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Abstract: Electric buses (e-buses) demonstrate great potential in improving urban air quality thanks
to zero tailpipe emissions and thus being increasingly introduced to the public transportation systems.
In the transit operation planning, a common requirement is that long-distance non-service travel of
the buses among bus terminals should be avoided in the schedule as it is not cost-effective. In addition,
e-buses should begin and end a day of operation at their base depots. Based on the unique route
configurations in Shenzhen, the above two requirements add further constraint to the form of feasible
schedules and make the e-bus scheduling problem more difficult. We call these two requirements
the vehicle relocation constraint. This paper addresses a multi-depot e-bus scheduling problem
considering the vehicle relocation constraint and partial charging. A mixed integer programming
model is formulated with the aim to minimize the operational cost. A Large Neighborhood Search
(LNS) heuristic is devised with novel destroy-and-repair operators to tackle the vehicle relocation
constraint. Numerical experiments are conducted based on multi-route operation cases in Shenzhen
to verify the model and effectiveness of the LNS heuristic. A few insights are derived on the decision
of battery capacity, charging rate and deployment of the charging infrastructure.

Keywords: electric bus; scheduling; Large Neighborhood Search; partial charging; multi-depot;
vehicle relocation

1. Introduction

Buses account for only a small number of all the vehicles on city roads, but their
emissions take up a much higher portion of the total road emissions owing to their long
operation time and distance [1]. With increasing eco-awareness around the globe, electric
buses (e-buses) are regarded as an effective solution to reduce urban air pollution and
greenhouse gas emissions. In recent years, e-buses are increasingly introduced into the
transit systems with government support. Shenzhen, a metropolitan in southern China,
had switched all the diesel buses to electric ones by the end of 2017 [2]. According to [3],
the number of e-buses in operation worldwide has reached approximately 500,000, which
is predicted to take up over 67% of the total share by 2040. A major concern for operating
e-buses in the public transportation system is their limited battery capacity [4]. Most of the
diesel buses have a maximum driving range of larger than 300 km under urban driving
conditions [5]; while, the driving range of the e-buses currently available in the market
varies from 100 to over 300 km, depending on their battery capacity and driving condition.
For example, an e-bus with 350 kWh of battery capacity can cover a range between 190
and 210 km, depending on the local driving conditions [6]. As such, e-buses often need
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recharging during the day to prolong their service time. For the convenience of e-bus
charging activities, charging facilities are required to be established at bus depots, bus stops
on the routes, or both.

In the transit operation planning stage, e-bus scheduling aims to assign e-buses to carry
out timetabled trips on bus routes considering their charging demand. E-bus scheduling
should also take local operational requirements into consideration to make applicable
schedules. A common requirement is that long-distance non-service travel of the e-buses
among bus terminals should be avoided as it requires a large amount of manual labor and
is not cost-effective. Furthermore, e-buses should begin and end operation of the day at
their base depots [7,8]. In many e-bus operation cases in Shenzhen, these two requirements
add further restriction to the form of feasible schedules and make the e-bus scheduling
problem more difficult. Take bus route M133 in Shenzhen as an example. Figure 1a displays
the layout of route M133 the length of which is around 37.5 km. Timetabled service trips
are carried out on the route where terms “up” and “down” are used to distinguish their
direction. Two depots with charging infrastructure are located close to the end terminals
of the route. Thus, non-service travel incurred by e-bus charging is always short—once
the e-bus has a low battery State of Charge (SoC) after completing a trip at one of the
terminals, it would head to the closest depot for charging. Figure 1b shows the form
of feasible and infeasible e-bus schedules. Two e-bus schedules are presented using the
time-space network. The first graph is a feasible schedule because it does not include
any non-service travel between the two depots; while the second graph is an infeasible
schedule because it includes a non-service travel from Changlingdong Depot to Shekou
Port Depot. In the feasible schedule, the e-bus starts one day’s operation from Shekou Port
Depot, carrying out four service trips (two up trips and two down trips) after finishing
which it can return to the base depot at the end of the day without non-service travel. While
in the infeasible schedule, the e-bus starts one day’s operation from Shekou Port Depot,
carrying out three service trips (two up trips and one down trip) after finishing, which
needs a long-distance non-service travel to return to the base depot, Shekou Port Depot,
at the end of the day. Such kind of long-distance non-service travel should be avoided as
much as possible according to the transit agency. We name this requirement on the form of
feasible e-bus schedule as the vehicle relocation constraint.

As introduced above, the e-bus operation scenario we considered in Shenzhen has
the unique route configuration and operational requirements which we named as the
vehicle relocation constraint. It causes difficulty in generating feasible high-quality e-bus
schedules and has not been considered in the existing studies. Based on the aforementioned
considerations, with the aim to generate applicable e-bus schedules in Shenzhen involving
multi-depot, vehicle relocation constraint and partial charging, this paper developed an
LNS heuristic which can effectively solve real-world e-bus scheduling instances including
hundreds of trips. In the LNS heuristic, we devised a novel solution formulation procedure
which is used in the initial solution generation and solution repair process to generate
schedules satisfying the vehicle relocation constraint. A case study based on the e-bus
operation scenarios and time-of-use tariff in Shenzhen is conducted to demonstrate the
performance and application of the LNS heuristic. A few insights are derived on the
decisions of battery capacity, charging rate, and deployment of the charging infrastructure.

The remainder of the paper is organized as follows. Section 2 reviews the related
studies of e-bus scheduling. Section 3 presents the mixed integer programming (MIP)
model for the problem. Section 4 introduces our LNS algorithm. In Section 5, numerical
experiments based on the real-world e-bus operation cases are conducted. Section 6
concludes the paper.
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2. Literature Review
2.1. E-bus Scheduling Problem

The e-bus scheduling problem is derived from the Vehicle Scheduling Problem (VSP)
which considers the assignment of diesel buses to timetabled trips on bus routes to minimize
the total number of vehicles used. The difficulty of the VSP is dependent on the number
of depots involved. Single-depot VSP is polynomial solvable while multi-depot VSP has
proven to be NP-hard by Bertossi et al. [9]. Electric Vehicle Scheduling Problem (EVSP)
arises with the introduction of e-buses to the transit systems and has attracted wide research
interests. The problem can be distinguished into different categories based on the charging
technology considered. Currently, the commonly adopted charging technologies include
opportunity charging, depot charging, and battery swapping [10]. Opportunity charging
and depot charging are plug-in charging technologies which differ in the charging rates
and charging locations. Fast opportunity charging utilizes high electricity power to restore
the battery energy rapidly when e-buses are holding at the stops and end terminals of the
bus routes without incurring dead mileage; while depot charging uses a lower electricity
power to restore the battery energy when e-buses return to the depots, and it usually takes
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several hours to fully charge a battery. To avoid long non-service travel time, e-buses with
high operation mileages of over 200 km usually adopt fast opportunity charging while
those with lower operation mileages will go for depot charging during off-time.

Under plug-in charging mode, e-bus charging can be time-consuming if the charging
power is low, thus has a great impact on the operation. To manage the e-bus charging
activity, full charging and partial charging policies are employed with the latter being more
flexible and complex from the planning side. Considering the full battery charging policy,
Wang and Shen (2007) addressed a VSP with route and fueling time constraints assuming a
limited driving range and fixed charging time [11]. Liu et al. (2019) developed a model and
a Genetic Algorithm (GA) to optimize the e-bus schedule with the aim of minimizing the
fleet size, charging facility, and empty driving mileage [12]. Liu and Ceder (2020) proposed
a deficit function theory-based model and an integer programming model to minimize
the number of vehicles and chargers [8]. Considering that diesel buses and e-buses of
different types are used together in some transit systems, [13–16] studied the multiple
vehicle type EVSP. Bie et al. (2021) considered the fluctuation of the passenger demand
and addressed an EVSP combining the all-stop and short-turning strategies [17]. Teng et al.
(2020) addressed an integrated timetabling and scheduling problem for e-bus fleet operating
on a single bus line. A multi-objective optimization and a particle swarm algorithm were
proposed [18]. Zhang et al. (2021) introduced an EVSP considering the degradation of
battery and nonlinear charging process. A tailored BP algorithm was devised to solve the
problem [19]. In face of the travel time uncertainty in the urban roads, Tang et al. (2019)
proposed single depot stochastic and dynamic models to deal with the stochastic traffic
conditions [20]. Bie et al. (2021) proposed a multi-objective stochastic e-buses scheduling
model considering the variability of travel time and energy consumption [21].

Some researches considered the partial charging policy where e-buses can be recharged
for a flexible amount instead of to a full battery. van Kooten Niekerk et al. (2017) considered
single-depot scenarios and introduced two models with a different level of detail resembling
the actual nonlinear charging processes. A Column Generation algorithm was proposed
to solve the problem [22]. Yıldırım and Yıldız (2021) considered the fleet composition
and scheduling problem. An IP-column-generation algorithm was developed to solve the
large-scale instances [23]. Janoveca and Kohánia (2019) proposed a single-depot EVSP
model considering the capacity of the charging facilities which is solved by the standard
solver [24]. Li et al. (2020) addressed the EVSP in joint with the charger deployment
problem. An adaptive GA was designed to solve the problem [25].

2.2. Application of LNS in Solving EVSP and EVRP

The LNS heuristic was first introduced by Shaw (1998) [26] to solve the Vehicle Routing
Problem (VRP). The LNS heuristic explores the neighborhood of a solution extensively
by destroy-and-repair operators. These operators function to partially destroy and then
repair the current solution to obtain a new one. Node removal and reinsertion are the
most commonly adopted destroy-and-repair operators in solving the EVSP problems. Wen
et al. (2016) proposed a connection-based network model for a multi-depot EVSP. An
Adaptive LNS (ALNS) heuristic was developed to solve the problem with customized bus
trips that are geographically dispersed [7]. Considering nonlinear charging process and
multi-vehicle type, Zhang et al. (2021) developed an MIP model for the EVSP with linear
approximation of the nonlinear charging function. An ALNS heuristic was devised to solve
the problem [27]. Perumal et al. (2021) studied the e-bus scheduling problem integrated
with the crew scheduling problem considering a single depot and full charging policy.
They developed an ALNS heuristic utilizing branch-and-price heuristics to address the
problem [28].

The LNS and its extension, the ALNS, have been proven to be successful in solving
many Electric Vehicle Routing Problem (EVRP) problems in the logistics context. EVRP
aims to route a set of electric vehicles to deliver or pick up customer packages in certain
sequences to minimize the operational cost. The EVRP and EVSP have similarities in
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that both of them need to optimize the schedule for electric vehicles to serve customers
considering the charging demand. Due to the problem complexity, constructive and
local search-based heuristics were proposed to solve the large-scale problem instances.
Koç et al. (2019) devised an ALNS-based heuristic to solve the EVRP with shared charging
stations [29]. References [30–32] developed LNS-based heuristics to address the EVRP
considering partial recharging.

From the above discussion we can see that although many studies have focused on
EVSP, a heuristic for solving the multi-depot EVSP considering multiple depots, vehicle re-
location constraint, and partial charging has not been proposed in the literature. This paper
aims to meet this gap and address the multi-depot e-bus scheduling problem considering
vehicle relocation constraint and partial charging.

3. Mathematical Formulation
3.1. Problem Description

In the transit network, a bus route is characterized by two end terminals and a series of
intermediate stops. On a bus route, a service trip starts from one end terminal at a planned
time and ends at the other end terminal to carry passengers. The timetable of the route
includes all the trips in one day with their planned start time from the start terminal and
expected end time at the end terminal. On the electrified bus routes, these trips are carried
out by a fleet of e-buses. Each e-bus undertakes a sequence of trips in a day which is called
a trip chain. An operation schedule consists of the trip chains for all the e-buses. The end
terminals function as bus depots to serve for vehicle parking, maintenance, and charging if
the charging facilities are established, we therefore referred to them as depots.

The e-bus scheduling problem is formulated on an acyclic direct graph G = (V, A).
Each timetabled trip is represented by a trip node in graph G. Denote K as the set of depots.
Each depot k ∈ K is created with two nodes in graph G: an operation begin node ok and an
operation end node dk, representing the e-bus begins/ends the operation from/at depot k,
respectively. For each node ok and dk, k ∈ K, denotes zok as the earliest operation start time
and zdk as the latest operation end time. Denote T ⊆ V as the set of trip nodes. For a trip
node i ∈ T, zi denotes the scheduled start time; si and ei represent the scheduled trip start
time and trip energy consumption, respectively.

The arc set A includes three kinds of arcs: (i) The pull-out arc connects an operation
begin node ok, k ∈ K and a trip node i ∈ T, representing that an e-bus begins its operation
from depot k to carry out the first trip i; (ii) the pull-in arc connects a trip node i and
an operation end node dk, k ∈ K, representing that an e-bus completes its last trip i and
end the operation, returning to depot k; (iii) the trip connection arc connects two trip
nodes, representing that two trips are carried out consecutively by and e-bus. Each arc
(i, j) ∈ A is associated with a non-service travel time tij and energy consumption eij.
Denote tb as the buffer time between two successive trips. To ensure the trips are carried
out without delay, trip nodes i and j can be connected only if the time compatible condition
zi + si + tij + tb ≤ zj is satisfied. Each arc is associated with a cost cij including the non-
service travel cost and vehicle usage cost c f on the pull-out arcs. We define gij, (i, j) ∈ T as
the average unit charging cost in the time interval between the end of trip node i and the
start of trip node j which is calculated according to the time-of-use tariff.

An example of the graph for an instance with two depots and four trips is shown
in Figure 2. Each depot is created with an operation start node ok and an operation end
node dk, k = 1, 2. Each trip is represented by a trip node i associated with a start time and
an expected end time, i = 1, 2, 3, 4. The nodes are connected with each other by the three
kinds of arcs. The feasible trip chain illustrated in Figure 1b corresponds to the graph in
the following way: trip 1 to trip 4 in Figure 1b correspond to trip node i = 1, 2, 3, 4 in the
graph; Shekou Port Depot corresponds to node o1 and d1 while Changlingdong Depot
corresponds to node o2 and d2. The waiting and non-service travel arcs in Figure 1b are
represented by the trip connection arcs in the graph.
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We assume that the e-buses begin the operation with a fully charged battery and can
get recharged at the depots anytime during the day. A safety range of the battery SoC is[
umin, umax]. The energy consumption of a trip is proportional to the trip time with a rate

ru (kWh/min). The charging rate of the e-bus battery is rs (kWh/min) with a charging
preparation time tp. Based on the above settings, the problem looks for the minimum cost
schedule that satisfies the following constraints: (i) Each trip is carried out exactly once;
(ii) the start time of each trip is respected; (iii) the vehicle relocation constraint is satisfied;
(iv) the vehicle battery SoC is always kept within the safety range

[
umin, umax]. The list of

notations for the MD-EVSP model is provided in Table 1.

Table 1. Definitions of the sets, parameters and variables for the MD-EVSP model.

Sets

K Set of depots with index k
T Set of trip nodes
V Set of nodes
A Set of arcs

Parameters

B Battery capacity of the e-bus
a0 Earliest operation start time
b0 Latest operation end time
si Trip time of trip node i
ei Energy consumption of trip node i
tij Non− service travel time from node i to node j
eij Energy consumption of the non− service travel from node i to node j
cij Cost of arc (i, j) ∈ A
gij Unit charging cos t on arc (i, j) ∈ A
tp Charging preparation time
tb Buffer time between two successive trips
rs Energy charging rate
ru Energy consumption rate
umax Upper bound of the vehicle battery SoC
umin Lower bound of the vehicle battery SoC
umin

i Lower bound of variable Yi; umin
i = umin + ei

Variables

Xijk
Binary variable that equals 1 if an e− bus housed at depot k traverses arc (i, j) ∈ A, and 0
otherwise

Zi Trip start time of trip node i

Yi

Lowest battery SoC of the vehicle at the trip start time of trip node i; At each operation start

(end) node ok
(

dk ), k ∈ K , Yi is the lowest battery SoC of the vehicle at the operation start
(end) time.

Wij Amount of energy to be charged after completing trip i before starting trip j
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3.2. MIP Model

Based on the above problem description, the MD-EVSP model is formulated as follows.

min ∑
k∈K

∑
(i,j)∈A

cijXijk + ∑
(i,j)∈A

gijWij (1)

s.t. ∑
k∈K

∑
j:(i,j)∈A

Xijk = 1, i ∈ T (2)

∑
j:(i,j)∈A

Xijk − ∑
j:(j,i)∈A

Xjik = 0, i ∈ T, k ∈ K (3)

∑
β∈K\{k}

∑
i∈V

Xoβik = 0, k ∈ K (4)

∑
β∈K\{k}

∑
i∈V

Xidβk = 0, k ∈ K (5)

Yi − ei + Wij − eij + M
(

1− ∑
k∈K

Xijk

)
≥ Yj, (i, j) ∈ A (6)

Wij −
(
zj − zi − si − tij − tp)rs ∑

k∈K
Xijk ≤ 0, (i, j) ∈ A (7)

Yi − ei + Wij − umax ≤ 0, (i, j) ∈ A (8)

umin
i ≤ Yi ≤ umax, i ∈ V (9)

Wij ≥ 0, (i, j) ∈ A (10)

Xijk ∈ {0, 1}, (i, j) ∈ A, k ∈ K (11)

Objective (1) minimizes the sum of vehicle usage, empty travel and charging cost.
Constraints (2) ensure that each trip is performed only once. Constraints (3) are the flow
conservation constraints. Constraints (4) and (5) require that each vehicle begin and end its
operation at its base depot. Constraints (6) ensure the vehicle battery energy consistency of
two successive trips. Constraints (7) restrict that charging on arc (i, j) is performed only if
it is selected and time is available. Constraints (8) require that the upper battery SoC level
cannot be exceeded after recharging. Constraints (9) keep the vehicle battery SoC within
the safety range. Constraints (10) and (11) define the domains of the variables.

4. Large Neighborhood Search Heuristic

In this section, we present the LNS heuristic for the multi-depot e-bus scheduling
problem. Given an initial solution, the LNS heuristic explores better solutions regarding
the objective function extensively by the solution destroy-and-repair mechanism. Node
removal and reinsertion are the commonly adopted destroy-and-repair operators in solving
the EVRP related problems. However, these operators are not effective in generating good-
quality solutions for our problem. Figure 3a shows the expected form of a feasible trip
chain which does not need vehicle relocation (long-distance non-service travel) to return
to the base depot, and an infeasible trip chain which requires the e-bus to travel from
depot b to depot a after completing the operation. Figure 3b illustrates that applying the
trip node removal and reinsertion operators may result in neighborhood solutions with
vehicle relocation between the end depots thus violating the vehicle relocation constraint.
In addition, applying the node exchange operator cannot change the solution structure on
a great extent and is not an effective way to search for the neighborhood of the current
solution. Considering the above issue, we developed a novel solution formulation heuristic
(Section 4.2) and applied it in the initial solution generation and neighborhood searching
process of the LNS heuristic to generate high-quality solutions.
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4.1. Heuristic Framework

The LNS heuristic framework is presented in Algorithm 1. Given a set of unas-
signed trips as input, an initial solution x0 is generated by a novel constructive heuristic
Algorithm 2 (Section 4.2). x0 is initialized as the current solution xcur and best solution
x∗. In each iteration, a new temporary solution x′ is generated by the Schedule Destroy and
Repair procedure (Section 4.3). x′ is subsequently improved by the local search operators
(Section 4.4). The evaluation function f (x) consists of the cost of vehicle usage, empty
travel and charging. If a neighborhood solution x′ is interior to the current solution xcur

in terms of f (x), a simulated annealing method is used as the acceptation criteria: the
probability of accepting x′ as the current solution is determined by p = e(xcur−x′)/t; as t
decreases with the searching process underway, p decreases. In the diversification process,
a larger portion of the trip chains in xcur are destroyed and then repaired by the solution
destroy and repair operators. The searching procedure will end if there has been Niter
iterations without improvement in x∗. Then x∗ is returned as the best feasible solution.
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Algorithm 1 Large Neighborhood Search

1 Input a set of trips T
2 x0 ← Generate an initial solution by Algorithm 2
3 Initialization: xcur ← x0 ; x∗ ← x0 ; t← t0 ; n = 0;
4 Repeat
5 If diversification criterion satisfied
6 xcur ← diversify (xcur)
7 x′ ← Schedule Destroy and Repair (xcur)
8 x′ ← Local Search (x′)
9 If accept (x′, xcur)
10 xcur ← x′

11 If f (x′) < f (x∗)
12 x∗ ← x′

13 t← 0
14 t← αt
15 n← n + 1
16 Until n > Niter
17 Return x∗

4.2. Solution Formulation Heuristic

In this section, we introduce a novel construction heuristic, Algorithm 2 to formulate
an e-bus schedule given a set of trips. Algorithms 2 includes two steps: In the first step, a
set of short trip chains named trip chain segments (TCSs) are generated, which starts from
and ends at the same depot. In the second step, the TCSs are merged with each other to
formulate complete trip chains. The reason for first formulating TCSs and then merging
them is to satisfy the vehicle relocation constraint and avoid unnecessary vehicle relocation.
The outline of Algorithm 2 is described as follows.

Algorithm 2 Schedule Formulation

Input: A set of trips
Output: A complete schedule
Step 1: Formulate a set of TCSs by Algorithm 3
Step 2: Merge the trip chain segments by Algorithm 6

An illustration of the solution formulation procedure of Algorithm 2 is presented in
Figure 4.
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In the first step, a set of TCSs are generated by Algorithm 3 taking a set of trips St

as input. The procedure of Algorithm 3 is as follows: Firstly, the trips are sorted in non-
decreasing order of their start times. A new trip chain is created for each of the first n trips
that cannot be appended to other trips where n is generated by a geometric distribution
n ∼ G(p1). Then, for each unassigned trip t, we append it to the end of the existing trip
chains, generating a set of candidate TCSs; the TCS with the lowest cost will be retained.
If the trip cannot be successfully appended, a new trip chain will be created for it. After
all the trips are assigned, the trip chains that do not end at the base depot are regarded
as infeasible and removed. The feasible set of TCSs is denoted as Sc and the unassigned
set of trips is denoted as St

le f t. Su and St are input to Algorithm 4 to generate new TCSs.
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In Algorithm 4, in each iteration, we select and destroy an existing TCS u ∈ Sc and
reformulate new TCSs using the trips in u and St

le f t. This reformulation is achieved by a trip
chain formulation subroutine (Algorithm 5) using the k-regret trip insertion principle intro-
duced in Wen et al. [7]. If the number of unassigned trips is reduced after the reformulation
procedure, the new TCSs will be retained. The iteration will terminate if St

le f t is empty
or the TCSs in Sc have been traversed. If all the trips are not assigned after the iteration
terminates, the procedure of Algorithm 4 will repeat again to generate new TCSs with-
out feasibility checking. This setting will ensure that all the free trips in St

le f t can be assigned.
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In the second step, after all the trips are assigned, the TCSs are merged together to
formulate complete trip chains by Algorithm 6. In Algorithm 6, in each iteration, two TCSs
are selected and merged into one TCS by Algorithm 7. Firstly, one TCS u is selected and
merged with each of the remaining TCSs in Sc, creating a set of candidate TCSs Sc

candid,u.
Then the candidate TCS u ∈ Sc

candid,u with the i-th lowest evaluation value f (u) is retained
as the merged TCS and Su is renewed; i is generated according to a geometric distribution
i ∼ G(p2). The iteration will terminate when no feasible merging exists. The set of
complete trip chains will be returned.
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4.3. Neighborhood Solution Generation

A neighborhood solution is generated by the Schedule Destroy Repair procedure.

Schedule Destroy Repair Procedure

Step 1: Schedule destroy. A number of Nd trip chains are destroyed. Firstly, a number of βNd
trip chains with the highest evaluation value f (x) are destroyed. The remaining
(1− β)Nd trip chains are destroyed randomly.

Step 2: Schedule repair. The unassigned trips from the destroyed trip chains are reformulated
into a new set of trip chains by Algorithm 2, the infeasible trip chains among which is
then fixed by Algorithm 8.
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In this procedure, a number of βNd trip chains of the current solution are destroyed
and then the unassigned trips are reformulated into new trip chains by Algorithm 2. The
reformulated trip chains together with the remaining ones become a new neighborhood so-
lution. In the reformulation process, the battery SoC constraint (iv) introduced in Section 3.1
is relaxed to allow for a larger searching range. This may cause some of the reformulated
trip chains to be infeasible. Algorithm 8 is then used to fix the infeasible trip chains.

Algorithm 8 is a local search heuristic based on two operators: Trip exchange, trip
remove and reinsertion. In each iteration, the trip chain P violating the battery SoC
constraint most is repaired. To repair P, we select a trip t in P and apply the trip exchange
operator to exchange t with a trip of other trip chains. If no feasible trip exchange exists
and t is a round trip, the trip remove-and-reinsert operator is applied to remove t from P
and reinsert it into another trip chain. The repair of P will end if it becomes feasible or all
the trips of P are traversed. The overall process will terminate if all of the trip chains satisfy
the battery SoC constraint or a maximum number of Nr

iter iterations has been reached. After
the above process, a new schedule is generated which will be accepted as a neighborhood
solution only if it is feasible.

4.4. Local Search

In the local search step, we improve the schedule by the following three operators,
which are applied in random order: (i) The trip subsequence remove and reinsertion:
This operator removes a subsequence of trips from one trip chain and tries to insert it
into another trip chain. (ii) Trip remove and reinsertion: This operator is applied if the
timetable includes loop trips. It removes a loop trip from one trip chain and tries to reinsert
it into another trip chain. (iii) Trip exchange: This operator selects two trips from different
trip chains and tries to exchange their positions. The solution obtained by the first move,
improving in the objective function f (x), is accepted.

5. Numerical Experiments
5.1. Data Preperation

In this section, we conduct numerical experiments based on the bus routes in Shenzhen
with the aim to demonstrate the effectiveness of our LNS algorithm in solving real-world
problem instances. The layout of the bus routes is displayed in Figure 5. This case includes
six routes and four bus depots located at the end stops of the routes. All the depots are
equipped with charging facilities for e-bus charging. A total number of 778 trips are
scheduled on these routes. Figures 6 and 7 show the number of scheduled trips, average
travel time and trip frequency at each depot during the day.

We first conducted experiments on single-route scheduling and then on multi-route
scheduling where the e-buses are allowed to carry out trips on different routes. We acquired
the parameters related to the charging technology and type of the e-bus from the transit
agency. The BYD e-buses with a battery capacity of 260 kWh are used with the safety range
of the battery SoC set between 30 and 100 percent of the battery capacity. According to the
typical charging technology specifications of the investigated fleets, the charging rate is
estimated as 1.6 kWh/min. Based on the analysis of historical running data, we estimate the
electricity consumption rate as 0.45 kWh/min. Then, one day’s timetables were generated
for the bus routes based on the headway requirements and historical running data. The
time-of-use tariff in Shenzhen as shown in Table 2, is considered.
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Table 2. Time-of-use tariff in Shenzhen.

Start End Price (RMB/kWh)

6:00 6:59 0.26
7:00 8:59 0.70
9:00 11:29 1.05
11:30 13:59 0.70
14:00 16:29 1.05
16:30 18:59 0.70
19:00 20:59 1.05
21:00 22:59 0.70
23:00 23:59 0.26

Before the experiments, a subset of instances including small and large-scale ones was
selected for parameter tuning. Table 3 provides the parameter setting of the LNS heuristic
which has proved to be robust in the preliminary tests.

Table 3. Parameter setting in the numerical experiments.

Para. Value Para. Value Para. Value

Niter 3000 α 0.2 Nd 0.3|T|
Nr

iter 100 p1 0.4 β 0.3
t0 1 p2 0.9

In the numerical experiments, the MIP model was solved by optimization solver Cplex
12.6 with a time limit of 3600 s and the LNS heuristic was coded in Java. All the experiments
were run on a PC with Windows 10, Intel Core i5-8250U, 1.80 GHz and 8 GB RAM.

5.2. Cases with Single Route

We analyzed the performance of the MIP model and LNS heuristic based on the six
bus routes. The computational results are presented in Table 4. It shows the number of
timetabled trips (#Trips), e-buses used (#V), objective of the MIP model solved by Cplex
and LNS heuristic (Obj), computational time, and the solution gap. The MIP gap is the gap
between the objective and lower bound value obtained by the Cplex. The gap of the LNS
heuristic is the gap between the solution and objective of the MIP model. If the MIP gap is
higher than 95% within 3600 s of computational time, we report the lower bound obtained
by Cplex in the bracket.

Table 4. Computational results of the single route instances.

Route #Trips
#V Obj Run time (s) Gap (%)

MIP LNS MIP LNS MIP LNS MIP LNS

M299 78 12 12 12,132.1 12,130.5 3600 35.2 1.09 – 0.01
M409 92 8 8 8127.1 8128.4 3600 52.0 1.56 0.02
90 114 6 6 6000.0 6000.0 3600 69.5 0.00 0.00
42 136 14 14 14,327.2 14,315.8 3600 116.2 2.28 – 0.08
43 142 16 16 16,581.1 16,562.0 3600 92.7 3.50 – 0.12
81 216 38 38 (38,000) 38,659.9 3600 193.6 — —

The results show that the MIP model can be solved to near optimal by Cplex with
small MIP gap for all the instances except the instance for route No. 81. The LNS heuristic
can generate near-optimal solutions in a short time for all the instances. The computational
time is positively related to the number of trips involved.
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5.3. Cases with Multiple Routes

We obtained the optimal schedule by the LNS heuristic on multiple routes under two
scenarios regarding the configuration of the charging facilities. In scenario I, all the depots
are equipped with charging facilities; in scenario II, we assume that Moon Bay Depot is not
equipped with charging facilities. As such, the e-buses housed at Moon Bay Depot need to
be moved to out-of-depot charging stations for recharging during the off time. We assume
that 10 percent of energy will be consumed traveling from the depot to the charging station.
Therefore, the e-buses will start the operation from the depot with 90 percent of battery
SoC and should maintain at least 40 percent of battery SoC at the end of the operation.

Table 5 presents the computational results of the multi-route case including the num-
ber of e-buses used (#V), objective obtained by the LNS heuristic (Obj), charging cost
and computational time. The LNS heuristic can obtain high-quality solutions within a
reasonable computation time and enable the operator to organize the fleet in an efficient
way. Compared with scenario I, scenario II requires more e-buses to be utilized, as the
e-buses housed at Moon Bay Depot have higher daily charging demand than those housed
at other depots. With more time being spent on charging, the utility of the e-buses on
service trips decreases. Therefore, equipping charging infrastructure at bus depots is critical
and beneficial in maintaining high operation efficiency of the e-buses.

Table 5. Computational results of the multi-route instances.

Scenarios #V Obj. Charging Cost Run time (s)

Scenario I
(All depots charging available) 93 95,328 2327.7 3545.3

Scenario II
(Moon Bay charging unavailable) 98 100,413 2412.8 4096.5

Compared with the single-route scheduling mode under which 94 e-buses are used in
total, the multi-route scheduling mode saves one e-bus being utilized. Figure 8 shows the
comparison of the total cost and charging cost of single-route and multi-route scheduling.
We can see that the daytime charging cost under multi-route scheduling is higher than that
under single route scheduling. This is because under multi-route scheduling, 93 e-buses
are used, causing each e-bus to charge more during the day; however, the total operational
cost is reduced greatly under multi-route scheduling. As such, there is a trade-off between
the fleet size and charging demand which together determine the operational cost.
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To determine the capacity required for the charging facilities at the depots, we calcu-
lated the number of e-buses charging at the depots during different time of the day as shown
in Figure 9. We can observe that Shenzhen North Railway Station Depot has the highest
charging demand among all the depots. 6 and 8 charging piles are required to satisfy the
e-bus charging without waiting under single route and multi-route scheduling, respectively.
The e-buses tend to charge during the off-peak time regarding the time-of-use tariff which
can result in a lower charging cost. Compare Figure 9b for multi-route scheduling with
Figure 9a for single route scheduling, we can see multiple route scheduling requires larger
number of chargers. This is because a smaller number of e-buses are used and the daily
charging amount is increased, which coincides with the results in Figure 8. Figure 10 gives
the maximum number of chargers required at each depot during the daytime operation
under single-route and multi-route scheduling mode. This value can provide a reference
for the transit agency to determine the number of chargers that should be reserved for
e-bus charging during the day to ensure the e-buses can be charged without waiting upon
arrival at the depots. However, to determine the total number of chargers that should be
established at the depots, the capacity of the depot, fleet size, and night-time charging
activity should also be taken into consideration.
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5.4. Sensitivity Analysis

We also analyzed the impact of the vehicle battery capacity and charging rate on
the number of vehicles used and operational cost on the multi-route case with all depots
charging available. The ranges of battery capacity and charging rate take the values in
the intervals [180, 340] kWh and [0.8, 2.4] kWh/min, respectively. Within the ranges of
the charging rate and battery capacity, the fleet size of the schedules stays the same, all
being 93 vehicles. Figure 11 shows the operational cost of the e-bus fleet under different
charging rate and battery capacity. In Figure 11a, under the battery capacity of 260 kWh,
the operational cost decreases with the increasing of the charging rate. As the charging
efficiency is improved, e-buses operate more efficiently and can choose to charge in the
periods with lower tariff, resulting in a decrease in the charging cost. In Figure 11b, under
the charging rate of 1.6 kWh/min, the operational cost decreases with the increasing of
the battery capacity. The longer driving range per charge and less time spent in charging
make the e-buses operate more efficiently. It is interesting to find that the speed of the
decrease tends to lower down, meaning that the effect of cost-saving by increasing the
battery capacity decrease gradually. As such, it is best to adopt e-buses with moderate
battery capacity for operation from the economic viewpoint.
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6. Conclusions

In this paper, we addressed a large-scale multi-depot e-bus scheduling problem consid-
ering the vehicle relocation constraint, which is required in the e-bus operational scenarios
in Shenzhen. Partial charging is allowed at the bus depots. An MIP model is formulated
to minimize the total operational cost. An LNS heuristic is developed to solve the large-
scale problem instances with hundreds of trips. The vehicle relocation constraint renders
the destroy-and-repair operators commonly used in the existing LNS heuristics for EVSP
problemsineffective in our problem. As such, we devised a novel solution formulation
procedure being used in the initial solution generation and solution repair process of our
LNS heuristic.

We conducted numerical experiments based on the e-bus operation cases in Shenzhen.
The results showed that the LNS heuristic can generate high-quality solutions for both
single-route and multi-route scheduling cases. Sensitivity analysis was conducted to
investigate the impact of the charging rate and battery capacity on the operational cost
of the e-buses fleet. The number of charging piles reserved for daytime charging of the
e-buses at the depots can be determined based on the optimal charging plan. The following
managerial insights are derived based on numerical experiments:

• Compared with single-route operation mode, multi-route operation mode can save
the number of vehicles utilized at the expense of a higher charging cost. As such, the
optimal schedule with the lowest total operational cost requires a balance between the
vehicle usage cost and charging cost.

• Equipping enough charging facilities at bus depots is critical in maintaining high
operation efficiency of the e-buses.

• With a certain number of scheduled trips, increasing the battery capacity can reduce
the operational cost; however, the effect of the reduction tends to decrease. Increasing
the charging rate can reduce the operational cost.

In large bus depots connecting multiple bus routes with small headways, the charging
activities of the e-buses can have a significant impact on the electricity grid. As such, it is
interesting for future study to optimize the e-bus operation schedule with the charging plan
that balances the charging demand over the day to minimize the impact of the charging
activities on the electricity grid.
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