν1

[
(1− cn)

2 − (cx − cn)
2
] (20)

where ν1 = λ2/λ1, ν2 = λ3/λ1, c = ∆/L, cn = ∆n/L, cx = ∆x/L. The dependence
obtained by dividing the same unit cell with isothermal planes has the form:

λu
λ1

=

[
1−cx

c2+ν2(c2
n−c2)+ν1(1−c2

n)
+ cx−cn

c2+ν2(c2
x−c2)+ν1(1−c2

x)

+ cn−с
c2+ν2[2cn(1−cx)+(c2

x−c2)]+ν1[(1−cn)
2−(cx−cn)

2]

+ c
c(2−c)+v2[2(cn−c)(1−c)−(cn−c)2+(cx−cn)

2]+v1[(1−cn)
2−(cx−cn)

2]

]−1

(21)
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where, as in (20), ν1 = λ2/λ1, ν2 = λ3/λ1, c = ∆/L, cn = ∆n/L, cx = ∆x/L. The cx
value is related to the volume of the liquid at the rod node of the solid skeleton of the unit
cell Vy = ψyL3. The moisture content of the material in the rod node ψy is determined
from the condition that the pore moisture content is equal to the lower boundary value
ψ′P. Then, we obtain ψy = ψ′PP. Figure 3 shows that the volume of the liquid at the node is
(∆x − ∆)3 + 3∆(∆x − ∆)2 = ψyL3. By dividing the left and right sides of this expression by
the volume of the unit cell V = L3 and denoting cx − c = d, we obtain the cubic equation

d3 + 3cd2 = ψy, (22)

solving which we obtain the physically justified root d = cx − c (with a known value
c = ∆/L) and, therefore, the value cx.

In accordance with the theory of percolation [5], we assume that with an increase in
the total moisture content of the material ψ > ψy, the moisture content in the network node
ψy does not change (сx = const). With a known difference

(
ψ− ψy

)
, the cn = ∆n/L value

can be determined. As shown in Figure 3, the volume of liquid
(
ψ− ψy

)
L3 distributed over

the length (L− ∆x) of the three rods of the unit cell is equal to [(∆n − ∆) · ∆ · 2 + (∆n − ∆)] ·
3(L− ∆x) = 3(L− ∆x)

(
∆2

n − ∆2
)

. By dividing this equality by the cell volume V = L3,
we obtain a quadratic equation with an unknown cn

3(1− cx)
(

c2
n − c2

)
= ψ− ψy, (23)

the positive root of which gives the desired value of cn.
If after the application of Formula (23), it turns out that cn > cx, then it is necessary to

use formulas (17) and (18) to determine the thermal conductivity of the material.
From Formula (23) it follows that at ψ = ψy we obtain cn = c. Then Formulas (20)

and (21) are transformed to the forms of (23) and (28), presented in [7], which describe the
structure of a three-component system with isolated liquid inclusions. Thus, Formulas
(20) and (21) provide a smooth transition from the structure with a continuous liquid
component to a structure with isolated inclusions of liquid and vice versa. In addition, in
the absence of a liquid component, these formulas take the form of the known dependences
formulated for a system with two interpenetrating components [5] at the adiabatic

λa

λ1
= c2 + v(1− c)2 + 2vc(1− c)(vc + 1− c)−1 (24)

and isothermal
λiz
λ1

=

[
1− c

c2 + v(1− c2)
+

c

c(2− c) + v(1− c)2

]−1

(25)

division of a unit cell. Here, v = v1 = λ2/λ1.

5. Limitations of the Application of the Formulas

To determine limitations of the application of the formulas obtained herein, we use
the dependence of the pore moisture content ψP on the boundary values ψ′P and ψ

′′
P in the

following form:
ψP = K

(
ψ′P + ψ

′′
P
)

(26)

where K is a coefficient varying within the lower KN = ψ′P/
(
ψ′P + ψ

′′
P
)

and upper
KB = ψ

′′
P/
(
ψ′P + ψ

′′
P
)

boundaries. It is obvious that KN + KV = 1.
According to the assumptions made, formulas (20) and (21) can be used for determin-

ing the values of the coefficient K from the lower boundary of KN to some Km, for which
cn = cx. It is easy to assume that the results of calculating the thermal conductivity by
formulas (20) and (21) will differ from the results obtained by formulas (17) and (18), since
the former neglect the presence of the gas inclusion in the center of the unit cell, and the
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latter does not take into account the uneven distribution of the liquid component. It was of
interest to determine the value of Km, up to which formulas (20) and (21) can be used, and
at the same time compare the results obtained by formulas (20), (21) and (17), (18) for this
Km. A similar comparison was made for other K values from the range KN ≤ K ≤ KV . It
required doing calculations according to the indicated formulas.

These calculations were performed using a three-component system with the constant
volume concentration of the solid skeleton m1 = 0.5 (c = 0.5, P = 1− m1 = 0.5) and
thermal conductivity λ1 = 1.0 W/(m·K). The thermal conductivity of the gas and liquid
components, λ2 = 0.03 W/(m·K), and λ3 = 0.6 W/(m·K), respectively, was also constant.
Concentrations of the gas and liquid components varied depending on the moisture content
of the system. The wetting angle θ based on the data from [8,9] was taken as equal to 45◦.

First, let us determine the boundary values of the moisture content with respect to ψ′P
and ψ

′′
P at a wetting angle θ = 45 ◦. According to [8]

ψ′P =((1 + 8c))/[6(1 + 2c)] = 0.4167. (27)

According to [7]

ψ
′′
P =((5 + 13c))/[6(1 + 2c)] = 0.9583. (28)

Then we calculate the moisture content in the cell node ψy = ψ′PP = 0.20835. The value
cx = 0.8368 was found from the solution of the cubic Equation (22). Having given K from
the range KN ≤ K ≤ KV , using Equation (26), we calculate the pore moisture content ψP, by
which we determine the concentration of the liquid component m3 = ψPP = ψ, and then,
using Equation (23), we determine cn. Using the method of successive approximations, we
selected Km = 0.6237, at which cn = cx (accuracy 0.0001). Concentrations m3 = 0.4288 and
m2 = P−m3 = 0.0712 were found for this Km. Further, using formulas (20) and (21), the
thermal conductivities λa = 0.6149λ W/(m·K) and λiz = 0.7324 W/(m·K) were determined,
and the estimate of the effective thermal conductivity λ = 0.5(λa + λiz) = 0.6736 W/(m·K)
of the three-component system was calculated.

At the same concentrations of the components, the corresponding thermal conductivities
λa = 0.6163 W/(m·K), λiz = 0.7324 W/(m·K), and λ = 0.5(λa + λiz) = 0.6858 W/(m·K)
were found by formulas (17) and (18). The last result for λ exceeded the previous one by
1.77%. The smallest increase by 1.1% was observed at K = 0.52, and the largest was at the
lower border of K = KH = 0.303, amounting to 9.68%. At the upper border, K = KB = 0.697,
the relative difference was 2.22%. We came to similar results after performing calculations
for other values of the parameters с and θ. From a physical point of view, for KN ≤ K ≤ Km,
more accurate results should be given by formulas (20) and (21). Formulas (17) and (18)
can be applied in a rather narrow range of K from Km to KB.

6. Preparation of Initial Data for the Calculation

To perform calculations using the obtained formulas, it is necessary to know the
volume concentrations mi and thermal conductivities λi of the components. With the
known apparent density ρ and moisture content ψ of the material, as well as the density of
the solid skeleton ρs, which can be determined using pycnometry, the concentrations of the
components mi are determined quite simply: m1 = ρ/ρs, m3 = ψ and m2 = 1−m1 −m3.

The thermal conductivity of water (liquid component) λ3 W/(m·K) is easy to find by
the formula obtained by approximating the data [11]

λ3 = 0.551 + 0.256× 10−2t− 0.124× 10−4t2 (29)

where t is temperature in ◦C.
The thermal conductivity of vapor–air mixture λ2 (gas component) is the sum of

the thermal conductivity of dry air λair and thermal conductivity of vapor λv generated
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by diffusion transfer of vapor in the pore space. The first parameter is determined by
formula [6]

λair = 0.0257[1 + 0.003(t− 20)]. (30)

The λv value is determined by formula [5], based on the Krisher dependence [12],

λv =
D
µ
· M

RT
· pva

pva − pv
· dpv

dt
qt, (31)

where
D—diffusion coefficient of water vapor in still air, m2/s;
µ—coefficient of resistance to vapor diffusion through the pore space;
M—molecular weight of water vapor, kg/mol;
R—universal gas constant, J/(mol·K);
T—temperature of water vapor, K;
pva—total pressure of water vapor and air, Pa;
pv—partial pressure of water vapor, Pa;
qt—specific heat of water vaporization at the temperature t, J/kg.
When determining the diffusion coefficient of water vapor, the formula proposed by

R. Schirmer in 1938 is usually used [12,13]:

D =
2.305× 10−5

pva

(
T

273

)1.81
, p0 = 101, 323 Pa. (32)

The derivative dpv/dt can be determined using reference data or by formula [12]

dpv

dt
=

2.44314× 106

(234.175 + t)2 · exp
(

17.08085t
234.175 + t

)
, (0◦ ≤ t ≤ 109.9 ◦C). (33)

The dependence of the specific heat of water vaporization on temperature after ap-
proximation of the reference data has the form:

qt = (2.5− 0.0024t)× 106 (34)

The vapor diffusion resistance coefficient µ for a continuous gas component (, m2 > c3
g),

according to [8,14], can be determined by the formula

µ =
m2

c4∗
, (35)

where c∗ is calculated from Formula (14) after substitution of the solid component concen-
tration m1 with the gas component concentration m2. For closed gas inclusions (Figure 1,
m2 = c3

g) µ = 1.0.
In the first approximation, the thermal conductivity of the solid component λ1 can

be determined using Equations (24) and (25), in which λa and λiz are taken to be equal to
the thermal conductivity of dry material λ0, and then the values of the thermal conduc-
tivity of the solid skeleton are found by the method of iteration for the adiabatic λa

1 and
isothermal λiz

1 division of the unit cell. The average value λ1 = 0.5
(
λа

1 + λiz
1
)

is taken for
subsequent calculations.

Thus, to calculate the thermal conductivity of a moist material, a minimum amount of
experimental data for a dry material is required, i.e., the apparent density ρ of the material
and its skeleton density ρs, as well as the thermal conductivity λ0. The rest of the initial
data can be determined by calculations.

7. Calculation Examples

The features of calculating the effective thermal conductivity of a moist capillary-
porous material according to the formulas will be demonstrated by examples using exper-
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imental data for clay bricks presented in Table 1, obtained by us, and published in [15].
However, there is no information about the skeleton density ρs in [15].

Table 1. Experimental data for clay bricks obtained by us and published in [15] (ρ, ρs, λ0, ψ, λw),
results of calculations (λa, λiz, λ), and deviation between experimental (λw) and computational (λ)
values of thermal conductivity.

Calculation
Example

Experimental Data Results of Calculations
Deviation between λw and λ

Pkg/m3 ρs kg/m3 λ0 W/(m·K) ψ λw W/(m·K) λa W/(m·Kne) λiz W/(m·K) λ

1 1640 2650 0.74 0.291 1.107 0.9239 1.1677 1.0458 5.53

2 1600 2647 0.63 0.3 1.02 0.8148 1.0374 0.9261 9.2

3 1820 2683 0.69 0.23 1.0 0.804 1.031 0.9175 8.25

To determine the density ρs we constructed a linear regression equation based on data
from eight pairs of values of ρ and ρs for clay bricks with apparent density ρ from 1530 to
2120 kg/m3

ρ̂s = 2388 + 0.162ρ. (36)

The above equation based on the F (Fisher) test is effective with a confidence level of
0.95. The thermal conductivity of clay bricks depends on a large number of factors, and its
measured values in the n-element test show a significant dispersion characterized by the
standard deviation s. Based on the data of a representative test obtained on moist ceramic
samples with apparent density ρ from 1550 to 1850 kg/m3 [16], the coefficient of variation

Vλ (the ratio of s to the sample mean
¯
λ) was 0.16 (16%). According to our data obtained

for nine dry samples with apparent density ρ from 1510 to 1900kg/m3, the coefficient of
variation was 0.073.

Example 1. For three brick samples, the following average values were determined: the apparent
density ρ = 1640 kg/m3, the density of the solid skeleton ρs = 2650 kg/m3 according to pycnometry,
and the thermal conductivity of material in the dry state, λ0 = 0.74 W/(m·K), and in the water
saturated state, ( ψ = 0.291) λw = 1.107 W/(m·K). The thermal conductivity was measured by a
stationary method at a temperature of 20 ◦C. The contact angle θ was taken as equal to 45◦. The
same temperature and angle θ values were also used in the remaining examples.

In this case, we have volumetric concentration of the solid component m1 = ρ/ρs = 0.6189,
at which, according to (14), c = 0.5799 and porosity P = 1−m1 = 0.3811; concentration of
liquid m3 = ψ = 0.291 and gas m2 = P− ψ = 0.0901 components; and boundary values
ψ′P = 0.4352 and ψ

′′
P = 0.9676, and KH = 0.3102 and KB = 0.6898, calculated by formulas

(27), (28), and (26). The moisture content in the cell node ψP = ψ′PP = 0.16585, which from
the solution of Equation (22) cx = 0.866 was worked out. Then, by solving Equation (23),
cn = 0.80475 was determined. From the inequality cx > cn it follows that it is necessary to
use formulas (20) and (21) for calculating the thermal conductivity. As already noted, this
can be confirmed using the coefficient K determined by Formula (26). At ψ = 0.291, we
have the actual coefficient K = 0.5443, whose value does not exceed Km = 0.6213, which de-
termines the upper boundary of applicability of Formulas (20) and (21), and which is found
from the condition cx = cn To perform calculations using these formulas, it is necessary
to determine the values of the thermal conductivities of the components at the assumed
temperature of 20 ◦C. The thermal conductivity of the solid component λ1 was determined
using formulas (24) and (25), in which λa and λiz were equated to λ0 = 0.74 W/(m·K).
Then the values λа

1 = 2.11 W/(m·K) and λiz
1 = 1.39 W/(m·K) were found by the method

of successive approximations to calculate the accepted λ = 0.5(λа
1 + λiz

1 ) = 1.75 W/(m·K).
Before determining the thermal conductivity of the gas component λ2, it was worked

out that its concentration m2 = 0.0901 exceeds the gas concentration in the center of the
unit cell m2g =

(
1− ψ

′′
P
)

P = 0.0324 = c3
g; therefore, the gas component is continuous

(Figure 2). In this case, the vapor diffusion resistance coefficient µ = 72.88 is determined
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by Formula (35). Using Equation (31), the thermal conductivity of the diffusing vapor
λv = 0.001 W/(m·K) was calculated. According to Formula (30), the thermal conductivity
of dry air is equal to λair = 0.0257 W/(m·K). The thermal conductivity of the gas component
(vapor–air mixture) is found by summation [5] λ2 = λv + λair = 0.0267 W/(m·K).

The thermal conductivity of the liquid component, calculated by Formula (29), is equal
to λ3 = 0.597 W/(m·K).

After completing the initial data, the thermal conductivity λa = 0.9239 W/(m·K) was cal-
culated according to Formula (20) and λiz = 1.1677 W/(m·K) according to Formula (21), and the
effective thermal conductivity of the material was found λ = 0.5(λa + λiz) = 1.0458 W/(m·K),
which turned out to be 5.53% lower than the experimental value.

Example 2. According to [15], a clay brick with apparent density ρ = 1600 kg/m3 had the thermal
conductivity λ0 = 0.63 W/(m·K) in a dry state and λw = 1.02 W/(m·K) in a water-saturated
state ( ψ = 0.3 ). The density of the skeleton of the material ρs = 2647 kg/m3 was determined by
Formula (36).

Further, as in example 1, the initial data necessary for the calculation were estab-
lished, and according to formulas (20) and (21), the lower λa = 0.8148 W/(m·K) and
upper λiz = 1.0374 W/(m·K) estimates of the thermal conductivity of the material were
determined. The accepted estimate of the effective thermal conductivity of the material
λ = 0.5(λa + λiz) = 0.9261 W/(m·K) is 9.2% lower than the experimental value.

Example 3. According to [15], for a clay brick we have ρ = 1820 kg/m3, λ0 = 0.69 W/(m·K),
and λw = 1.0 W/(m·K) at ψ = 0.23 (water saturation). By Formula (36), ρs = 2683 kg/m3.
On the basis of this information, as before, the initial data were prepared by calculations using
formulas (20) and (21): λa = 0.804 W/(m·K), and λiz = 1.031 W/(m·K). The average value
λ = 0.5(λa + λiz) = 0.9175 W/(m·K), taken as an estimate of the effective thermal conductivity
of the material, turned out to be 8.25% lower than the experimental value λw = 1.0 W/(m·K).
As is shown in Table 1, the deviations of the calculated values of λ from the experimental ones
observed in these examples are practically two times less than the mentioned coefficient of variation
Vλ = 16% (relative standard deviation). Therefore, there is reason to believe that the proposed
formulas with reliable experimental data are capable of predicting the thermal conductivity of moist
capillary-porous wall materials with sufficient accuracy.

8. Conclusions

Several equations were constructed to determine the effective thermal conductivity
of moist capillary-porous materials, the pore moisture content of which, with free liquid
absorption, may vary from hygroscopic level to full saturation. These materials were consid-
ered heterogeneous three-component systems consisting of a solid skeleton, gas (vapor–air
mixture), and liquid (water). Thermal conductivities and volumetric concentrations of all
components were simultaneously taken into account, and the methods of the theory of
generalized conductivity were used for the analysis of heat transfer in such systems. The
structure of the solid skeleton was modeled by an ordered structure of identical unit cells
of the simplest, cubic shape.

Changes in the binary structure of interconnected liquid and gas components were
analyzed as the pores were filled with liquid. First, liquid inclusions, then continuous
components of liquid and gas, and, finally, closed gas inclusions were considered. The
geometric model of the three-component unit cell of each of these structures was described
according to the theory of percolation, and for each unit cell, equations were constructed to
determine its thermal conductivity during adiabatic and isothermal division. Moreover,
limitations of the application of these equations were determined.

From a physical and practical point of view, it is expedient, first of all, to use
Formulas (20) and (21), which provide a smooth transition from a structure with a con-
tinuous liquid component to a structure with isolated liquid inclusions and vice versa,
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and allow determination of the thermal conductivity of a moist material up to the state
of free saturation with water. The scope and method of preparing preliminary data for
calculations were explained. The details of the calculations according to the proposed
formulas were demonstrated by examples using experimental data for clay bricks. It was
found that formulas (20) and (21) are capable of predicting the thermal conductivity of wet
capillary-porous wall materials with sufficient accuracy.

The developed methodology of calculation of thermal conductivity of moist capillary-
porous materials can be useful for the sustainable design of new buildings and renovation
of historic ones.
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