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Abstract: The improvement of building and living conditions in high-cold areas has always been an
issue worthy of attention, but there is currently no research using field survey data for evaluation.
The Ganzi region, based in the western plateau of China, is a typical example for such a study.
Restricted by factors such as natural conditions and economic level, the winter indoor thermal
environment of western plateau houses is generally poor. Taking the new residential houses in the
Ganzi region as a case study, the authors of this paper conducted field research and analyses. First,
the authors analyzed the construction technology and functional layout of the building through
thermal environment testing and investigation; second, the authors analyzed the user’s activity path
according to the production and lifestyle; thirdly, the authors comprehensively evaluated the indoor
thermal comfort through questionnaires and a predicated mean vote (PMV)-predicted percentage
dissatisfied (PPD) evaluation model. The research results showed that: (1) the construction technology,
functional layout, and temperature distribution of the new residential building were consistent with
the user’s activity path, which could effectively improve thermal insulation ability and thermal
comfort; (2) compared to the developed eastern regions, the users in the building showed a stronger
tolerance and wider acceptable temperature range in the extreme climate environment; and (3) under
certain cooperative work conditions, an indoor temperature of 10–14 ◦C could meet basic thermal
environment requirements and thus lower the limits of the standards. The author’s method was
proven to be more resilient than current standards in dealing with climate change. Therefore, this
research can provide a practical reference for the improvement of peoples’ living conditions and
sustainable development in cold regions and other harsh areas.

Keywords: indoor comfort; climate adaptation; high-cold regions; PMV–PPD evaluation model;
design standards and strategies

1. Introduction

At present, many people in the world still live in plateaus or alpine regions, such as the
Alps in Europe, the Andes in South America, and the Qinghai–Tibet Plateau in China. The
climatic conditions in these regions are much worse than those in the plains. Studying the
living conditions of people in these areas is a meaningful topic for sustainable development.
The Tibetan Plateau has always been a typical sparsely populated area due to its harsh
natural environment [1]. However, since 1949, the population and footprint of human
activities on the Qinghai–Tibet Plateau have been continuously increasing. Thus, so far, the
population size in China in this region has increased by more than four times than that in
1949. This sparsely populated area is experiencing active population growth [2]. However,
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the natural characteristics of high-cold regions, such as an average altitude of more than
4000 m, thin air, low temperature, deep permafrost, strong solar radiation, and fragile
ecological environment, are not conducive to human living. The research of buildings in
this type of region can not only improve indoor thermal environments, but also help to
promote sustainable population development.

Ganzi is located in the transition zone between the Qinghai–Tibet Plateau and Sichuan
Basin, and it has an average altitude of 3500 m. Due to its large fluctuation of topography,
the available construction land only accounts for one third of the total area, but it accommo-
dates about 1.1 million people. The population aggregation effect is obvious, showing the
phenomenon of high population density [3,4]. In Kangding city, the regional population
density of some areas is 10,684 people/km2 [5]. In recent years, although the population
had continued to increase, the indoor thermal environments of buildings have remained
unable to meet the physiological needs of people, so it is urgent to improve them. It has
been found that there are many problems in building envelopes, such as poor air tightness,
serious cold air leakage, low solar energy efficiency, and a lack of necessary energy-saving
measures. At present, there have been many research achievements regarding buildings
in high-cold regions. Sun et al. [6] changed the space-arrangement and increased the wall
thermal resistance, and they found that the bedroom temperature increased by 609.1% and
239.1%, respectively. He et al. [7] improved the indoor thermal environments of dwellings
in Western Sichuan Plateau by strengthening the utilization of solar radiation, improving
the thermal insulation performance of envelope structures, and setting up reasonable sun-
light rooms. Following analysis, Ma et al. [8] suggested that the design temperatures of
different rooms should be different. Li et al. [9] suggest that under the limited economic or
resource conditions in northwest China, the heat-storage performance of the south wall
can be appropriately reduced while the demand of the north wall can be given priority.
Liu et al. [[10]] suggested the further refinement of the division of cold regions and pro-
posed corresponding design strategies. Ikeda et al. [11] compared three heat-sensitivity
indicators, and the results showed that the prediction method of linking predicated mean
vote (PMV) with the psychological and behavioral adaptation of the occupants was the
most accurate and effective. Liu et al. [12] discussed the relationship between lifestyle
and the natural environment at high altitude area. Nikolopoulou et al. [13] believed that
increasing the communication between human and nature can enhance human’s ability to
adapt to low temperature environment.

To sum up, most studies on buildings in high-cold areas focus on improving the
thermal insulation performance of the envelope, and some scholars also study from the
perspective of functional layout and psychological feelings. However, these studies are
only discussed from one aspect and lack of multi-factor correlation analysis. The living
environments of high-cold regions are different from those of plain regions. In addition
to the necessary heat-preservation measures, factors such as behavior habits and lifestyle
should also be considered. Therefore, the authors of this paper analyzed the correlations
between the thermal insulation measures, functional layout, and lifestyle of the research
object, and they propose the establishment of a synergy mechanism. The research results
can be used to improve the design method of indoor thermal environments, put forward
a more reasonable indoor temperature design standard, and promote the sustainable
development of buildings in high-cold regions.

2. The Regional Climate and Research Object
2.1. The Climate Information

Figure 1a shows that China’s solar radiation intensity greatly varies in different regions,
and that of the northwestern plateau region is significantly higher than other regions. The
average altitude of Ganzi is 3394 m, the coldest month occurs in January, the winter freezing
period (≤5 ◦C) is long (it lasts about 5 months), the average temperature (Tav) of the coldest
month is below −3.0 ◦C, and the climate is cold and changeable, so this region presents the
characteristics of extreme cold climate. Comparing the meteorological parameters of cities
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in different regions in January showed (Figure 1b) that the sunshine time (240 h) and Tav
(−3 ◦C) of Ganzi in January are different from those in Chengdu (40 h/5.6 ◦C, respectively).
However, the values were found to be similar to the Lhasa (250 h/−1.6 ◦C) and Qamdo
(280 h/−2.1 ◦C) regions of higher elevations. Therefore, Ganzi’s climatic characteristics are
typical, its sunshine time is sufficient, and it has a large potential for solar energy utilization.
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2.2. The Development Process of Dwelling in Ganzi

Except for large-scale government projects and public buildings, local dwellings are
still mainly self-built, and there is no local architectural design standard system. Following
a long evolution, the forms of dwellings have changed a lot. The development route of
dwellings in Ganzi shown in Table 1 can be summarized as follows: the materials have
changed from stone and wood bungalows to brick and wood buildings, the area has
increased in size from small to large, technology has changed from simple to complex, and
the materials use has increased.

Table 1. Forms of dwellings in different periods.

-
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2.3. The Research Object Information

The research object was a two-story Tibetan-style dwelling located in Luhuo county,
Ganzi Tibetan District. The building faces south and is located in an open area. It is regular
in shape, its internal layout is compact, and its roof plan is U-shaped. There is no municipal
central heating and other mechanical heating equipment in the building, the residents of
which mainly rely on solar radiation and stove heating. Table 2 shows the size information
and functional layout of the studied vernacular dwelling. Figure 2a,b shows the location of
each room in the building. The first floor is mainly storage space, and the main use space
is located on the second floor. Figure 2c,d shows the appearance and environment of the
building. The information shows that the dwelling is a multi-story building, and living
rooms are distributed in the middle floor, with air layers above and below to keep them
warm. The U-shaped plane of the second floor provides the glass corridor and terrace with
a strong sense of enclosure in order to obtain more solar radiation, resist the cold north
wind, and reduce heat loss.

Table 2. The research object’s parameter information and function layout.

Floor 1 Floor 2 Roof

Dimensions (L ×W) 17.10 × 10.97 m 17.10 × 10.97 m 18.10 × 11.97 m
Average height 3.0 m 3.5 m 2.5 m

Area 187.6 m2 157.9 m2 -

Plane layout Storage room/garage

South: glass corridor/living
room/terrace (glass roof)

North: prayer room/kitchen and dining
room/bedroom (summer and

winter)/living room(summer and
winter)/toilet

Attic
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3. The Optimization of Building Envelope
3.1. Building Material Information

New-type vernacular dwellings have been optimized in terms of building materials,
and the following principles have been followed in the selection of materials: (1) the
original architectural characteristics of Tibetan residential buildings should be retained;
(2) materials should be easy to obtain, process, and transport; and (3) construction materials
should have good heat storage capacity and thermal insulation performance. Tables 3 and 4
show the detailed information and the physical parameters of relevant building materials,
respectively.

Table 3. Construction methods and material selection of new-style vernacular dwelling.

Floor 1 Sintered brick (middle ground)/300 mm thick pebbles/100 mm thick extruded polystyrene board (XPS)

Floor 2 Wooden floor (surface), waterproof layer, and 100 mm thick board (bottom) (kitchen and bath-room
surface: tile)

Walls 1F

North: 600 mm thick fly ash
ceramsite concrete block

(ρ = 1700) 2F
North: 240 mm thick sand-lime
brick and 30 mm thick plywood

South, east, and west: 240 mm
thick sand lime brick

South, east, and west: 200 mm
thick log construction and

50 mm thick pine board

Windows
Plastic–steel frame and insulating-tempered glass (3 + 9A + 3)

Window–wall ratio: south wall (0.182)/north wall (0.043)/east wall (0.121)/west wall (0.121)
Roof Wooden ceiling, air-layer, and corrugated tile

Table 4. Material physical parameters.

Pebble Pine Board Insulating
Glass Plywood

Fly Ash
Ceramsite

Concrete Block

Sand Lime
Brick

Heat storage coefficient
[S]/w/(m2·k) 18.36 3.85 - 4.57 8.95 12.72

Thermal conductivity
[K]/(w/(m·k) 1.51 0.14 2.7 0.17 0.70 1.10
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3.2. Energy-Saving Technical Methods for Building

Due to the shortage of conventional energy available in the local area, new-type
vernacular dwellings have adopted more passive energy-saving technologies, optimized the
details of node structures, strengthened the insulation performance of envelope structures,
increased solar energy utilization efficiency, and effectively improved the building ability
to adapt to cold environments. The residents of the research object adopted the following
energy-saving measures:

(1) “Composite wall” structure: the unfavorable north-outer wall is 600 mm thick, with a
wooden keel connected in the middle (air layer) and a plywood of about 30 mm thick
on the inside (Figure 3a), which is able to effectively improve the heat storage and
insulation performance of the north-facing room wall.
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(2) “Air-layer” structure: the main use space of the building is located on Floor 2, and
Floor 1 and the roof loft form an “air-layer” (Figure 3d) that serves as a cold air
buffer layer. This layer can reduce heat loss and enhance the insulation ability of the
middle floor.

(3) “Double-window” structure: the winter bedroom and kitchen use “double-windows”
with an interval of about 500 mm; the middle space is an air layer (Figure 3b), which
also serves as a storage space.

(4) “Heat storage layer” structure: The ground of Floor 1 is a 300 mm thick pebble
heat storage layer, and the interface between the pebble layer and the foundation is
insulated with 100 mm thick EPS thermal insulation to form a “heat storage” layer
(Figure 3c) that can minimize the loss of heat. Testing allowed for the creation of a
temperature change curve, which showed that the fluctuation range of the pebble
surface temperature was from −1 to 15.4 ◦C; next, we were able to calculate the total
energy storage of the pebbles with the relevant parameters (Table 5).

Table 5. Material physical parameters.

Material Bulk Density
G/V(N/m3)

Specific Heat
C/kJ/(kg·k) Effective Area Thickness

Pebble 2400 0.92 108.90 m2 0.3 m
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The amount of heat absorbed by pebble from 0 to 15.4 ◦C:

Q = Cm 4t = 0.92 × 2400 × (108.90 × 0.3) × (15.4-0)] = 1,104,763.97 (KJ) (1)

(5) “Sunshine Room” structure: the passive sunlight room is in the south side of the
building, and below the sunlight room is a 500 mm high aerated block wall. In the
daytime, the doors and windows of each room are opened, and the sunlight exchanges
heat with other spaces through heat collection. At night, the doors and windows of
the indoor rooms are closed to reduce heat loss (Figure 3d).

(6) Controlling the shape coefficient and window–wall ratio: The data showed that for
every shape coefficient increase of 0.01, energy consumption increased by about
2.4–2.8%; on the contrary, the energy consumption was reduced by 2.3–3% [14]. When
an area is between 60 and 180 m2 large, a shape coefficient in the range of 0.88–0.58
is not conducive to energy saving [15]. It can be seen from Table 2 that the shape
coefficient of the research object was 0.36, which could reduce the heat exchange on
the outer surface. The window–wall ratio of the north wall was 0.043, which could
reduce heat leakage, and the window–wall ratio of the south wall was 0.182, which
could increase the solar radiation heat.

4. Indoor Thermal Environment Test and Result Analysis
4.1. Test Program

According to the meteorological data of NMC (Ganzi, China), the monthly average
lowest temperature in Ganzi prefecture appears in January. Therefore, we chose the test
time to be from 08:00 on 15 January 2020 to 18:00 on 16 January 2020. Test items included:
solar radiation intensity, air temperature and humidity, and the surface temperature of the
envelope. The solar radiation test point was selected in the open outdoor field. The air
temperature and humidity test points were pebble surface, glass corridor, winter bedroom,
kitchen, and outdoors. The surface temperature test points of the envelope were the south
wall of the living room, the south glass of the glass corridor, and the north wall of the winter
bedroom. Table 6 presents the test items, instruments, and related parameters. Figure 4a–d
shows the test site and instruments.
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Table 6. Test equipment and parameter settings.

Test Items Instrument Parameter Setting

Solar radiation intensity TBQ solar radiation sensor
Range: 0–2000 W/m2; accuracy: ±3 W/m2; sensitivity:

7–14 Mv/W·m2; placement height: 1 m; record:
15 min/times

Temperature and humidity Thermograph and hygrometer
(type: TEST0·175-H2)

Range: −20.0–70.0 ◦C; accuracy: ±0.2 ◦C; record:
30 min/times

Surface temperature Four-channel temperature meter
(type: CENTER-309)

Range: −200–1370 ◦C; accuracy: ± (0.3% rdg) +1 ◦C;
record: 30 min/times
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4.2. Test Results and Analysis
4.2.1. Solar Radiation Intensity Test

Figure 5 shows the solar radiation intensity test curve of two days. The results show
that the average radiation intensity values at 8:00–18:00 on the 15th and 16th were 317.1
and 369.2 W/m2, respectively; the maxima on the 15th and 16th were 710 and 771 W/m2,
respectively, and they appeared between 12:30 and 14:00 (at around 13:30 on the 15th, the
radiation value rapidly decreased due to cloud cover). The cumulative values of radiation
on the 15th and 16th days were 10.725 and 12.526 MJ/m2 (1 KWh = 3.6 MJ), respectively.
The effective solar radiation period was found to be 09:00–17:30. The data showed that
the place has a high proportion and long duration of direct sunlight in the winter, high
radiation intensity, and abundant radiation resources, which demonstrate its suitability for
passive solar heating design.
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4.2.2. Air Temperature and Humidity

Figure 6 presents the air temperature change curve of our test points. The results
show that during two consecutive test days, the average temperature of the glass corridor,
kitchen, winter bedroom, pebble layer surface, and outdoors were, 8.3, 12.3, 6.2, 6.0, and
−5.8 ◦C, respectively. The maximum and minimum values of outdoor air temperature were
1.50 and −14.3 ◦C, respectively, and the maximum temperature difference was 15.8 ◦C. The
trend of other temperature changes was basically the same (except for the kitchen), and the
maximum and minimum values appeared at 12:00–15:00 and 08:00–10:00, respectively. The
kitchen is the only artificial heat source inside the building, and its temperature change
is closely related to human activities; its high temperature point mostly appeared during
cooking activities (at around 00:00 in the night, the residents added coal to the furnace, so
there were high temperatures during this period). The results demonstrated the following.
(1) Compared to the outdoor temperature, the indoor temperature maintained good stability,
and the average temperatures of the kitchen and glass corridor were relatively high. The
winter bedroom had relatively low temperatures (ranging from 3.0 to 10.1 ◦C), but it also
maintained a good thermal environment. (2) In the daytime, the solar radiation had a
significant effect on the heat collection of the building. At night, the kitchen was found
to have a significant heat radiation effect on other rooms. (3) The pebble heat storage
layer was found to have good heat storage performance and heat radiation effect. The
construction measures displayed in Table 2 play important roles in maintaining the indoor
thermal environment of the main space.
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17 °C, and the average temperature was −3.2 °C. The internal surface temperature fluc-

Figure 6. The air temperature change curve of test points.

Figure 7 presents the relative humidity (RH) change curve of test points. The results
show that the average RH values of the glass corridor, kitchen, winter bedroom, pebble
layer, and outdoors were 33.1%, 36.1%, 42.9%, 38.5%, and 28.6%, respectively. The outdoor
RH was lower than that of the other test points. Due to the influence of cooking activities,
the fluctuation range of the kitchen RH curve was large. The RH curve trend of other
test points was more balanced, and the overall curve fluctuation was slightly delayed
in comparison to that of the kitchen, indicating that cooking activities have regulating
effects on air humidity. Our analysis demonstrated the following. (1) The dry and cold
characteristics of outdoor air were more obvious. (2) The fluctuation range of indoor
RH in most periods was 30–45%, which meets the standardized comfort zone of 30–60%
in the winter [16]. (3) The indoor wind speed was maintained near 0 m/s, and there
was basically no wind sensation. The fluctuations of indoor RH and wind speed were
small. The moisturizing effect of the envelope structure was obvious, and thermal comfort
was adequate.
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4.2.3. Surface Temperature of Enclosure Structure Material

Since the envelope structure is the interface between the internal and external spaces
of the building, its physical properties are particularly important for the regulation of the
indoor thermal environment. Figure 8a shows the temperature changes of the inner and
outer surfaces of the corridor glass: the outer surface temperature fluctuation range was
from −6.2 to 14.9 ◦C, with a difference of about 21 ◦C, and the average temperature was
2.5 ◦C. The inner surface temperature fluctuation range was 0.6–10.1 ◦C, with a difference of
9.5 ◦C, and the average temperature was 4.8 ◦C. Figure 8b shows the north wall temperature
change of the internal and external surfaces of the winter bedroom: the outer surface
temperature fluctuation range was from −11.4 to 5.8 ◦C, with a difference of about 17 ◦C,
and the average temperature was −3.2 ◦C. The internal surface temperature fluctuation
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range of the wall was from 3.9 to 6.4 ◦C, with a difference of 2.5 ◦C, and the average
temperature was 4.7 ◦C; the temperature change was small, and the indoor thermal stability
was adequate.
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The data revealed the following. (1) During the period of 09:00–16:00, the solar
radiation was strong, and the south outer surface temperature was significantly higher than
the inner surface, but in other periods, the temperature of the outer surface sharply dropped
while the inner surface temperature slowly dropped, reaching a maximum temperature
difference of 10.3 ◦C at 14:45. The heat collection and insulation effect of the “Sunshine
Room” was obvious. (2) The winter bedroom lacks solar radiation. However, after the
application of insulation measures, the wall was found to have a strong ability to resist
harmonic heat. Additionally, the hot air convection effect of the stove in the sunlight during
the day and the night was significant. Together, they maintained the stability and comfort
of the indoor temperature. The maximum temperature difference between the inner and
outer surfaces reached as high as 15.3 ◦C.

5. A Survey of the Lifestyle and Behavior Habits of Local Residents
5.1. A Survey of the Lifestyle

Through a survey of the local residents, it was found that in the original dwelling, the
living materials used for cooking were stacked in or outside the yard. The indoor facilities
were relatively simple. There was no plumbing equipment in the house. The toilet was
located in the corner of the yard, far away from the house. As such, people needed to
frequently shuttle between the indoor and outdoor areas. It was often inconvenient for
them to put on or take off their coats. The residents also needed to keep wearing heavy
clothes for a long time indoors (including cotton clothes, down jackets, cardigans, wool
trousers, and warm clothing). This lifestyle accelerated the air exchange between indoor
and outdoor areas, which was not conducive to building insulation.

The new-type vernacular dwelling has improved the abovementioned problems: toi-
lets have been moved to the inside of the building, and most materials such as living
materials have been moved to the utility room on the first floor. Most activities are re-
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stricted to indoor spaces, thereby reducing the frequency of residents traveling between the
indoors and outdoors and shortening peoples’ outdoor stay time. In addition, the indoor
temperature is high, and peoples’ clothing, such as shirts and cardigans, is relatively thin.
Only in the morning or evening when the indoor temperature is low does one need to add
a warm vest or similar warm clothing.

5.2. A Survey of Behavior Habits

In order to analyze the internal relationships between behavior habits and the built
environment, subject users were followed for up to three consecutive days, and their
activity paths were recorded. The data of Figure 9 were based on the statistics gathered
over 24 h (excluding the situation of going out to work) regarding the average cumulative
time of users staying in different places in the building (the terrace is a place for drying,
handcrafting, and children’s play when the weather is sunny, and going outdoors is
temporary or occasional). Table 7 reports the users’ activity paths in different time periods
and the main room usage time.
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Table 7. User activity space at different times.

7:30–9:00 9:00–17:30 17:30–20:00 20:00–22:30 22:00–7:30

Frequently used
room

Winter bedroom,
kitchen, and
prayer room

Glass corridor,
kitchen, and

terrace

Kitchen and glass
corridor

Winter bedroom,
glass corridor, and

kitchen
Winter bedroom

Occasionally used
room

Toilet, glass
corridor, terrace,

and outdoors

Prayer room,
kitchen, and

outdoors

Prayer room, toilet,
terrace, and

outdoors

Prayer room and
toilet Toilet

Solar radiation
intensity <100 W/m2 Between 300 and

750 W/m2 <0 W/m2 - -

Note: bold font signifies the main activity spaces.

It can be seen from Figure 9 that the main room’s usage time accounted for about 84%
of the whole day, followed by the winter bedroom, kitchen, glass corridor, and terrace.
Table 7 shows that during the period of strong solar radiation from 09:00 to 17:30, the daily
activities of users were usually concentrated in rooms or terraces with higher southward
temperatures. After 17:30, when external heat could not meet comfort requirements, the
activity area moved to the kitchen with the only heat source, which was shown to become
an important functional space with high frequency. The winter bedroom had no other
functions other than sleeping.

In the winter, the main area of human activity was in the middle of the building
(Figure 10). The active path fit with solar radiation intensity and indoor heat source
(Table 7). In this way, people could receive good thermal comfort on their active path.
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5.3. Evaluation of Indoor Thermal Environment

At present, the most internationally used building indoor thermal environment eval-
uation model is the PMV–PPD evaluation index proposed by Dr. Fanger. PMV–PPD
integrates six factors (air temperature, mean radiation temperature, air speed, relative
humidity, metabolic rate, and clothing insulation), which makes it the most comprehensive
thermal environment evaluation index currently in use [17]. PMV is divided into seven
thermal sensation indexes according to different evaluation values (Table 8). However, con-
sidering the differences in individual thermal sensation, the combined evaluation method of
PMV–PPD can more accurately reflect the results of indoor thermal environment evaluation
than PMV alone [18]. Based on the “Evaluation Standard for Indoor Thermal Environment
in Civil Buildings” in China [19], Table 9 shows that the comfort standard could be divided
into three levels: Level I is comfortable when −0.5 ≤ PMV ≤ 0.5 and PPD ≤ 10%; Level II
is acceptable when −1 ≤ PMV <−0.5/+0.5 < PMV ≤ +1 and 10% < PPD ≤ 25%; and Level
II is uncomfortable when PMV < −1/PMV > +1 and PPD > 25%.

Table 8. Corresponding relation between PMV values and seven-point thermal index.

Thermal
Sensation Cold Cold Slight Cool Neutral Slight Warm Warm Hot

PMV −3 −2 −1 0 +1 +2 +3

Table 9. Comfort level based on PMV–PPD.

Category Evaluation Index

I −0.5 ≤ PMV ≤ +0.5 PPD ≤ 10%
II −1 ≤ PMV < −0.5/+0.5 < PMV ≤ +1 10% < PPD ≤ 25%
III PMV < −1/PMV > +1 PPD > 25%

According to the aforementioned analysis results and the description of the PMV–PPD
evaluation system, the authors of this paper established a thermal environment evaluation
model under the multi-mode collaborative work as follows. (1) They first determined
the main space on the activity path according to the content of lifestyle. (2) Next, the
PMV–PPD evaluation was used for the main space based on the thermal environment test
results. (3) Compared with the use of space in different periods, they analyzed whether
the PMV–PPD results met the comfort standard. (4) Finally, they verified whether the
corresponding thermal insulation measures were effective in the use of space and improved
the rooms that did not meet the comfort requirements.
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By analyzing the path of the users, three main spaces were selected for indoor thermal
environment evaluation: the winter bedroom (A), glass corridor (B), and kitchen (C). Based
on the users’ lifestyles and behavior habits, the activity path can be roughly depicted:
before 8:00, time is mainly spent in the winter bedroom; from 8:00 to 18:00, time is mainly
spent in the vicinity of the glass corridor and kitchen area; and after 18:00, time is mainly
spent in the kitchen.

The parameters in PMV–PPD evaluation indexes were recorded every 2 h in a statistical
period of 24 h. Considering the activity status in different periods, the metabolic rates were
1.8 for cooking, housework, etc.; 1.7 for hanging, activities, etc.; 1.2 for sitting, chatting, etc.;
and 1.0 for sleeping. According to the survey, the basic dress inside comprised underwear,
vest, sweater, thick sweater, leather, sweater, pants, outerwear, thick socks, and cotton
slippers; the average clothing insulation was 1.32 col (considering the thickness of the quilt,
the sleeping state was 2.10 col). There was basically no sense of wind indoors, and the air
speed was 0.1 m/s. Other values were obtained from the test result. Table 10 shows the
index data of the evaluation object, which were substituted into the PMV–PPD calculation
formula. The calculation statistics are shown in Figure 11.

Table 10. The indoor thermal environment index data of the evaluation object.

Time
A/B/C Air

Temperature
(◦C)

A/B/C Mean
Radiation

Temperature (◦C)

Air Speed
(m/s)

A/B/C Relative
Humidity (%)

Metabolic Rate
(met)

Clothing
Insulation (clo)

00:00 5.5/5.9/16.4 5.5/5.9/16.4 0.1 45.2/30.4/34.2 1.0 2.10
02:00 5.0/4.9/13.0 5.0/4.9/13.0 0.1 47.1/29.4/31.8 1.0 2.10
04:00 4.3/4.1/11.2 4.3/4.1/11.2 0.1 46.6/29.3/31.7 1.0 2.10
06:00 4.0/3.5/9.4 4.0/3.5/9.4 0.1 46.1/30.3/32.2 1.0 2.10
08:00 5.1/5.9/10.1 5.1/5.9/10.1 0.1 46.6/30.3/32.1 1.8 1.32
10:00 6.5/7.5/13.8 6.5/7.5/13.8 0.1 48.0/32.5/32.6 1.7 1.32
12:00 8.9/13.4/16.6 8.9/13.4/16.6 0.1 50.5/39.7/44.8 1.8 1.32
14:00 10.1/15.8/13.7 10.1/15.8/13.7 0.1 50.5/43.2/45.0 1.2 1.32
16:00 7.4/10.6/12.4 7.4/10.6/10.4 0.1 44.6/36.0/30.9 1.7 1.32
18:00 8.4/8.2/17.7 8.4/8.2/17.7 0.1 45.1/34.9/46.8 1.8 1.32
20:00 5.8/7.5/15.4 5.8/7.5/15.4 0.1 44.0/39.1/40.4 1.2 1.32
22:00 5.7/8.5/16.2 5.7/8.5/16.2 0.1 45.0/33.8/45.0 1.2 1.32

Note: A = winter bedroom/B = glass corridor/C = kitchen.
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In reference to the comfort standard (Table 9), Figure 10 shows that the bedroom in
the winter was at Level II from 16:00 to 18:00 and at Level III the rest of the time, with a
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high dissatisfaction rate of thermal comfort. Glass corridors were in Level II or even Level I
standards during 10:00–18:00, with poor thermal comfort the rest of the time. The kitchen
had good thermal comfort in the whole statistical cycle, basically at Level I and Level II;
the thermal comfort was good, especially in the period of 10:00–14:00, indicating that the
kitchen plays an important role in maintaining the indoor thermal environment. It can be
seen from the analysis results that, except for the poor thermal comfort of the bedroom in
the winter, the most comfortable parts of the evaluation object were basically consistent
with the users’ activity paths.

5.4. Questionnaire of Thermal Sensation

In order to further understand the ability of local residents to bear the indoor tem-
perature in the winter, according to the thermal sensation classification in Table 3, a ques-
tionnaire was adopted to conduct a thermal sensation survey of 150 residents. In the
questionnaire, a total of 11 temperature segments were set at intervals of 2 ◦C, with the
lowest temperature set at 0 ◦C and the highest temperature set at 18 ◦C. In order to encour-
age the respondents to more clearly describe heat sensation, the questionnaire simplified
the heat sensation classification into five criteria: cold, slight cold, moderate, warm, and
hot. It was stipulated that when the sum of the proportions above the moderate standard
was >60%, this was an acceptable temperature range. Finally, a total of 148 effective ques-
tionnaires were collected, and then the questionnaire data were collated and analyzed
according to the above criteria, as shown in Figure 11.

Figure 12 shows that more than 90% of people reported that the indoor temperature
below 6 ◦C was cold, about 70% of people could accept the indoor temperature of 8–10 ◦C,
and about 60% thought that the indoor temperature of 8–14 ◦C was moderate. About 70%
of people though that the heat sensation was stronger at 14–18 ◦C, and they felt a little
muggy when the temperature was greater than 18 ◦C. Therefore, in the case of limited
heating conditions, the standard of indoor temperature can be set in the range of 10–14 ◦C.
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According to this analysis, glass corridors and kitchens could meet the standard of
moderate temperature or even hotter in most periods, and the temperatures of bedrooms
in the winter were below but close to the standard. However, we found differences in the
results. In order to compare the differences between the results of the questionnaire survey
and the calculated results of PMV, thermal comfort values of 10–20 ◦C were selected as the
research range. As can be seen from Figure 13, there was a difference between the thermal
sensation vote value and the PMV value. In the same thermal environment, the thermal
sensation vote value was significantly higher than the PMV value, which indicates that
residents’ requirements for indoor thermal comfort temperature are low.
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It can be seen that compared to the winter heating standard of urban residences (18 ◦C),
the demand for indoor temperature in the winter of this dwelling was greatly reduced.
Additionally, the results of the questionnaire survey were more tolerant than PMV. Thermal
sensation is subjective. This dwelling is different from urban housing in lifestyles, dress
habits, activity path, and other aspects [20] such as the evaluation method [21]. Therefore,
the abovementioned factors should be considered when discussing the thermal comfort
of dwellings. The value between the design standard and tolerable temperature can be
adjusted by human.

6. Discussion
6.1. Acceptable Temperature and Comfortable Temperature

Vernacular dwellings are formed in the process of long-term trial and error, and their
lifestyle and climate environment have better integration than modern buildings. With the
development of artificial environment control methods, more and more urban buildings are
controlling their indoor environment within a narrow range of absolute comfort. However,
the purpose of building climate adaptation is not to precisely control temperature or achieve
perfect balance but to strive to create acceptable indoor environments [22]. Despite the
existence of perfect artificial heat source environments, people have higher tolerances to
simple artificial heat source environments [23,24]. This study’s survey showed that the
indoor thermal comfort temperature of residents was obviously low under special climatic
conditions such as low oxygen. Wang [25] found that in the same temperature environment,
the indoor thermal sensation vote of residents in Tibet was higher than that of residents
at a low altitude, and the comfortable temperature of Tibet was 2.61 ◦C lower than that in
low-altitude area. Ning [26] proposed that Tibetan residents living in plateau areas have
a stronger ability to adapt to cold indoor environments. Experiments showed the lower
limit of comfortable indoor temperature is 16 ◦C and the lower limit of acceptable indoor
temperature is 14.7 ◦C under special climatic conditions such as low plateau pressure and
low oxygen in the winter. This paper also verifies the above-mentioned conclusions, so an
acceptable temperature does not indicate poor comfort. “Moderate” or “hot” temperatures
can be achieved when appropriate clothing, production activities, and indoor thermal
environments work together.

6.2. Collaborative Working of Multiple Ways

The climate, people, and buildings are three elements that are closely related to climate-
responsive buildings [27,28]. When referring to building climate adaptation strategies,
people are accustomed to studying buildings themselves. However, as the users of build-
ings, humans’ important role is easily overlooked. In this case study, with the goal of
consuming small amounts of energy and resources based on the users’ activity paths
and behavior habits, an acceptable indoor thermal environment was obtained. (1) The
protective structure materials were optimized to improve the building thermal insulation
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performance, heat storage capacity, and indoor humidity adjustment capacity. The com-
bined use of forestry, wood products, and construction systems can effectively reduce the
environmental pressure caused by carbon emissions and material shortages [29]. Designers
should maximally use local materials and technologies while showing great respect for
the environment and climate. (2) Functional zoning is closely related to living habits and
seasonal climate. For example, the winter bedroom of the studied dwelling is located near
the middle of the building, which has reduced the external wall area, and it is now easy to
obtain solar radiation and kitchen waste heat; the toilet has been moved indoors to reduce
cold air penetration; the glass corridor has heat collection and buffering effects; and the air
barrier had an isolation effect. (3) Differential heating design should be applied for rooms
according to their frequency of use. To ensure the thermal environment requirements of
the main room, the secondary room only needs to meet the basic functional requirements.

6.3. Problems and Suggestions

The indoor thermal environment of the studied new-type vernacular dwelling was
greatly improved, but there is still room for progress. Especially in the nighttime period
of winter bedrooms, the thermal stability is good, but the indoor temperature is low and
there is no stable heat source. To address these problems, the following methods can be
used: first, the use of solar radiation should be improved, such as with the use of active
and passive solar energy collaborative heating technology [30–33], to provide a stable
and effective heat source; second, the indoor thermal comfort should be improved by
reducing the emissivity of the inner surface (such as by placing aluminum foil on the inner
surface) [34].

7. Conclusions

In this paper, a thermal environment test, behavior analysis, PMV–PPD evaluation,
and thermal sensation questionnaire were used to comprehensively evaluate the indoor
thermal environment of a new residential house in the Ganzi area. The main conclusions
are as follows.

(1) The reasonable selection of appropriate building materials and building structure can
effectively improve the temperature stability and thermal insulation capacity of the
envelope; these measures have low economic costs and low construction difficulty,
with a wide range of promotion and significant use.

(2) The analysis results showed that, except for the poor thermal environment of the
winter bedroom, the rest of the rooms were able to meet the requirements of thermal
environment during use through the combination of lifestyle, activity path, and
functional layout factors. This multi-mode cooperative mechanism can be used
to more comprehensively evaluate the indoor thermal environments of residential
houses and propose improvement measures.

(3) Under the same temperature condition, the thermal sensation value reported in the
questionnaire survey was higher than the calculated result of the PMV, indicating the
obvious regulating effect of human body function. The main role of the human body
should be emphasized in the design of indoor thermal environments.

(4) Based on the comprehensive analysis of the questionnaire survey results and PMV–
PPD evaluation results, we suggest that the design range of the indoor temperature of
dwellings in Ganzi should be 10–14 ◦C.
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