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Abstract: Here we report a simple fabrication method for large-scale hybrid surface-enhanced
Raman scattering (SERS) active substrates composed of Au-nanoparticle-decorated three-dimensional
(3D) Cu(OH)2@HKUST-1 (Cu3(btc)2, H3btc = 1,3,5-benzenetricarboxylic acid) nanorod arrays on
a woven Cu mesh (Cu mesh/Cu(OH)2@HKUST-1@Au). Cu(OH)2 nanorods were first obtained
from a simple in situ chemical engraving Cu mesh and then utilized as self-sacrificing templates to
achieve HKUST-1 nanocube-assembled nanorods; finally, Au nanoparticles (Au NPs) were sputtered
onto the Cu(OH)2@HKUST-1 nanorods. Due to the large surface area, the three-dimensional Cu
mesh/Cu(OH)2@HKUST-1 nanorods could load high-density Au NPs and capture target detection
molecules, which is beneficial to the formation of a strong electromagnetic field coupling between
Au NPs, and provides abundant “hot spots” for a sensitive and uniform SERS effect. Using the Cu
mesh/Cu(OH)2@HKUST-1@Au nanorod arrays as the SERS substrate, 10−9 M Rhodamine 6G and
10−8 M 4-aminothiophenolcan were identified. To verify their practical application, the fabricated
arrays were employed as SERS substrates for the detection of thiram, and 10−8 M thiram could be
recognized. The hybrid SERS substrates show potential applications in the field of environmental
pollutant detection and this is of great significance to the sustainable development of the environment.

Keywords: surface-enhanced Raman scattering; Cu(OH)2 nanorods; HKUST-1 nanocubes; Au
nanoparticles; thiram

1. Introduction

Since the British scientist Fleischman discovered surface-enhanced Raman scattering
(SERS) in 1974 [1,2], SERS as a spectral analysis method has gained widespread interest
owing to its fingerprint peak recognition [3], high sensitivity [4] and rapid response, and it
is non-destructive to samples [5,6]; it is widely used in various trace molecular identifica-
tion and material structure characterization procedures [7]. It is generally recognized that
SERS enhancement is attributed to both the electromagnetic enhancement and chemical en-
hancement, where the electromagnetic enhancement plays a predominant role in the SERS
effect [8–10]. It has been proved that the electromagnetic enhancement is mainly confined
to sharp metallic nanotips and nanogaps, called hotspots [11]. In order to maximize the
SERS effect, the construction of SERS substrates has attracted many researchers to explore
the generation of more hot spots to generate strong local electromagnetic fields [11].

So far, a variety of methods have been used to fabricate a large number of high-
performance SERS substrates, including noble metal nanoparticle aggregation [12–14], pho-
tolithography or nanoimprint lithography [15] and template-based methods [16]. Among
them, the agglomeration phenomenon of metal nanoparticles in a suspension could signifi-
cantly enhance the SERS effect [17] and achieve single-molecule detection [18,19]. However,
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the difficulty in achieving a precise control of the number and density of noble metal aggre-
gates in the solution hinders the assurance of the consistency and reproducibility of the
SERS signal. Although photolithography or nanoimprint lithography and template-based
methods [20–23] improve the consistency and accuracy of the arrangement of noble metal
nanoparticles [24–27], these processes are generally time-consuming and require addi-
tional expensive instruments [28–30]. Therefore, it is still a challenge to realize a large-area
substrate with a high SERS activity and signal uniformity through a simple and low-cost
synthesis method. To meet this challenge, assembling Au or Ag nanoparticles onto the
surface of one-dimensional or two-dimensional semiconductor nanostructure arrays to
achieve three-dimensional (3D) SERS substrates is highly desirable. The electromagnetic
field enhancement based on noble metal nanostructures and the chemical enhancement of
semiconductor nanostructures can simultaneously increase the Raman signal and improve
the detection sensitivity [31]. Furthermore, the semiconductor nanostructure arrays can
load more noble metal nanoparticles and ensure the reproducibility and uniformity of the
Raman signal [32–34].

Here, we demonstrate a low-cost and reliable method to obtain a large-area 3D uni-
form SERS substrate (denoted as Cu mesh/Cu(OH)2@HKUST-1@Au) composed of Au-
nanoparticle decorated Cu(OH)2@HKUST-1 (Cu3(btc)2, H3btc = 1,3,5-benzenetricarboxylic
acid) nanorods on a commercial woven Cu mesh, as shown in Figure 1. The large-area
and high-density HKUST-1 nanocube-assembled nanorods with a 3D hierarchical struc-
ture can be used as a platform to load high-density Au nanoparticles (NPs); thus, abun-
dant nanogaps between coupled Au NPs decorated on the same and different HKUST-1
nanorods can be realized. Therefore, this method can realize hot spots with a high density
on a large area, which is very useful for obtaining high SERS signals from molecules.
In addition, as a typical metal-organic framework (MOF) material [35–38], HKUST-1 has
a porous structure that is favorable for the capture of target detection molecules, so it
can further improve the signals of target detection molecules. The results show that the
Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays exhibit a high SERS activity toward
Rhodamine 6G (R6G), 4-aminothiophenol (4-ATP) and thiram molecules. The molecules
10−9 MR6G, 10−8 M 4-ATP and 10−8 M thiram have been detected, respectively. This work
presents a strategy for the feasible assembly of Au NPs on the well-aligned MOF arrays,
which could serve as a promising platform for environmental pollutant detection.
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Figure 1. Scheme showing the fabrication of the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays
hierarchical SERS substrate.

2. Materials and Methods
2.1. Chemicals

Sodium hydroxide (NaOH), ammonium persulfate ((NH4)2S2O8), 1,3,5-trimesic acid,
polyvinylpyrrolidone (PVP) and N,N-dimethylformamide (DMF) were purchased from
Sinopharm Chemical Reagent Co. Ltd.; 4-aminothiophenol (4-ATP) was purchased from
Saen Chemical Technology (Shanghai) Co. Ltd. (Shanghai, China); Rhodamine 6G (R6G)
and thiram were purchased from Shanghai Macklin Biochemical Technology Co. Ltd.
(Shanghai, China); commercial woven Cu mesh with mesh number of 400 was purchased
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from Shanghai Xinhu screen shop; all reagents are analytic reagents without special treat-
ment before use. The golden target used for ion sputtering (Au, 99.99%) was purchased
from Zhongnuo Advanced Materials (Beijing) Technology Co. Ltd. (Beijing, China).

2.2. Pretreatment of Cu Mesh

The commercial Cu mesh was first cut into small pieces of 1 × 1 cm. Then, these small
pieces of Cu mesh were ultrasonically rinsed in ethanol, acetone and deionized water for
15 min, respectively.

2.3. Preparation of Cu(OH)2 Nanorods

NaOH weighing 1 g and 0.228 g of (NH4)2S2O8 were completely dissolved in 10 mL
of deionized water and kept in water bath at 20 ◦C. Then, a small piece of Cu mesh was
immersed into the solution and kept at 20 ◦C for a certain period of time (10–30 min).
Finally, the resultant samples were collected and rinsed with deionized water and dried in
the oven at 20 ◦C for 12 h.

2.4. Preparation of Cu(OH)2@HKUST-1 Nanorods

A certain amount (0.005 g, 0.01 g, 0.02 g) of 1,3,5-trimellitic acid and a certain amount
(0.05 g, 0.1 g, 0.2 g) of PVP were dissolved in 2.5 mL deionized water and 2.5 mL DMF.
Then, the Cu mesh with Cu(OH)2 nanorods was placed into the above reaction solution for
10–30 min. The Cu(OH)2@HKUST-1 nanorods on the woven Cu mesh were collected and
rinsed with ethanol several times and then dried in the oven at 85 ◦C for 12 h.

2.5. Preparation of CuO Nanorods

The as-prepared Cu(OH)2 nanorods on the Cu mesh were dried in the oven at 180 ◦C
for 2 h to obtain CuO nanorods on the Cu mesh.

2.6. Sputtering Au NPs onto the Different Arrays on the Cu Mesh

The different arrays on the Cu mesh were placed below the gold target with a distance
of about 2 cm in the ion sputter (Quorum K550X, UK), while the sputtering current was set to
40 mA/cm2, and the sputtering duration was controlled from 4 to 16 min (the interval is 4 min).

2.7. Characterizations

Scanning electron microscopy (SEM, S-4800, Hitachi, Japan) and transmission electron
microscopy (TEM, HT-7700, Hitachi, Japan) was carried out to observe the morphology
of samples. Energy dispersive X-ray spectroscopy (EDS) was conducted using an Oxford
X-MaxN 80T IE250. X-ray diffraction (XRD) (Beijing Puxitong Instrument Co., Ltd., Beijing,
China) was used to determine the crystal structure of the synthesized products. The UV–vis
spectra were taken on a Shimadzu MPC-3100 equipped with an integrated sphere accessory.

2.8. SERS Measurements

The SERS measurements were carried out with a confocal microscopic Raman spec-
trometer (Renishaw, inVia 50× objective). Before the SERS measurements, different samples
were soaked in R6G solution for 10 h, taken out and rinsed with deionized water and then
dried in the air. In order to detect thiram, thiram was dissolved in acetone at different
concentrations (from 10−4 M to 10−8 M), and the substrates were immersed into thiram
acetone solution for 10 h, rinsed with deionized water and then dried in the air. For 4-ATP
detection, the substrates were immersed into 4-ATP ethanol solution for 10 h, taken out
and rinsed with deionized water and then dried in the air. The SERS spectra of R6G were
acquired with an excitation wavelength of 532 nm. The SERS spectra of 4-ATP and thiram
were acquired with an excitation wavelength of 785 nm.
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3. Results and Discussion

Figures 2a,b and S1 show the SEM images of Cu(OH)2 nanorods grown on a Cu mesh.
It can be seen that the Cu mesh was uniformly covered with dense Cu(OH)2 nanorods. The
SEM image of the Cu(OH)2 nanorods on a Cu mesh under high magnification (Figure 2b)
demonstrates that high-density upright Cu(OH)2 nanorods with an average length of about
5 µm on the Cu mesh formed a 3D or quasi-3D connected stereoscopic structure. In addition,
Figure 2b inset shows a close-up SEM image of Cu(OH)2 nanorods with a polygonal shape
and an average diameter of about 250 nm. After immersion in 1,3,5-trimellitic acid and
PVP solution for 20 min, large-area dense HKUST-1 nanostructures on the Cu mesh were
achieved, as shown in Figure 2c,d. A close-up SEM observation (Figure 2d) reveals that
the dense HKUST-1 nanocubes were assembled on the surface of the Cu(OH)2 nanorods,
forming vertically aligned HKUST-1 nanocube-assembled nanorods (Figure 2d inset). TEM
observation on the broken HKUST-1 nanocubes (Figure 2e) and a corresponding line scan
at high magnification (Figure S2) further demonstrate the HKUST-1 nanocube-assembled
nanorods’ geometrical features—they form a core–shell structure. The average length of the
HKUST-1 nanocube assembled nanorods was about 5 µm and the average diameter was
about 1µm. Figure 2f is the EDS of the Cu(OH)2@HKUST-1 nanorods on a Cu mesh, which
reveals that the composite structure was mainly composed of Cu and a small amount of
carbon and oxygen, which further confirms that the Cu(OH)2@HKUST-1 nanorods on the
Cu mesh were synthesized.

Sustainability 2021, 13, x FOR PEER REVIEW 4 of 11 
 

samples were soaked in R6G solution for 10 h, taken out and rinsed with deionized water 
and then dried in the air. In order to detect thiram, thiram was dissolved in acetone at 
different concentrations (from 10−4 M to 10−8 M), and the substrates were immersed into 
thiram acetone solution for 10 h, rinsed with deionized water and then dried in the air. 
For 4-ATP detection, the substrates were immersed into 4-ATP ethanol solution for 10 h, 
taken out and rinsed with deionized water and then dried in the air. The SERS spectra of 
R6G were acquired with an excitation wavelength of 532 nm. The SERS spectra of 4-ATP 
and thiram were acquired with an excitation wavelength of 785 nm. 

3. Results and Discussion 
Figure 2a,b and Figure S1 show the SEM images of Cu(OH)2 nanorods grown on a 

Cu mesh. It can be seen that the Cu mesh was uniformly covered with dense Cu(OH)2 

nanorods. The SEM image of the Cu(OH)2 nanorods on a Cu mesh under high magnifica-
tion (Figure 2b) demonstrates that high-density upright Cu(OH)2 nanorods with an aver-
age length of about 5 μm on the Cu mesh formed a 3D or quasi-3D connected stereoscopic 
structure. In addition, Figure 2b inset shows a close-up SEM image of Cu(OH)2 nanorods 
with a polygonal shape and an average diameter of about 250 nm. After immersion in 
1,3,5-trimellitic acid and PVP solution for 20 min, large-area dense HKUST-1 nanostruc-
tures on the Cu mesh were achieved, as shown in Figure 2c,d. A close-up SEM observation 
(Figure 2d) reveals that the dense HKUST-1 nanocubes were assembled on the surface of 
the Cu(OH)2 nanorods, forming vertically aligned HKUST-1 nanocube-assembled nano-
rods (Figure 2d inset). TEM observation on the broken HKUST-1 nanocubes (Figure 2e) 
and a corresponding line scan at high magnification (Figure S2) further demonstrate the 
HKUST-1 nanocube-assembled nanorods’ geometrical features—they form a core–shell 
structure. The average length of the HKUST-1 nanocube assembled nanorods was about 
5 μm and the average diameter was about 1μm. Figure 2f is the EDS of the 
Cu(OH)2@HKUST-1 nanorods on a Cu mesh, which reveals that the composite structure 
was mainly composed of Cu and a small amount of carbon and oxygen, which further 
confirms that the Cu(OH)2@HKUST-1 nanorods on the Cu mesh were synthesized. 

 
Figure 2. (a,b) SEM images of Cu mesh/Cu(OH)2 nanorods; (c,d) SEM images of Cu 
mesh/Cu(OH)2@HKUST-1 nanorods; (e) TEM image of HKUST-1 nanorods broken from Cu 
mesh/Cu(OH)2@HKUST-1 nanorods; (f) EDS of the Cu mesh/Cu(OH)2@HKUST-1 nanorods. 

Figure 2. (a,b) SEM images of Cu mesh/Cu(OH)2 nanorods; (c,d) SEM images of Cu
mesh/Cu(OH)2@HKUST-1 nanorods; (e) TEM image of HKUST-1 nanorods broken from Cu
mesh/Cu(OH)2@HKUST-1 nanorods; (f) EDS of the Cu mesh/Cu(OH)2@HKUST-1 nanorods.

XRD can be used to determine the crystal structure of the synthesized products.
Figure 3 presents the corresponding XRD patterns of Cu mesh, Cu mesh/Cu(OH)2 nanorods
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and Cu mesh/Cu(OH)2@HKUST-1 nanorods. It is clear that all the characteristic diffraction
peaks of crystal products match well with the peaks of Cu, Cu(OH)2 and HKUST-1. The
diffraction pattern shows peaks at 43.30◦, corresponding to (111) of Cu (JCPDS) [39]. The
diffraction pattern shows peaks at 35.55◦, 36.55◦ and 38.85◦, corresponding to (002), (111) and
(130) of Cu(OH)2 (JCPDS) [40]. It also shows the relative peak intensities of 9.05◦, 13.75◦ and
18.05◦ of cubic HKUST-1, corresponding to the (220), (400) and (333) lattices [41], respectively.
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The deposition duration and the concentrations of 1,3,5-trimellitic acid and PVP play
critical roles in the construction of Cu mesh/Cu(OH)2 nanorods. In order to investigate the
evolution process of HKUST-1 morphologies, a series of comparative experiments were
carried out (Figures S3–S5). The optimal parameters to fabricate the Cu(OH)2@HKUST-1
nanorods were: a deposition duration of 20 min, a concentration of PVP of 20 g/L and
a concentration of trimellitic acid of 2 g/L. After the Au NPs were sputtered onto the
Cu(OH)2@HKUST-1 nanorods, the 3D hybrid hierarchical Cu mesh/Cu(OH)2@HKUST-
1@Au nanorod arrays were achieved. Figures 4 and S6 shows the SEM images and UV–vis
absorption spectra of the Cu(OH)2@HKUST-1@Au samples with different Au-NP sputter-
ing durations. Compared with the Cu(OH)2@HKUST-1 nanorods before Au-sputtering, it
can be observed that the number and size of Au NPs on the HKUST-1 nanocubes gradually
increased with the increase of the sputtering duration. The UV–vis absorption spectra of
the samples show a gradual red shift of the absorption peak from 450 nm to 580 nm with
the sputtering duration increases (Figure S6). It is beneficial to obtain SERS signals under
the excitation of 532, 633 and 785 nm lasers [42].

It can be noted that there are sub-10 nm gaps (insets of Figure 4) between the
neighboring Au NPs located on the same Cu(OH)2@HKUST-1 nanorods, which can
serve as “hot spots” to ensure a high SERS-activity [43]. The SERS activity of the Cu
mesh/Cu(OH)2@HKUST-1@Au depending on the different Au-sputtering durations was
analyzed. As shown in Figure 4a,b, when the Au-sputtering durations was 4 min, Au
NPs with a diameter of about 5 nm were attached to the surfaces of Cu(OH)2@HKUST-1
nanorods with parts of the surfaces uncovered. With short Au-sputtering durations, weak
Raman signal appeared at 611 cm−1 [44] indicating a low SERS activity (Figure 5a). When
the Au-sputtering duration was 8 min, the number and size of Au NPs gradually increased,
while the diameter of Au NPs could be up to 10 nm (Figure 4c,d). The EDS also confirms
the composition of the hybrid particles. A line scan of a single Cu(OH)2@HKUST-1@Au
nanorod and overlay of Au, Cu and C EDS maps (shown in Figures S7 and S8) indicate a
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clear separation of the three elements and confirm the core–shell structure. The surface cov-
erage of Au NPs on the HKUST-1 nanocubes increased, but no obvious aggregations were
found. Therefore, the gaps between adjacent Au NPs was reduced to sub-10 nm, resulting
in an increase in the density of the “hot spots” and enhanced SERS activity (Figure 5a).
When the sputtering duration increased to 12 min, the number of Au NPs on the HKUST-1
nanocubes greatly increased with the diameter of about 15 nm (Figure 4e,f). At this stage,
the gap between neighboring Au NPs increased and the SERS intensity of the R6G was
improved (Figure 5a). By extending the sputtering duration to 16 min, we could obverse
that the Au NPs were stacked on the surfaces of the HKUST-1 nanocubes and obscured
the nanocubes’ shapes (Figure 4g,h). Au NPs could accumulate on the surface of HKUST-1
to form an Au film, leading to a lower density of nanogaps and decreased “hot spots”
between the adjacent Au NPs. Therefore, corresponding to the Raman spectra, we could
observe that the SERS activity decreased.
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substrates with different Au-sputtering durations. The exposure time was 10 s. (b) SERS spectra of
10−6 M R6G collected on the Au NPs decorated Cu(OH)2 nanorods and Cu(OH)2@HKUST-1 nanorods
that were obtained by immersing Cu(OH)2 nanorods in 1,3,5-trimellitic acid and PVP solution for
different durations. The exposure time was 2 s. (c) SERS spectra of 10−6 M R6G collected on Cu
mesh/CuO @Au, Cu mesh/Cu(OH)2 @Au and Cu mesh/Cu(OH)2@HKUST-1@Au, respectively.
The exposure time was 5 s. (d) SERS spectra of 10−6 M 4-ATP collected on Cu mesh/CuO @Au, Cu
mesh/Cu(OH)2@Au and Cu mesh/Cu(OH)2@HKUST-1@Au, respectively.

Figure 5b shows the SERS spectra of R6G acquired from the Au NP-decorated Cu(OH)2
nanorods and Cu(OH)2@HKUST-1 nanorods obtained by immersing Cu(OH)2 nanorods
in 1,3,5-trimellitic acid and PVP solution for different durations. With the immersion
duration increasing, the SERS signal from the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod
arrays gradually increased. When the immersion duration was 10 min, the Raman signal
from the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays was higher than that of the
Cu mesh/Cu(OH)2@Au. When the immersion duration was increased to 20 min, the
signal from the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays was significantly higher
than that of the Cu mesh/Cu(OH)2@Au. When the immersion time increased, the higher
surface area of the porous HKUST-1 nanocubes could load a higher density of Au NPs,
inducing a higher SERS activity. Figure 5c,d shows the SERS spectra of 10−6 M R6G and
10−6 M 4-ATP acquired from the Cu mesh/CuO@Au, Cu mesh/Cu(OH)2@Au and Cu
mesh/Cu(OH)2@HKUST-1@Au nanorod arrays’ substrates, respectively. It can be seen
that the Raman signal from the Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays was
the strongest and was significantly higher than those of the Cu mesh/CuO@Au and Cu
mesh/Cu(OH)2@Au. Therefore, HKUST-1 nanocubes were better for use as platforms to
construct hybrid SERS substrates than Cu mesh/CuO nanorods and Cu mesh/Cu(OH)2
nanorods. As a result, Cu mesh/Cu(OH)2@HKUST-1@Au nanorod arrays with 12 min
Au-sputtering durations exhibited the highest SERS activity and were chosen as the optimal
SERS substrate.
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Figure 6a,b show the Raman spectra of R6G and 4-ATP at different concentrations. It
can be seen that the characteristic peaks of R6G clearly appear at 611 cm−1 (in the C–C–C
in-plane bending mode), 772 cm−1 (in the C–H out-of-plane bending mode) and 1362 cm−1

(in the aromatic C–C pull extending vibration mode) [44]. As the concentration of R6G
decreased, the corresponding SERS signal also decreased. Similarly, as the concentration of
4-ATP decreased, the SERS signal from the optimal SERS substrate became weaker. When
the concentrations of R6G and 4-ATP were further diluted to 10−9 M and 10−8 M, respec-
tively, the characteristic peaks of R6G and 4-ATP could still be identified, indicating that
the optimal substrate had a good sensitivity. The enhancement factor (EF) was estimated
to be about 1.09 × 106 (Part S2 of the Supplementary Materials). The reproducibility of
the SERS signal was also investigated by taking the SERS spectra of 4-ATP from different
locations on the Cu mesh/Cu(OH)2@HKUST-1@Au substrate (Figure 6c). The relative
standard deviation of the characteristic peak intensity at 1078 cm−1 was 13.4% (Figure 6d),
indicating that the optimal SERS substrate had a good signal uniformity.
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exposed to different concentrations of R6G aqueous solution. (b) SERS spectra collected on the
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aqueous solution. (c) Raman spectra of 4-ATP obtained from 50 random points on the substrate.
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To verify the potential applications of the as-prepared optimal SERS substrate, Cu
mesh/Cu(OH)2@Au hierarchical arrays were used as substrates to detect thiram (a com-
monly used dithiocarbamate fungicide). Figure 7 shows the SERS spectra of thiram with
concentrations ranging from 10−4 M to 10−8 M acquired on the optimal SERS substrate. The
characteristic peaks at 443 cm−1 (in the CH3–N–C deformation and C–S stretching modes),
565 cm−1 (in the S–S stretching mode), 934 cm−1 (in the stretching CH3-N and C–S modes),
1146 cm−1 (in the C–N stretching mode and rocking CH3), 1382 cm−1 (in the C–N stretching
mode and symmetric CH3 deformation mode) and 1508 cm−1 (in the rocking CH3 mode
and C–N stretching mode) can be clearly seen for the thiram molecule [45–47]. When the
concentration was reduced to 10−8 M, there was still a strong signal intensity at the char-
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acteristic peak, indicating that the fabricated Cu mesh/Cu(OH)2@HKUST-1@Au nanorod
arrays substrate have promising applications in the practical pesticide residue detection.
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4. Conclusions

In summary, Cu mesh/Cu(OH)2@HKUST-1@Au hierarchical arrays have been achieved
via sputtering Au NPs onto hybrid 3D Cu mesh/Cu(OH)2 nanorod arrays, which can
support high-density Au NPs and form abundant SERS “hot spots” beneficial to SERS
applications. The Cu mesh/Cu(OH)2@HKUST-1@Au hierarchical arrays used as SERS
substrate showed a high SERS activity. Not only 10−9 M R6G and 10−8 M 4-ATP, but
also 10−8 M thiram, were identified, which shows a great potential in the detection of
trace organic pollutants in the environment. Therefore, the 3D hybrid substrates have an
important practical significance for sustainable development in the detection of pesticides
and other environmental pollutants.
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