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Abstract: CDMs can provide a discrete classification of mastery skills to diagnose relevant conceptions
immediately for Education Sustainable Development. Due to the problem of parametric CDMs with
only a few training sample sizes in small classroom teaching situations and the lack of a nonparametric
model for classifying error patterns, two nonparametric weighted cognitive diagnosis models, NWSD
and NWBD, for classifying mastery skills and knowledge bugs were proposed, respectively. In both,
the variances of items with respect to the ideal responses were considered for computing the weighted
Hamming distance, and the inverse distances between the observed and ideal responses were used
as weights to obtain the probabilities of the mastering attributes of a student. Conversely, NWBD can
classify students’ “bugs”, so teachers can provide suitable examples for precision assistance before
teaching non-mastery skills. According to the experimental results on simulated and real datasets,
the proposed methods outperform some standard methods in a small-class situation. The results also
demonstrate that a remedial course with NWSD and NWBD is better than one with traditional group
remedial teaching.

Keywords: nonparametric cognitive diagnosis; skill; misconception; error pattern; small class

1. Introduction

Analyzing real-time formative assessments from students to give them relevant and
personally recommended learning resources for reducing their cognitive loads is a crucial
function of Smart Education (SE) when putting Education Sustainable Development (ESD)
into practice [1,2]. In classroom instruction, teachers try to assess what students have learned
and identify their strengths and weaknesses to provide appropriate personalized help to
each student [3–5]. However, diagnosing students’ learning skills and administering differ-
ent individualized instructions is challenging, especially for a complex teaching skill [6,7].
Additionally, students with some misconceptions may have systematic errors that interfere
with their learning [8–11]. This misconception is generated from students’ prior learning of
numbers: they want to use the same concept to solve the new problem [10–14]. If teachers can
identify students’ misconceptions and design appropriate feedback, students’ later learning
can be improved significantly [15].

Many research areas have tried to classify students’ strengths and weaknesses. One is
based on knowledge space, such as knowledge structure-based adaptive testing [5,16] and
meta-knowledge dictionary learning [17]. Another is knowledge tracing models such as deep
learning knowledge tracing [18]. The next is cognitive diagnosis models (CDMs), developed
to classify the presence and absence of skills or error types. Moreover, CDMs can provide
teachers with finer-grain information than unidimensional item response theory [9,19–25].
CDMs are good tools for improving the diagnosis of learning outcomes and have been used in
varied applications, such as language assessment [26–29], psychology [24,30], and international
examinations [31–33].

Most CDMs are parametric, such as the deterministic input noisy “and” gate (DINA)
model, a popular and commonly used CDM. The DINA model uses a slipping parameter and

Sustainability 2022, 14, 5773. https://doi.org/10.3390/su14105773 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14105773
https://doi.org/10.3390/su14105773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5059-8256
https://doi.org/10.3390/su14105773
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14105773?type=check_update&version=2


Sustainability 2022, 14, 5773 2 of 17

a guessing parameter of an item to simulate the probabilities of a correct answer [20,21,23,34].
The generalized DINA (G-DINA) model considers the interaction between skills; therefore,
it contains more parameters that must be estimated [35]. DINA and G-DINA are robust
CDM models and can usually be used for diagnosing mastery skills. In 2021, the G-DINA
model framework was applied to investigate primary students’ strengths and weaknesses
in five digital literacy skills [36]. The bug deterministic input noisy “or” gate (Bug-DINO)
model was developed to classify misconceptions [9]. In parametric models, the classification
performance relies on estimation methods such as Markov Chain Monte Carlo (MCMC) or
expectation maximization (EM) algorithms. The classification performance is also influenced
by the sample size [19,37].

A nonparametric cognitive diagnosis model (NPCD) based on the nearest neighbor
classifier concept was, therefore, proposed to classify skill mastery patterns. The idea
is to classify the observed response vector for a student on a test by finding the closest
neighbor among the ideal response patterns determined by the candidates of skill mastery
patterns and the Q-matrix of the test. Next, the skill mastery pattern with respect to the
ideal response with the closest distance is assigned to the student. Hence, NPCD can be
applied to a sample size of 1 without parameter estimation [19] and is more suitable for
small-class teaching situations. However, NPCD poses a challenge: more than one ideal
response may have the “same and shortest (closest) distance” to the observed response.
NPCD randomly selects one of the corresponding candidates of mastery skill patterns and
assigns it to the student. In addition, the NPCD with the weighted Hamming distance
requires the observed responses of students to estimate variances of items. Hence, it cannot
be applied to a small class or just one person for personalized learning.

Therefore, this study proposed a nonparametric weighted skill diagnosis (NWSD)
model, which integrates cognitive attribute groups to obtain students’ proficiency in various
skills and solves the problems encountered by applying NPCD. Furthermore, the variances
of ideal responses were applied as weights instead of variances estimated by observed
responses of students. This study also extended the NWSD model to the nonparametric
weighted bug diagnosis (NWBD) model, which can help teachers diagnose students’ error
types in small classes.

2. NPCD Model

CDMs can be used to provide diagnostic conclusions about examinees’ mastery skills.
Some are according to a given Q-matrix of a test and their responses [31,34,35,38]. For a
test with J items and K attributes with respect to these items, the Q-matrix is as follows:

Q =
[
qjk

]
j=1,2,...,J,k=1,2,...,K

(1)

which is a j× k matrix with each row indicating the required attributes of an item, playing
a vital role in CDMs. If the jth item required a kth attribute, then qjk = 1; otherwise,
qjk = 0 [39,40]. In the conjunctive model, such as the DINA model, students should have all
the required attributes of an item, and only then can they answer the item correctly [22,23].
However, in the disjunctive model, such as the deterministic input noisy “or” gate (DINO)
model, if students have just one of the required attributes, they have the response 1 of the
item. If students have none of the required attributes, they have the response 0 [24]. The
idea of a conjunctive model is used to classify mastery skills, so the term “skill” is used
instead of the attribute for the conjunctive model.

According to the given Q-matrix of a test, one can have 2K mastery candidate patterns:

α` = [α`1, α`2, . . . , α`K], ` = 1, 2, . . . , 2K (2)



Sustainability 2022, 14, 5773 3 of 17

For a student, α`k = 1 indicates the student’s mastery of the kth skill, and α`k = 0
indicates that the student does not have the kth skill. The ideal responses

η` =
[
η`1, η`2, . . . , η`J

]
, ` = 1, 2, . . . , 2k (3)

with respect to the mastery candidate pattern α` for a conjunctive model can be com-
puted using

η`k =
K

∏
k=1

α
qjk
`k , ` = 1, 2, . . . , 2k, j = 1, 2, . . . , J. (4)

In the NPCD model, the distances between an observed response and the ideal re-
sponses are determined according to the Q-matrix [19]. If the observed response of the ith
student is

xi =
[
xi1, xi2, . . . , xij

]
, (5)

the Hamming distance

dH(xi, η`) =
J

∑
j=1

∣∣∣xij − η`j

∣∣∣ (6)

can be used to calculate the distance between the observed and ideal responses, and then the
master pattern αi is determined according to the master pattern candidate with response
to the ideal response whose distance is the minimum, that is,

αi = α ˆ̀ , ˆ̀ = argmin
`

dH(xi, η`). (7)

However, in some situations, more than one distance between the observed response
and the ideal responses is the same, and the distance is the minimum distance:

αi ∈ {α ˆ̀1
, α ˆ̀2

, . . . ,α ˆ̀v
} (8)

where ˆ̀1, ˆ̀2, . . . , ˆ̀v = argmin
`

dH(xi,η`). In this case, NPCD randomly selects one of the

corresponding mastery pattern candidates for the student. This may reduce the classifica-
tion accuracy.

Chiu and Douglas proposed a weighted Hamming distance

dWH(xi, η`) =
J

∑
j=1

1
pj
(
1− pj

) ∣∣∣xij − η`j

∣∣∣, (9)

where pj is the correct rate of the jth item [19]. Therefore, the larger the variance of an item,
the more crucial the corresponding component in the weighted Hamming distance because
NPCD tries to identify mastery patterns according to the smallest distance.

Because NPCD only uses distance measures to calculate the similarities, NPCD does
not need more students’ responses to estimate parameters. Especially if NPCD with the
Hamming distance is considered, it is suitable for estimating only one student’s mastery
pattern. However, if using NPCD with the weighted Hamming distance, the parameter pj
should be estimated according to students’ observed responses. Therefore, NPCD with the
weighted Hamming distance is also unsuitable for very small classes.

3. The Proposed Method: Nonparametric Weighted Cognitive Diagnosis

For applying the weighted Hamming distance in a small class, the variances of the
ideal responses are used instead of the variances of the students’ observed responses.
Moreover, the normalized reciprocals of the weighted Hamming distances are considered
as weights to combine the mastery/bug patterns to obtain the probabilities of mastering
skills or existing bugs. They are the proposed NWSD and NWBD, respectively—both of
which are the nonparametric weighted cognitive diagnosis (NWCD) method.
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3.1. NWSD Model

The NWSD model based on the concept of expected a posteriori (EAP) probabilities
was proposed to solve the problem of NPCD, namely, the fact that some mastery patterns
are related to an ideal response. The marginal skill probability of the student i for mastery
pattern ` is also calculated as the sum of all a posteriori P(α`|xi) , that is,

α̃i = ∑2K

`=1 P(α`|xi)α`, (10)

where the a posteriori is estimated according to the normalized inverse distance for the
observed response to the ideal responses, that is,

P(α`|xi) =
dWH(xi, η`)

−1

∑2K
u=1 dWH(xi, ηu)

−1 . (11)

Therefore, the ith student’s mastery probabilities of skills are estimated as

α̃i = [α̃i1, α̃i2, . . . , α̃iK] =
2K

∑
`=1

dWH(xi, η`)
−1

∑2K
u=1 dWH(xi, ηu)

−1 α`. (12)

Note that the same notation of the weighted Hamming distance dWH(xi,η`) is used in
NWSD, but the weights are calculated according to the variances of the ideal responses,
that is,

dWH(xi, η`) = ∑J
j=1

1

pj

(
1− pj

) ∣∣∣xij − η`j

∣∣∣, (13)

where

pj =
∑2K

`=1 η`j

2k , j = 1, 2, . . . , J. (14)

For deducing the discrete skill class, if the kth skill probability (kth component of
αi = [αi1, αi2, . . . , αiK]) is greater than or equal to a given threshold εs, then NWSD classifies
that the examinee has mastered the kth skill. Otherwise, if the kth skill probability is smaller
than εs, then NWSD classifies that the examinee has not mastered the kth skill. Therefore,

αik =

{
1 i f α̃ik > εs

0 i f α̃ik ≤ εs
. (15)

In addition, if only the smallest distance from the observed response and ideal re-
sponses is considered, the smallest distance is set to 1, and the other distances are set to 0,
then the proposed NWSD degenerates to NPCD. A commonly used threshold for CDMs is
0.5 [3,41,42].

3.2. NWBD Model

The idea of a disjunctive model is used to classify existing bugs or misconceptions, and
hence, the term “bug” is used to indicate a student has error types or misconceptions instead
of the attribute for the disjunctive model. Moreover, the term “M-matrix (M =

[
mjr
]
, an

J × R matrix)” is used instead of “Q-matrix” for ease of understanding. For NWBD, the
corresponding bug patterns are

βt =
[
βt1, βt2, . . . , βtR

]
, t = 1, 2, . . . , 2R. (16)

Moreover, the bug ideal responses are

γt =
[
γt1, γt2, . . . , γtJ

]
, t = 1, 2, . . . , 2R, (17)
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where

γtj =
R

∏
r=1

(
1− βtr

)mjr . (18)

Note that if a student whose bug pattern is βi ∈
{
βt
}

t=1,2,...,2R has at least one
misconception of the jth item, then γij = 0, where

γij =
R

∏
r=1

(1− βir)
mjr . (19)

Otherwise, if a student does not have any bugs with the jth item, then γij = 1. Similar
to NWSD, the weights of the weighted Hamming distance are calculated using the variances
of the bug ideal responses:

dWH(xi, γt) = ∑J
j=1

1

pj

(
1− pj

) ∣∣∣xij − γtj

∣∣∣, (20)

where

pj =
∑2R

t=1 γtj

2k , j = 1, 2, . . . , J. (21)

Finally, the a posteriori of the EAP,

P
(

βt

∣∣∣xi

)
=

dWH(xi,γt)
−1

∑2R
v=1 dWH(xi,γv)

−1 , (22)

is used to integrate the bug candidate patterns βt, t = 1, 2, . . . , 2R, and the probabilities of
bugs of the student, β̃i1, β̃i2, . . . , β̃iR, can be obtained by

β̃i =
[

β̃i1, β̃i2, . . . , β̃iR

]
= ∑2R

t=1
dWH(xi,γt)

−1

∑2R
v=1 dWH(xi,γv)

−1 βt. (23)

If β̃ir is greater than a given threshold εb, then the estimated bug βir = 1 in the bug
pattern βi = [βi1, βi2, . . . , βiR].

3.3. A Nonparametric CDM Website

A web graphical user interface (GUI) was developed using R shiny [43] and can
be found at https://chenghsuanli.shinyapps.io/NPWCD/ (accessed on 18 March 2022).
Figure 1 presents the diagnostic results of examinees by applying NWSD from the website.
Teachers can obtain the list of mastery skills through the following four steps by the chosen
nonparametric CDMs.

1. Upload the Q-matrix saved in a CSV (Comma-Separated Values) file.
2. Upload students’ responses saved in a CSV file.
3. Choose the nonparametric CDMs, NPCD, NWSD, or NWBD from the method list.
4. Press the “Go” button to obtain the mastery profiles of students.

From Figure 1, teachers can find the first six rows of the Q-matrix and responses to
help them check the data. Moreover, the final mastery profile will be shown at the bottom
of the right panel after they press the “Go” button. If teachers want to save the mastery
profile, they can press the “Download” bottom to keep the mastery profile in a CSV file.

https://chenghsuanli.shinyapps.io/NPWCD/


Sustainability 2022, 14, 5773 6 of 17Sustainability 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 
Figure 1. Diagnostic results of examinees by applying NWSD from the website. 

From Figure 1, teachers can find the first six rows of the Q-matrix and responses to 
help them check the data. Moreover, the final mastery profile will be shown at the bottom 
of the right panel after they press the “Go” button. If teachers want to save the mastery 
profile, they can press the “Download” bottom to keep the mastery profile in a CSV file. 

4. Simulation Studies on Artificial and Real Datasets 
Two cases of simulated datasets were used to verify the proposed methods, NWSD 

and NWBD, in the small-class situation. Case 1 was generated according to the simulta-
neously identifying skills and misconceptions (SISM) model [37]. The other (Case 2) was 
randomly selected observed responses from a real dataset [37,44,45] to form small-class 
datasets. 

Two classification agreement rates, the pattern-wise agreement rate (PAR), 

PAR = 1𝐼 ෍ ෑ 𝛿(𝛼௜௞, 𝛼ො௜௞)௄
௞ୀଵ

ூ
௜ୀଵ  (24) 

for classifying skills, and 

PAR = 1𝐼 ෍ ෑ 𝛿(𝛽௜௥, 𝛽መ௜௥)ோ
௥ୀଵ

ூ
௜ୀଵ  (25) 

for classifying bugs, and the attribute-wise agreement rate (AAR), 

AAR = 1𝐼 × 𝐾 ෍ ෍ 𝛿(𝛼௜௞, 𝛼ො௜௞)௄
௞ୀଵ

ூ
௜ୀଵ  (26) 

for classifying skills, and 

Figure 1. Diagnostic results of examinees by applying NWSD from the website.

4. Simulation Studies on Artificial and Real Datasets

Two cases of simulated datasets were used to verify the proposed methods, NWSD and
NWBD, in the small-class situation. Case 1 was generated according to the simultaneously
identifying skills and misconceptions (SISM) model [37]. The other (Case 2) was randomly
selected observed responses from a real dataset [37,44,45] to form small-class datasets.

Two classification agreement rates, the pattern-wise agreement rate (PAR),

PAR =
1
I

I

∑
i=1

K

∏
k=1

δ(αik, α̂ik) (24)

for classifying skills, and

PAR =
1
I

I

∑
i=1

R

∏
r=1

δ
(

βir, β̂ir
)

(25)

for classifying bugs, and the attribute-wise agreement rate (AAR),

AAR =
1

I × K

I

∑
i=1

K

∑
k=1

δ(αik, α̂ik) (26)

for classifying skills, and

AAR =
1

I × R

I

∑
i=1

R

∑
r=1

δ
(

βir, β̂ir
)

(27)

for classifying bugs, were computed for comparison, where I indicates the number of students;

δ(a, b) =

{
1 i f a = b
0 i f a 6= b

; (28)
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αik and βir for k = 1, 2, . . . , K, r = 1, 2, . . . , R indicate the true attributes (skill or bug) of the
ith student, respectively; α̂ik and β̂ir for k = 1, 2, . . . , K, r = 1, 2, . . . , R indicate the estimated
attributes from the CDM model of the ith student, respectively. The mean and the standard
deviation of 500 replications of AARs and PARs were computed for the comparison [44].

4.1. Case 1

In Case 1, the simulated dataset was generated from SISM according to the Q-matrix,
the M-matrix presented in Table 1, and the following parameter setting: h = 0.95, ω = 0.15,
g = 0.35, and ε = 0.05. These parameters were related to (a) the success probability of
students who have mastered all skills and possess no bugs, (b) the success probability
of students who have mastered all skills but possess at least one bug, (c) the success
probability of students who have not mastered all skills and possess no bugs, and (d) the
success probability of students who have not mastered all skills and possess at least one
bug, respectively [37,46,47]. These settings were related to the high-quality items because
the success probability of students who mastered all skills and possessed no bugs (h) was
higher, and the remaining parameters (ω, g, and ε) were quite lower values. The simulated
test included 17 items, 4 required skills (S1–S4), and 3 existing bugs (B1–B3). To discuss the
small-class situation, three sample sizes (I = 20, 50, and 100) of students were generated
and analyzed.

Table 1. Q-matrix and M-matrix of Case 1.

Item
Q-Matrix (w.r.t. Skills) M-Matrix (w.r.t. Bugs)

S1 S2 S3 S4 B1 B2 B3

1 1 0 0 0 0 0 0
2 0 1 0 0 0 0 0
3 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0
5 1 0 0 0 1 0 0
6 0 1 0 0 1 0 0
7 0 0 1 0 0 0 1
8 0 0 0 1 0 1 0
9 1 1 0 0 1 0 0

10 1 0 1 0 0 0 1
11 1 0 0 1 0 0 1
12 0 1 1 0 0 0 1
13 0 1 0 1 0 1 1
14 0 0 1 1 0 1 1
15 1 0 1 0 1 1 0
16 1 1 0 1 1 1 0
17 0 1 1 1 1 1 0

Tables 2 and 3 present the average classification agreements for skills and bugs, re-
spectively. For classifying skills, no matter the model, the classification agreements were
consistent among I = 20, 50, and 100. Moreover, AARs and PARs were above 0.8100 and
0.4500, respectively. The highest average AARs and PARs among I = 20, 50, and 100 were
obtained from the proposed NWSD. They were >0.8400 and >0.5100, respectively. Similar
results are presented in Table 3 for classifying bugs. The average classification agreements
of AARs and PARs of NWBD were higher than those of Bug-DINO. In addition, they were
>0.7800 and >0.4800, respectively.
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Table 2. Average AARs and PARs of DINA, G-DINA, NPCD, and NWSD models in Case 1 (corre-
sponding standard deviations are shown in parentheses).

Model Classification
Agreement Rate I = 20 I = 50 I = 100

DINA
AAR 0.8137

(0.06)
0.8194
(0.04)

0.8281
(0.03)

PAR 0.4588
(0.13)

0.4673
(0.09)

0.4812
(0.07)

G-DINA
AAR 0.8248

(0.05)
0.8195
(0.03)

0.8225
(0.03)

PAR 0.4741
(0.12)

0.4591
(0.08)

0.4624
(0.07)

NPCD
AAR 0.8297

(0.04)
0.8337
(0.03)

0.8328
(0.02)

PAR 0.4965
(0.11)

0.5023
(0.07)

0.4981
(0.05)

NWSD
AAR 0.8437

(0.05)
0.8496
(0.03)

0.8509
(0.02)

PAR 0.5130
(0.12)

0.5243
(0.07)

0.5253
(0.05)

Table 3. Average AARs and PARs of Bug-DINO and NWBD models in Case 1 (corresponding
standard deviations are shown in parentheses).

Model Classification
Agreement Rate I = 20 I = 50 I = 100

Bug-DINO
AAR 0.7158

(0.06)
0.7233
(0.05)

0.7215
(0.03)

PAR 0.3683
(0.10)

0.3825
(0.07)

0.3799
(0.05)

NWBD
AAR 0.7818

(0.06)
0.7966
(0.05)

0.8010
(0.03)

PAR 0.4850
(0.12)

0.5121
(0.08)

0.5201
(0.05)

4.2. Case 2

Real-world data, the fraction multiplication data, were applied to verify the proposed
NWCD model method to demonstrate the real-world application of our CDM [37,44,45].
There were 286 grade 3 students from elementary schools in Taiwan participating in the test.
This test has seven open-ended fraction multiplication items. Four skills for diagnosis were
considered in the test: S1 (the ability to multiply a whole number by a fraction), S2 (the
ability to multiply a fraction by a fraction), S3 (the ability to reduce the answer to its lowest
terms), and S4 (the ability to solve a two-step problem). Moreover, the experts indicated
three bugs: B1 (turning the second fraction upside down when multiplying a fraction
by a fraction), B2 (solving only the first step of a two-step problem), and B3 (performing
incorrect arithmetic operations when confused about the relational terms). The Q-matrix
with respect to these misconceptions is presented in Table 4.
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Table 4. Q-matrix and M-matrix of Case 1.

Item
Q-Matrix (w.r.t. Skills) M-Matrix (w.r.t. Bugs)

S1 S2 S3 S4 B1 B2 B3

1 1 1 0 1 1 1 0
2 0 1 1 0 1 0 0
3 0 1 0 1 0 1 1
4 1 1 0 1 1 1 0
5 1 1 1 1 1 1 0
6 1 1 0 1 1 1 0
7 0 1 1 1 0 1 0

Students who participated in the test were required to write down their problem-solving
processes of items in detail while selecting a choice of answers. Moreover, a group of experts
identified students’ latent skills and existing bugs according to their recorded problem-solving
processes. These were the benchmarks of students for comparison [37,44,45]. For simulating
small-class teaching, similar to Case 1, three sample sizes, I = 20, 50, and 100, were randomly
selected from 286 students in the whole dataset.

Tables 5 and 6 present the average classification agreements for skills and bugs, re-
spectively. For classifying skills, no matter the model, the classification agreements were
consistent among I = 20, 50, and 100. Moreover, AARs and PARs of DINA, NPCD, and
NWSD were >0.7700 and >0.4700, respectively. The highest average AARs and PARs
among I = 20, 50, and 100 were obtained from the proposed NWSD. They were >0.8300 and
>0.6400, respectively. The average classification agreements were a little poor and may be
influenced by the test design (i.e., the type of Q-matrix). Similar results are presented in
Table 6 for classifying bugs. The average classification agreements of AARs and PARs of
NWBD are >0.7680 and >0.4200, respectively, which are higher than those of Bug-DINO.

Table 5. Average AARs and PARs of DINA, G-DINA, NPCD, and NWSD models in Case 2 (corre-
sponding standard deviations are shown in parentheses).

Model Classification
Agreement Rate I = 20 I = 50 I = 100

DINA
AAR 0.7716

(0.06)
0.7797
(0.04)

0.7774
(0.03)

PAR 0.4776
(0.13)

0.4849
(0.10)

0.4783
(0.07)

G-DINA
AAR 0.5438

(0.07)
0.5498
(0.07)

0.5505
(0.07)

PAR 0.0814
(0.08)

0.1026
(0.08)

0.1138
(0.09)

NPCD
AAR 0.7894

(0.06)
0.7893
(0.03)

0.7875
(0.02)

PAR 0.5370
(0.12)

0.5368
(0.06)

0.5366
(0.04)

NWSD
AAR 0.8387

(0.07)
0.8408
(0.03)

0.8392
(0.02)

PAR 0.6495
(0.14)

0.6532
(0.07)

0.6483
(0.04)
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Table 6. Average AARs and PARs of Bug-DINO and NWBD models in Case 2 (corresponding
standard deviations are shown in parentheses).

Model Classification
Agreement Rate I = 20 I = 50 I = 100

Bug-DINO
AAR 0.7161

(0.06)
0.7162
(0.03)

0.7161
(0.02)

PAR 0.3972
(0.10)

0.3923
(0.06)

0.3932
(0.04)

NWBD
AAR 0.7695

(0.06)
0.7684
(0.03)

0.7680
(0.02)

PAR 0.4422
(0.12)

0.4311
(0.07)

0.4292
(0.05)

5. Experiments on Remedial Instruction

Two experiments were conducted on remedial instruction. One considered only the
required skills for a test, and the other considered both required skills and existing bugs,
which requires teachers’ experiences in teaching based on which they can indicate existing
bugs for a given test. Two remedial instruction groups, the personalized instruction group
according to the report by the NWCD model (experimental group) and traditional group
remedial teaching (control group), were considered.

5.1. Personalized Instruction Based on NWSD

Ninety-four eighth-grade students from a Taiwanese junior high school participated
in this study. The students were from 2 classes, and each had 47 students. One class
was randomly selected as the experimental group and the other as the control group. All
participants attended the high school mathematics class, “Series and Arithmetic Series”.
The same curriculum was used for both groups.

The pretest and posttest (20 items each) were designed based on five skills (Table 7).
Thus, both have the same Q-matrix (Table 8). In the experimental group, the personalized
mastery patterns of individuals were provided according to NWSD with the dichotomous
responses and Q-matrix. Moreover, individuals learned through videos from the “Adaptive
Learning Platform” [48] according to their lack of skills. The period was 40 min. Note that
individuals’ learning time may be different because the lack of skills may be different. In the
control group, the traditional group remedial instruction based on the result of the pretest
was performed by the teacher in 40 min (Figure 2). The control factors were eighth-grade
students, instruction time, pretest time, and posttest time.

Table 7. Five skills from the mathematical topic, “Series and Arithmetic Series”.

Skill Description

S1 Understanding the meaning of a series
S2 Understanding the meaning of an arithmetic series
S3 Calculate the sum of a finite arithmetic series
S4 Understanding and applying the formulation of the sum of a finite arithmetic series
S5 Applying the formulation of the sum of a finite arithmetic series to a real-world problem

Table 8. Q-matrix for the 20-item test assessing five skills.

Item S1 S2 S3 S4 S5 Item S1 S2 S3 S4 S5

1 1 0 0 0 0 11 0 1 1 0 0
2 0 1 0 0 0 12 0 1 0 1 0
3 0 1 0 0 0 13 0 1 0 0 1
4 0 0 1 0 0 14 0 0 1 1 0
5 0 0 0 1 0 15 0 0 1 0 1
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Table 8. Cont.

Item S1 S2 S3 S4 S5 Item S1 S2 S3 S4 S5

6 0 0 0 0 1 16 1 1 1 0 0
7 1 1 0 0 0 17 1 1 0 1 0
8 1 0 1 0 0 18 1 1 0 0 1
9 1 0 0 1 0 19 1 0 1 0 1

10 1 0 0 0 1 20 1 1 1 1 1
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To investigate whether students improved after participating in the remedial instruc-
tions, a paired sample t-test was applied, and the results are shown in Table 9. The differ-
ences in mean scores between pretest and posttest were 27.021 and 3.255 for the individual
remedial instruction by teaching videos from the “Adaptive Learning Platform” based on
the reports from NWSD (the experimental group) and for the traditional group teaching
(control group), respectively. Table 9 also shows that the average score of the posttest was
statistically significantly higher than the average pretest score for both groups. Hence, the
students who participated in both remedial instructions showed an improvement in their
learning performance.

Table 9. Results of difference in scores between pretest and posttest for three groups.

Group Mean Pretest Score Mean Post-Test
Score t-Value

Experimental Group 46.596 73.617 14.598 ***
Control Group 66.851 70.105 2.295 *

Note. * p < 0.05, *** p < 0.001.

The differences in learning effectiveness of the different remedial instructions were
compared using an analysis of covariance. The homogeneity of variance assumes that both
groups had acceptable and equal error variances (F = 1.475; p = 0.228), as determined using
Levene’s test. Moreover, the homogeneity for regression coefficients within both groups
was confirmed because the assumption for homogeneity of regression coefficients was also
conducted (F = 2.296; p = 0.133).

Table 10 presents the results of ANCOVA, demonstrating the effect of two remedial
instructions on posttest scores after adjusting for the effect of the pretest scores. A signif-
icant difference is noted in posttest scores between the two groups (F = 54.960 ***). The
results of Fisher’s least significant difference (LSD) reveal that the experimental group
significantly outperformed the control group (13.658, p < 0.001) because individuals re-
ceived personalized learning videos according to their lack of skills determined by the
proposed NWSD.
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Table 10. Results of ANCOVA on the learning effectiveness of the two remedial instructions.

Variable Level Mean a (SE) F Values Post Hoc b

Pretest 112.031 ***

DTRIP Experimental
Group 78.691 54.960 *** Experimental Group > Control Group ***

Control Group 65.032
Note. *** p < 0.001. DTRIP: Different types of classes. a = Covariates appearing in the model are evaluated at the following
value: 56.72. b = Adjustment for multiple comparisons: least significant difference (equivalent to no adjustments).

5.2. Personalized Instruction Based on NWSD and NWBD

Sixty-seven students from the ninth grade of a Taiwanese junior high school par-
ticipated in this study. The experimental and control groups had 32 and 35 students,
respectively. All participants attended the high school science class, “Rectilinear Motion”.
The curriculum was the same for both groups. The course was divided into five subunits. In
each unit, students in both groups attended a pretest and a posttest, which were designed
according to the same Q-matrix and M-matrix. For example, the fourth unit, “Uniform
Accelerated Motion”, had seven skills and five bugs (Table 11), and the corresponding
Q-matrix and M-matrix are presented in Table 12.

Table 11. Seven skills and five bugs based on the unit “Uniform Accelerated Motion”.

Type Name Description

Skill

S1 Understanding the definition of average acceleration

S2 Understanding the conversion between speed units

S3 Understanding that the speed of the object will change when the
object moves with acceleration

S4 Understanding the change of speed when the directions of speed
and acceleration change

S5 Understanding the V-t diagram of constant acceleration motion is
an oblique straight line

S6 Judging the direction of acceleration by the V-t diagram

S7 Understanding the area enclosed by the V-t diagram and the time
axis represents “displacement”

Bugs

B1 Calculating speed change by using large speed and small speed

B2 Calculating the average acceleration by using the speed on the V-t
diagram divided by the time

B3 If the acceleration is a positive (negative) value, then the object will
increase (decrease) speed

B4
The acceleration is a positive value when the V-t diagram appears
in the first quadrant.The acceleration is a negative value when the
V-t diagram appears in the fourth quadrant.

B5 If the figure is drawn up (down), then the displacement direction is
the positive (negative) direction.

In the experimental group, the personalized mastery patterns, including individual
skills and bugs, were provided according to NWSD and NWBD with the dichotomous
responses, Q-matrix, and M-matrix. The teacher used appropriate cognitive conflict strate-
gies to clarify students’ misconceptions, according to the bug reports of NWBD. Moreover,
students were taught the skills they lacked, according to the report of NWSD. In the control
group, the traditional group remedial instruction based on the results of the pretest was
performed by the teacher.
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Table 12. Q-matrix and M-matrix of the unit “Uniform Accelerated Motion”.

Item
Q-Matrix (w.r.t. Skills) M-Matrix (w.r.t. Bugs)

S1 S2 S3 S4 S5 S6 S7 B1 B2 B3 B4 B5

1 1 0 0 0 0 0 0 1 0 0 0 0
2 1 1 0 0 0 0 0 1 0 0 0 0
3 1 0 0 0 0 0 0 0 1 0 0 0
4 1 0 0 0 0 0 0 1 1 0 0 0
5 1 0 0 0 0 0 0 0 0 0 0 0
6 0 0 1 0 0 0 0 0 0 0 0 0
7 0 0 1 0 0 0 0 0 0 0 0 0
8 0 0 0 1 0 0 0 0 0 1 0 0
9 0 0 0 0 1 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 0 0 0 1 0
11 0 0 0 1 0 1 0 0 0 0 0 0
12 0 0 0 0 0 0 1 0 0 0 0 0
13 0 0 0 0 0 0 1 0 0 0 0 0
14 0 0 0 1 0 1 1 0 0 0 0 0
15 0 0 0 1 1 1 0 0 0 0 1 0
16 0 0 0 0 1 0 1 0 0 0 0 0
17 0 0 0 1 0 1 1 0 0 0 0 1
18 0 0 0 1 1 1 1 0 0 0 0 1
19 0 0 0 0 0 1 1 0 0 0 1 0
20 0 0 0 0 1 0 1 0 0 0 0 0

The differences in learning effectiveness of the different remedial instructions were
compared using ANCOVA. The scores from a test before they participated in the course
were considered the covariates, and the scores of the final posttest of the fifth unit were
regarded as the dependent variables. The homogeneity for regression coefficients within
both groups was confirmed because the assumption for homogeneity of regression coeffi-
cients was also conducted (F = 0.608; p = 0.438). Table 13 presents the ANCOVA results,
demonstrating the effect of two remedial instructions on the posttest scores according to
adjusting for the effect of the covariate. The difference in posttest scores between the groups
was significant (F = 11.965 **). Fisher’s LSD test indicated that the experimental group
significantly outperformed the control group (12.309, p < 0.01).

Table 13. Results of ANCOVA on the learning effectiveness of the two remedial instructions.

Variable Level Mean (SE) F Values Post Hoc b

Covariate 8.429 **

DTRIP Experimental
Group 87.833 11.965 ** Experimental Group > Control Group **

Control Group 75.524

Note. ** p < 0.01. DTRIP: Different types of classes. b = Adjustment for multiple comparisons: the least significant
difference (equivalent to no adjustments).

6. Discussion

Some pre-service or in-service teachers seem insufficient to diagnose students’ concep-
tions, an essential and challenging task for ESD implementation [49]. This study extended
NPCD as NWCDs for obtaining more accurate individual profiles of mastery skills and
error types of students to achieve the diagnostic phase of precision education [50,51]. The
proposed methods attempted to integrate the ideal responses by weights determined ac-
cording to the distances between a student’s observed response and ideal responses. Thus,
NWCDs do not need observed responses to find suitable parameters, which is the problem
in applying parametric CDM models, such as DINA and G-DINA, to small-class teaching.
Therefore, both NWSD and NWBD can be applied to small-class teaching (approximately
30 students in a class in Taiwan) or only one student. NWCDs with the “Taiwan Adaptive
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Learning Platform” [48] can provide an intelligent and personalized adaptive learning
environment to commit to ESD [1,2].

The results of the simulation studies of datasets with <100 examinees generated from
both SISM (an artificial dataset) and a real dataset indicate that both NWSD and NWBD
have the best classification agreement compared with that of traditional nonparametric
CDM, NPCD, and the two parametric CDMs (DINA and G-DINA). Therefore, NWCD
works well in small-class teaching. Moreover, the report from NWCD can show both mas-
tery skills and error types. Teachers can provide individual feedback and teaching materials,
such as individual teaching videos and worksheets, instead of traditional group remedial
teaching (non-personalized instruction). It can increase not only learning performance but
also the efficiency of classroom instructional time [52].

For class teaching, NWSD has been applied to provide appropriate learning videos
according to the students’ lack of skills. The results based on the pretest and posttest of
students who attended the assessment of the mathematics unit, “Series and Arithmetic
Series”, in a junior high school in Taiwan show that the corresponding remedial class with
personalized instruction is significantly better than one with traditional group remedial
instruction by the teacher. If teachers have more teaching experience, they can also consider
students’ bugs or misconceptions. This can provide extra information to test and form the
M-matrix. Based on both the M-matrix and Q-matrix, NWBD and NWSD can be applied
to classify existing bugs and the lack of skills, respectively. The experimental results for
the science topic, “Rectilinear Motion” for junior high school students in Taiwan show
that if the students have been taught by cognitive conflict methods based on their existing
bugs/misconceptions first and then taught their lack of skills, the corresponding average
learning performance was higher than that of students who were taught using traditional
group remedial instruction.

7. Conclusions

For Sustainable Development Goals 4, helping teachers understand students’ mastery
skills and error types is essential in SE for ESD implementation. Chiu and Douglas [19] pro-
posed NPCD to classify mastery patterns according to the distances between the observed
response and the ideal response, determined using the Q-matrix of the test. However,
NPCD has two limitations. First, more than one ideal response may have the “same and
shortest (closest) distance” to the observed response. Therefore, the estimated mastery
pattern is randomly selected from the mastery pattern candidates. To avoid this, the NPCD
uses a weighted Hamming distance instead of the Hamming distance. Nevertheless, if one
considers the weighted Hamming distance, then the variances of items should be estimated
by students’ observed responses. This is the second problem, and generally, NPCD with
the original weighted Hamming distance is not a real parametric-free model.

In this study, the variances of the ideal responses were used instead of the variances of
the observed responses of students. We also used the EAP concept to combine the mastery
pattern candidates. The normalized inverse distance from the observed response to the ideal
responses was calculated, and the probabilities of the attributes of a student were computed
by combining the mastery patterns through the corresponding normalized inverse distances.
The proposed ideal response-based weighted Hamming distance was also applied to
compute the similarities between the observed response and ideal responses. Hence, the
proposed methods were called NWCD models. We used two NWCD models, namely
NWSD to classify students’ mastery skills and NWBD to classify students’ existing bugs.

The experimental results on both simulated datasets indicate that NWSD obtains the
best classification accuracy compared with DINA, G-DINA, and NPCD. Moreover, NWBD
outperforms Bug-DINO for classifying students’ existing bugs. In addition, NWCD models
are also appropriate for use in cases with a small class. Therefore, the proposed NWCD
models can overcome the two drawbacks of NPCD simultaneously. Further, both NWSD
and NWBD are suitable for estimating just one student’s mastery/bug patterns.
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The purpose of this manuscript is for application in classroom teaching and some
small units. Hence, in practice, the number of skills is not very large. Suppose the number
of skills is too large; for example, applying these methods to an online Adaptive Learning
Platform [48] from K1–K12. In that case, the computation time may increase substantially,
limiting immediate feedback. Therefore, in the future, we will try to combine the learning
space concept and nonparametric CDMs to extend them as cross-grade adaptive learning
algorithms and solve huge skill problems.
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