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Abstract: The development of traditional resource-based cities requires drastic changes owing to the
exhaustion of resources. During this transformation, the ecological environment of resource-based
cities is threatened because of resource exploitation, in addition to the ecological risks caused by
urban expansion. However, there is currently a lack of research on the evolution of ecological dangers
in cities during this transformational period. Therefore, conducting relevant studies is essential to
establishing a mechanism to mitigate these dangers. The present study analyzed Xuzhou, a typical
resource-based city in China, as a case study. The main objective was to consider the dynamic
changes in land use and ecological risks during the transformation of this resource-based city. The
land-use changes in Xuzhou in 2000, 2010, and 2020 were analyzed, using the Markov model and
landscape-pattern indices, allowing an ecological risk-assessment model of land-use changes to
be constructed. Additionally, the spatial heterogeneity of ecological risks was evaluated by using
spatial autocorrelation. The results showed that urban expansion influenced land use in Xuzhou
significantly. Owing to the rapid urban expansion, the area of extremely high-risk regions increased
significantly in 2010. Furthermore, the subsidence areas caused by mining had profound impacts on
the region’s ecology, and early interventions for ecological restoration are needed to prevent further
deterioration. During the transformation, Xuzhou’s overall ecological risks reduced gradually, which
was conducive to its transition into an ecological city.

Keywords: ecological risk assessment; resource-based city; land-use changes; ecological restoration

1. Introduction

The health of ecosystems is key to human sustainable development [1]. Ecosystems
respond to disturbances caused by human activities but are also the foundation that
supports human activities [2,3]. Compared with the natural evolution of ecosystems,
ecosystem responses to human activities are more direct and severe: human activities
can modulate ecological risk directly in a short period [4,5]. Ecological risk refers to the
possibility of external pressures causing adverse effects on an ecosystem [6–9]. Ecological
risk variation is a complicated systematic process influenced by various aspects, such as
nature, society, and the economy. These elements interact on different and temporal scales,
resulting in the complexity of, and uncertainty about, the evolution of ecological risk [10].
Therefore, establishing a scientifically based assessment system for ecological risk and
analyzing the dynamics of ecological risk are both conducive to establishing a warning
system for ecological risk. This would enable the more accurate and efficient control of
ecological risk.

Ecological risk assessment originates from studies on ecotoxicology [11]. Previous
studies have evaluated the influences of individual chemical pollutants on the environment
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and human health. This has enabled the analysis of the formation and diffusion of chemical
pollution and regional ecosystem responses, since the end of the 1980s, accompanied by a
significant expansion of research objectives, content, and methods. Ecological risk assess-
ment has shifted focus from studies on toxicological risk to the assessment of ecological
risk on different scales [12,13]. Assessment of ecological risk in landscapes is an important
branch of ecological risk assessment [14]. The key to landscape ecological risk assessment
lies in the ecological risk caused by changing land-use patterns, as it aims to predict the
effects of changes in landscape patterns on landscape processes [15,16]. Compared with tra-
ditional ecological risk assessment, the assessment of ecological risk on the landscape scale
pays particular attention to spatial heterogeneity. To date, landscape ecological risks asso-
ciated with forests [17–19], river basins [20–22], coastal regions [23–25], arid deserts [15],
national parks [26], cities [27–29], and mining areas [30–32] have been studied.

The key to ecological risk assessment in landscapes lies in establishing an evaluation
system and selecting suitable indices. Two methods are widely applied at present. The first
is an ecological risk evaluation system based on the “pressure-receptor-response” model
and failure mechanism [25]. This method is usually used to evaluate the ecological risk of
a specific pressure or interference source. The second takes a deviation from the optimal
pattern as the risk source and evaluates the ecological effects [31–33]. In this method, the
whole system is viewed as the receptor, and the ecological risk is usually evaluated in terms
of ecological variation within the entire region, and then using landscape pattern indices
to portray the research object landscape [34,35]. Research using this second method often
uses landscape pattern indices in the study area as elements [16], establishing ecological
disturbance and ecological vulnerability through weight assignments. Using these indices,
the threat posed to various landscape elements in the study areas is determined. Moreover,
the ecological risk in the study area is assessed by the composition of and threat to various
landscape elements [32,33]. Various landscape pattern indices and weighting methods are
chosen to consider different research objects. Common landscape pattern indices include
the degree of fragmentation, degree of dispersion, degree of dominance [36,37], dimension,
and shape indices [32]. Common weighting methods include artificial assignment [25], nor-
malization [36], the entropy weight method, and the analytic hierarchy process (AHP) [32].
To date, these methods have generally been applied to river basins [37] and cities [32,38].
Firstly, the research object is divided into landscape units, using a grid. Then the ecological
risk value of the landscape units is calculated according to the landscape pattern index of
different land-use types in the landscape unit. Finally, the ecological risk diagram is devel-
oped through the Kriging interpolation [39]. Meanwhile, the variation in spatiotemporal
relationships between land-use changes and ecological risks are statistically analyzed to
determine areas of different ecological risk levels [32,33]. The second method was chosen
in the present study based on previous studies, according to the research objective and the
ecological characteristics of the research object.

Resource-based cities are types of cities that take the mining and processing of natural
resources, such as local minerals and forests, as their leading industries. The production
and development of cities are closely related to resource extraction, the economic structure
is simple, and resource extraction accounts for a relatively high proportion of urban output
value. According to the sequence of resource exploitation and city formation, there are
two modes for the formation of resource-based cities. One is the “mining first and city
later” mode; that is, the city emerges entirely because of resource mining. The other is
the “city first and mine later”; that is, there are cities before the development of resources,
and the development of resources accelerates the development of the city. Compared
with other types of cities, the ecological environment of resource-based cities is severely
damaged [30]. After resource exhaustion, resource-based cities face city transition problems,
and the damaged ecological environment becomes a heavy burden that discourages urban
development [32,40]. Therefore, resource-based cities have become a research hotspot for
ecological restoration [40,41]. Some studies have focused on ecological risk assessment for
resource-based cities. These have mainly focused on analyzing urban ecological risks due
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to industrial pollution, such as the effects of excessive heavy metals and acid wastewater
in mining mountains [42]. Some previous studies have considered the landscape ecological
risks of resource-based cities at different stages [31,32]. However, no studies have discussed
the transformation period of resource-based cities. In this period, economic structures
can become more diversified, and development during urban transformation can result
in multiple pressures on the ecological environment. Therefore, studying the ecological
environment is essential to establish a risk-warning mechanism during the transformation
phase of a resource-based city.

As a traditional resource-based city, Xuzhou has gradually been experiencing resource
exhaustion since the 21st century began and has entered the transformation period. There
was increased ecological and environmental restoration in Xuzhou during this rapid devel-
opment, culminating in the city being awarded the UN-Habitat Award in 2018. Xuzhou
was ranked 33rd in the GDP ranking of Chinese cities in the same year. Xuzhou has
achieved remarkable results in industrial economic transformation and ecological envi-
ronmental protection. Xuzhou was chosen in the present study, using landscape ecology
methods to explore the ecological risks caused by land-use changes, without considering
the changes in ecological risks caused by environmental pollution, natural disasters, and
other factors. Assuming that land-use types belonging to the same category have the same
impact on ecological risks, the secondary classification of land-use types was not taken into
consideration. This study considered land use during the transformation period of this
resource-based city and the evolution of landscape ecological risks. The land-use changes
were demonstrated and assessed by using the Markov model and landscape pattern indices.
An ecological risk index system was set up on this basis, and the ecological risk during
Xuzhou’s transformation period was evaluated. Furthermore, statistical analysis of the
areas that had converted between different risk levels was performed. Finally, the spatial
correlation of ecological risks in various years was calculated.

2. Study Area and Data Source
2.1. Study Area

Jiangsu Province (30◦46′–35◦9′ N, 116◦21′–121◦58′ E) is located in Eastern China, and
Xuzhou (33◦43”~34◦58′ N, 116◦22′~118◦40′ E) is in the northwest region of Jiangsu Province
(Figure 1). The total area of Xuzhou is 11,202 km2, including a city area of 3038 km2. The
city area covers five administrative districts, namely Gulou, Quanshan, Yunlong, Tongshan,
and Jiawang. Five counties (cities) include Pizhou, Xinyi, Fengxian, Peixian, and Suining.Sustainability 2021, 13, x FOR PEER REVIEW 4 of 20 

 
Figure 1. Location of Xuzhou in China. 

Around 2005, Xuzhou coal mines were declared exhausted, and many began to close 
one after another. Xuzhou entered the phase of development transformation. Coal mining 
had led to the frequent occurrence of secondary geological disasters, among which large-
scale mined-out collapses were particularly typical. The coal-mining subsidence areas that 
have had the greatest impact on the development of Xuzhou’s urban area are mainly con-
centrated in the Jiuli Lake area in the northwest of Quanshan and the Pan’an Lake area in 
the southwest of Jiawang. Simultaneously, the urban construction of Xuzhou was quickly 
accelerated, and urban expansion was significant, with the urbanization rate increasing 
from 25.78% in 2000 to 61.18% in 2019. Under the action of multiple factors, land use has 
changed significantly, and the influence of these changes on the landscape pattern is in-
creasing [43]. 

2.2. Data Source 
This study was mainly based on data from administrative maps, land-use maps, and 

the Xuzhou statistical yearbook. Land-use maps were formulated by Landsat ETM and 
TM images collected by the United States Geological Survey (USGS) in 2000, 2010, and 
2020. The image resolution was 30 m, and the image data were initially classified and 
preprocessed using ENVI 5.2 [44]. Subsequently, these were compared to high-resolution 
satellite maps for post-processing of the supervised classification results. From previous 
studies and China’s land-use classification standards, landscapes in Xuzhou were defined 
as forest, grassland, cultivated land, construction land, water, and unused land (Table 1, 
Figure 2). The above datasets were collected from the Geospatial Data Cloud 
(http://www.gscloud.cn/, accessed on 4 May 2021) provided by the Chinese Academy of 
Sciences and BIGEMAP software. 

Table 1. Classification of land use of Xuzhou. 

Code Land-Use Type Details 
1 Cultivated land Irrigated land and paddy field. 

2 Forest 
Wildwood mainly in hilly areas of the prohibition of development, plantation mainly on the 

plain, and shrubs. 
3 Grassland Natural grassland in hilly areas and cultivated grassland for pasture. 
4 Water area River, lake, reservoir, and the waterlogged subsidence basin. 

5 Construction 
land Build up area of urban and town; rural, industrial, and mining areas. 

6 Unused land Abandoned mine land, sand, and bare land. 

Figure 1. Location of Xuzhou in China.

Xuzhou is an interlacing zone of flood plains, hills, and lake depressions. The flat
area accounts for approximately 90% of the city area, with the altitude ranging from 30
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to 50 m. Hills and mountains account for about 9.4% of the city area, with an average
altitude of approximately 200 m. Xuzhou belongs to a temperate monsoon climate with
four distinctive seasons but is not hot in summer or cold in winter.

Around 2005, Xuzhou coal mines were declared exhausted, and many began to close
one after another. Xuzhou entered the phase of development transformation. Coal mining
had led to the frequent occurrence of secondary geological disasters, among which large-
scale mined-out collapses were particularly typical. The coal-mining subsidence areas
that have had the greatest impact on the development of Xuzhou’s urban area are mainly
concentrated in the Jiuli Lake area in the northwest of Quanshan and the Pan’an Lake area
in the southwest of Jiawang. Simultaneously, the urban construction of Xuzhou was quickly
accelerated, and urban expansion was significant, with the urbanization rate increasing
from 25.78% in 2000 to 61.18% in 2019. Under the action of multiple factors, land use
has changed significantly, and the influence of these changes on the landscape pattern is
increasing [43].

2.2. Data Source

This study was mainly based on data from administrative maps, land-use maps, and
the Xuzhou statistical yearbook. Land-use maps were formulated by Landsat ETM and
TM images collected by the United States Geological Survey (USGS) in 2000, 2010, and
2020. The image resolution was 30 m, and the image data were initially classified and
preprocessed using ENVI 5.2 [44]. Subsequently, these were compared to high-resolution
satellite maps for post-processing of the supervised classification results. From previous
studies and China’s land-use classification standards, landscapes in Xuzhou were defined
as forest, grassland, cultivated land, construction land, water, and unused land (Table 1,
Figure 2). The above datasets were collected from the Geospatial Data Cloud (http://www.
gscloud.cn/, accessed on 4 May 2021) provided by the Chinese Academy of Sciences and
BIGEMAP software.

Table 1. Classification of land use of Xuzhou.

Code Land-Use Type Details

1 Cultivated land Irrigated land and paddy field.

2 Forest Wildwood mainly in hilly areas of the prohibition of development, plantation mainly on
the plain, and shrubs.

3 Grassland Natural grassland in hilly areas and cultivated grassland for pasture.

4 Water area River, lake, reservoir, and the waterlogged subsidence basin.

5 Construction land Build up area of urban and town; rural, industrial, and mining areas.

6 Unused land Abandoned mine land, sand, and bare land.

2.3. Sampling Method

Appropriate landscape units for landscape ecology are a prerequisite for calculating
ecological risk and performing spatial statistical analyses. To better represent the spatial
distribution of ecological risks, the sampling unit area was set as 2–5 times the size of an
average plaque area according to the even spacing mesh sampling approach of previous
studies [45]. According to the calculated results, 2 × 2 km was the optimal grid size,
resulting in 3065 sampling units (Figure 3). The center points of sampling units were used
for spatial interpolation of the ecological risk index. In this way, a quantitative description
of the spatial distribution and variation in landscape ecological risks could be undertaken.

http://www.gscloud.cn/
http://www.gscloud.cn/
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3. Methodology
3.1. Land-Use Dynamic Change

The land-use conversion in this study was evaluated, using the Markov transfer
matrix [46]. During the transitional period, as a densely populated district, the land-use
intensity in Xuzhou was very high. The land-use intensity between 2000 and 2020 was
analyzed according to the land-transfer situation (Equation (1)). Statistical analyses of
changes between different land-use types were performed, using Arc GIS 10.2.
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Sij =



S11 S12 · · · S1m
S21 S22 · · · S2m

. . .
...

... Sii
...

. . .
Sm1 Sm2 · · · Smm


(1)

where Sij is an area that has changed from land-use i to j between two-time points, Sii
is an area that has retained land use i between two-time points, and m is the number of
land-use types.

3.2. Landscape Ecological Risk Assessment Model
3.2.1. Landscape Ecological Risk Index

The degree of risk for landscape units was quantified by establishing ecological risk
indices. The ecological risk index of a landscape unit was determined by its landscape
composition and threat. The threat to the ith land-use type was calculated as a function
of the landscape disturbance index (Ei) and landscape fragility index (Fi). The ecological
risk index of a landscape unit could then be calculated by summing the result of multi-
plying the threat and composition of each land-use type in the landscape unit, according
to Equation (2):

ERIk =
n

∑
i=1

Aki
Ak

(Ei × Fi) (2)

where ERIk is the landscape ecological risk index of the kth landscape unit, Aki is the area
of the ith land use in the kth landscape unit, Ak is the total area of the kth landscape unit,
and n is the number of land-use types.

3.2.2. Landscape Disturbance Index (Ei)

Urban construction and human production activities can influence the land-use com-
position of landscape units and their associated threats, and therefore the overall landscape
ecology of a region. Hence, influences on ecological landscapes and their dynamics can be
effectively reflected by comparing the spatial evolution of ERI values over time. Landscape
pattern indices representing different aspects of landscape ecology were chosen to establish
the landscape disturbance index in Xuzhou due to land-use characteristics.

The landscape disturbance index represents the resistance of landscape patterns to
external disturbances. Based on previous studies, the landscape disturbance index (Ei) in
the present study was calculated from the fragmentation index (Ci), dispersion index (Si),
dominance index (Doi), reciprocal of PAFRACi, and the normalized shape index (Ni), as
shown in Table 2 [32]. Ci represents the degree to which the landscape is divided and is
often used to describe the degree of fragmentation of the ecosystem after disturbances, an
important cause of decreased biodiversity. Si refers to the degree of dispersion of the spatial
distribution of landscape pattern patches. The higher its value, the greater the degree
of dispersion of landscape pattern. It can reflect the higher the frequency of conversion
between different landscape patterns. Doi represents the advantage of a land-use type
in the whole region and reflects the error between landscape diversity and maximum
diversity. All of these indices can be used to measure the resistance of the spatial structure
of a land-use type to external disturbances. PAFRACi describes the complexity and stability
of the plaque shape at the landscape pattern level, with values ranging from 1 to 2. When
the value of PAFRACi approaches 1, the plaque shape is more straightforward and the
disturbance is more pronounced. Ni describes the landscape shape index of a landscape
type after normalization. The higher the value, the smaller the area of the landscape unit
and the larger the area of the edge area. Its external disturbance is more easily influences
the landscape ecological process.
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Table 2. Indices of landscape disturbance.

Index Equation Expression

Ci Ci = ni/Ai
ni is the patch number of landscape i;

Ai is the total area of landscape i.

Si Si = A×
√

ni/A/2Ai A is the total area of landscape.

Doi Doi = (Qi + Mi)/4 + Li/2

Qi is the number of landscape units with the patch i divided by
the total number of landscape units;

Mi is the number of patch of landscape i divided by the total
number of patches in the landscape units;

Li is the area of landscape i divided by the total area of
landscape units.

RPi
RPi = 1/PAFRACiPAFRAC =

[ni ∑n
j=1(lnpij×lnaij)]−[(∑n

j=1 lnpij)×(∑n
j=1 lnaij)](

a ∑n
j=1 P2

ij

)
−(∑n

j=1 lnPij)

aij is the area of patch ij;
Pij equals the perimeter of patch ij;

Ni Ni = (ei −minei)/(maxei −minei)
ei equals the perimeter of landscape i;

minei equals the minimum perimeter of landscape i;
maxei equals the maximum perimeter of landscape i.

Ei Ei = aCi + bSi + cDoi + dPRi + eNi
a, b, c, d, and e represent the weights of Ci, Si, Doi, RPi, and Ni;

a + b + c + d + e = 1.

In the present study, weights were allocated by the entropy evaluation method ac-
cording to landscape indices in three stages. The entropy evaluation method is a relatively
objective and effective method to calculate the contributions of various indices to the
landscape disturbance index, Ei (Table 2) [21]. The final parameters calculated for Ei were
a = 0.197, b = 0.301, c = 0.265, d = 0.097 and e = 0.140.

3.2.3. Landscape Fragility Index (Fi)

Different landscape types represent different ecosystems and have different abilities
to maintain the stability of ecological processes. Landscape types with higher ecological
fragility are more sensitive to the outside world and have lower anti-interference ability
and resilience. In contrast, landscape types with lower ecological fragility have good
ecological stability, stronger anti-interference ability, and resilience [47,48]. Fi indicates
the landscape fragility index of land-use type i [20]. Higher values of Fi indicate lower
landscape stability or higher ecosystem fragility. Previous research results have generally
demonstrated that the Fi of unused land and water areas is very high [23]. This indicates
that these two landscape types quickly lose their original landscape structure and ecological
functions under external disturbances. The Fi of cultivated land and grassland is relatively
low [21], while forest and construction land are the most stable landscape types. However,
compared with other research objects, under the dual influences of rapid urbanization
and ecological protection, the landscape fragility of construction land becomes relatively
high [24]. Accordingly, the Fi values of different landscape types were calculated by using
the AHP method in MATLAB [49]. The final Fi values of unused land, water area, cultivated
land, grassland, construction land, and forest were 0.28, 0.22, 0.14, 0.14, 0.12, and 0.10,
respectively. The consistency index (CR) was 0.022, meeting the requirement of CR < 0.10
and indicating that the weight distribution was suitable.

3.3. Spatial Statistical Analysis
3.3.1. Semivariance Analysis

As a spatial variable of landscape ecological risk, spatial heterogeneity has struc-
tural and random characteristics. The semivariance function is a very useful geostatistical
method to measure the continuity of adjacent spatial variables [50]. The landscape ecologi-
cal risk value was attributed to the corresponding landscape units. As a regional variable,
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the semivariance function compiled landscape ecological risk maps from 2000, 2010, and
2020 through the spatial evolution shown in Equation (3):

γ(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi + h)− Z(xi)]
2 (3)

where γ(h) is the experimental semivariance value at distance interval h, which describes
the degree of autocorrelation that is present; N(h) is the number of landscape units at
lag distance h; and Z(xi) and Z(xi + h) are the sample values at locations xi and xi + h
(i = 1, 2, ..., N(h)), respectively.

3.3.2. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is used to determine whether a variable correlates
with the spatial distribution and the degree of correlation. The global Moran’s I and
local Moran’s I of spatial autocorrelation were used to measure the spatial dependence
of variables within this study [51]. The global Moran’s I was used to test the spatial
autocorrelation of attribute values of an element in the whole study area, with values
falling within [–1, 1]. As the absolute value of the global Moran’s I approaches 1, the spatial
autocorrelation is strongest [43]. The formula is shown in Equation (4):

Moran′s I =
n ∑n

i=1 ∑n
j=1 ωij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)∑n
i=1 ∑n

j=1 ωij
(4)

where xi and xj are the values of variable x at adjacent space points, x is the average of the
variables, wij is the adjacent weight, and n is the total number of risk points.

When Moran’s I > 0, the spatial autocorrelation is positive and the attribute values of
research units tend to aggregate. When Moran’s I = 0, there is no spatial autocorrelation
determined and the observed values of spatial units are random. When Moran’s I < 0, the
spatial autocorrelation is negative the attribute values of research units are dispersed as
discrete distributions.

The LISA index reflects the degree of correlation between a geographical phenomenon
(or an attribute value of a local unit in the whole region) and the same phenomenon or
attribute value in the adjacent local unit. Generally, the Moran’s I term is decomposed and
represented on different regional units to form a LISA clustering map. Analysis of LISA
clustering maps yields high–high aggregation “hotspots” and low–low aggregation “cold
spots” in the identified local spaces, and any abnormal local spatial characteristics can be
assessed. The LISA index is calculated according to Equation (5):

LISA = Zi

n

∑
j=1

ωi jZj, (i 6= j) (5)

where Zi and Zi are the standardized risk values of units i and j, respectively, and wij is the
spatial weight matrix.

In the present study, spatial distribution patterns of ecological risk index in Xuzhou
over three stages were estimated by using GeoDA [52]. A Moran’s I scatter diagram was
generated, and Moran’s I and Z values were extracted from the normalized statistical
data (p = 0.001).

4. Results
4.1. Land-Use Conversion Analysis

Land development, accompanied by urban expansion, is a leading cause of ecological
risk variation. Therefore, land-use composition during different stages was analyzed, with
the land-use conditions in Xuzhou in 2000, 2010, and 2020 shown in Figure 2. The relative
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proportions of the various land-use types are shown in Figure 4. Land-use conversion
matrixes were generated by using the Markov model (Tables 3 and 4).

1 
 

 
Figure 4. Land-use proportions of Xuzhou in 2000, 2010, and 2020.

Table 3. Land-use transition matrix of Xuzhou from 2000 to 2010.

2000/2010 Unused
Land (km2)

Water Area
(km2)

Cultivated
Land (km2)

Grassland
(km2)

Construction
Land (km2)

Forest
(km2)

Unused land 20.04 0.01 0.90 0.61 15.95 0.00

Water area 0.12 370.16 15.81 0.09 5.39 0.85

Cultivated land 35.71 38.70 8147.55 7.62 326.94 11.47

Grassland 1.91 0.17 0.78 2.19 12.38 0.08

Construction land 8.27 2.32 60.30 2.90 1846.62 0.74

Forest 0.29 0.12 3.52 0.86 1.32 258.99

Note: Rows represent the transfer area of land-use type i in 2000 to other land-use types in 2010; columns represent the transfer area of
land-use type i in 2010 from other land-use types in 2000.
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Table 4. Land-use transition matrix of Xuzhou from 2010 to 2020.

2010/2020 Unused Land
(km2)

Water Area
(km2)

Cultivated
Land (km2)

Grassland
(km2)

Construction
Land (km2)

Forest
(km2)

Unused land 21.6 0.29 1.58 0.54 42.27 0.06

Water area 0.16 388.42 17.86 0.05 4.81 0.18

Cultivated land 2.20 51.47 7806.95 2.22 359.94 6.07

Grassland 0.15 0.01 0.66 3.60 8.96 0.88

Construction
land 5.67 3.26 92.54 10.25 2094.13 2.74

Forest 0.00 0.96 3.50 0.00 0.75 266.91

Note: Rows represent the transfer area of land-use type i in 2000 to other land-use types in 2010; columns represent the transfer area of
land-use type i in 2010 from other land-use types in 2000.

Between 2000 and 2010, the area of land-use types increased to varying degrees, except
for cultivated land and grassland; these decreased by 338.68 and 3.24 km2, respectively. The
area of construction land, unused land, water area, and forest increased by 287.47, 28.83,
19.16, and 7.06 km2, respectively. Table 3 shows that, during this decade, the significant
increase in construction land in the main urban areas of Xuzhou counties was mainly due
to the transfer of 326.94 km2 of cultivated land. Additionally, a large amount of unused
land appeared in the urban areas, which was mainly due to the transfer of 35.71 km2

of cultivated land. The mutual transformation of water area and cultivated land was
pronounced, with the increase in water area being mainly due to the transfer of 38.70 km2

of cultivated land. From the perspective of landscape fragility, the area that was converted
from high landscape fragility to lower values was 398.84 km2. The area that was converted
from low landscape fragility to higher values was 157.29 km2.

From 2010 to 2020, other land-use types expanded to different extents, except for
cultivated and unused land. The area of cultivated land and unused land decreased by
306.20 and 36.55 km2, respectively. The area of construction land, water area, forest, and
grassland increased by 302.25, 33.05, 4.69, and 2.39 km2, respectively. Table 4 shows that,
that during this decade, construction land in the main urban areas of Xuzhou and its
counties continued to increase, mainly due to the transfer of 359.94 km2 of cultivated land.
A large amount of unused land in Yunlong and Gulou was transferred into construction
land, and the largest outward transformation of unused land was to construction land,
at 42.27 km2. The increase in water area was mainly due to the transfer of 51.47 km2 of
cultivated land. From the perspective of landscape fragility, the area that was converted
from high landscape fragility to lower values was 448.45 km2. The area that was converted
from lower landscape fragility to higher values was 171.58 km2.

In Xuzhou, only cultivated land has continuously decreased. This has been the major
source for the expansion of construction land, water area, and forest. From 2000 to 2020,
686.88 km2 of cultivated land was developed as construction land, resulting in the rapid
growth of construction land. The area of construction land in 2020 was 1.31 times that
in 2000, indicating that rapid urbanization was the major driving force of land use in
Xuzhou. Activities such as ecological protection and ecological restoration have resulted in
the frequent interconversion of cultivated land and water areas. From 2000 to 2020, 90.17
km2 of cultivated land was transferred into water area and 33.67 km2 of water area was
transferred into cultivated land, most of which resulted from the ecological restoration of
coal mining subsidence areas and landscape transformation along the lake. The area of
unused land initially increased and then decreased, which aligned with rapid urbanization
in Xuzhou.
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4.2. Spatial Distribution and Changes of Landscape Ecological Risk
4.2.1. Landscape Index Dynamic Change Analysis

The landscape indices of different landscape types are essential components of land-
scape ecological risk assessment. They are used to measure spatial patterns of change
in land-use types at various stages. Landscape indices calculated at the district level in
Xuzhou between 2000 and 2020 are listed in Table 5.

Table 5. Landscape metrics at class level in Xuzhou from 2000 to 2020.

Type Year Ci Si Doi PAFRACi Ni

Unused land

2000 0.2034 3.8968 0.0307 1.1934 0.1335

2010 0.1406 2.4367 0.0369 1.1669 0.0964

2020 0.2521 4.8683 0.0306 1.1722 0.1518

Water area

2000 0.0755 0.7342 0.1260 1.4291 0.1145

2010 0.0745 0.7122 0.1301 1.4296 0.1111

2020 0.0683 0.6560 0.1337 1.4179 0.1063

Cultivated land

2000 0.0004 0.0120 0.4740 1.3319 0.0688

2010 0.0005 0.0125 0.4575 1.3051 0.0615

2020 0.0007 0.0155 0.4475 1.3083 0.0576

Grassland

2000 0.1285 4.5337 0.0106 1.1862 0.1044

2010 0.1647 5.6856 0.0114 1.1662 0.1243

2020 0.1428 4.8994 0.0110 1.2200 0.1214

Construction land

2000 0.0393 0.2395 0.3157 1.2410 0.0736

2010 0.0319 0.2012 0.3196 1.2541 0.0660

2020 0.0274 0.1747 0.3329 1.2671 0.0604

Forest

2000 0.0274 0.5379 0.0430 1.1760 0.0464

2010 0.0276 0.5332 0.0445 1.1696 0.0456

2020 0.0263 0.5161 0.0443 1.1636 0.0445

During 2000–2020, the C, S, PAFRAC, and N indices of unused land first decreased and
then increased, while the degree of Do first increased and then decreased. There was a large
area of unused land before and after 2010, the peak stage of urban expansion. The C, S, and
N indices of the water area decreased continuously, while the degree of Do continuously
increased, and PAFRAC presented as an inverted V-shape. The number of scattered small
water areas in Xuzhou decreased due to the water area in the coal mining subsidence
area being controlled, and water areas becoming more contiguous. The C and S values
of cultivated land continued to increase, whereas the degree of Do and N continued to
decrease, and the minimum PAFRAC value was observed in 2010. The area of cultivated
land declined to a large extent over the 20 years. Rapid urban expansion began in 2010,
which significantly influenced the stability of cultivated land. For grassland, maximum
values of C, S, the degree of Do, and N, as well as the minimum PAFRAC value, were all
recorded in 2010; this reflected disturbance to grasslands peaking in 2010. For construction
land, C, S, and N values continued to decrease, while the degree of Do and PAFRAC
continued to increase. Construction land use has been concentrating and expanding, with
the edges of plaques expanding due to enlarging central urban areas in cities and counties.
Many plaques were absorbed into larger ones. For forest areas, C and the degree of Do first
increased and then decreased. In contrast, S, PAFRAC, and N continued to decline. The
forest areas were aggregated to afford protection from dispersed expansion, and stability
gradually increased.
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The landscape disturbance indices of different land-use types over the two decades
were calculated, using the landscape indices. An ecological risk index model was then
established, and the risk value of the landscape units was determined. The ecological risk
value of landscape units in 2000 ranged from 2.68 × 10−2 to 15.96 × 10−2, with an average
value of 3.28 × 10−2. The ecological risk value of landscape units in 2010 ranged from
2.67 × 10−2 to 21.71× 10−2, with an average value of 3.23× 10−2. The ecological risk value
of landscape units in 2020 ranged from 2.62 × 10−2 to 11.70 × 10−2, with an average value
of 3.18 × 10−2. Therefore, the minimum and average ecological risk values of landscape
units decreased decade by decade, clearly revealing a decline in ecological risk and a
gradual improvement to the ecological environment for Xuzhou over the two decades.

4.2.2. Distribution and Changes of Landscape Ecological Risk

Semivariance functions were used to enable the spatial interpolation of the ecological
risk indices. Spatial fitting is a crucial step in using semivariance functions, with the optimal
fitting of semivariance functions determined using the GS + 9.0 [53]. Combining the model
fitting effects with consideration of R2 and RSS, ecological risk spatial analyses for 2000,
2010, and 2020 were produced that were derived from the exponential model [28]. Spatial
interpolation maps of landscape ecological risks over the two decades were generated
using the Kriging interpolation method in Arc GIS 10.2. The natural breakpoint method
was used to divide the ecological risk values of each group and then the breakpoints of each
group were compared to determine the final breakpoint values of 0.0295, 0.0345, 0.0485,
and 0.0695. These breakpoints categorized landscape ecological risk values into five levels:
extremely high, high, medium, low, and extremely low (Figure 5).
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In 2000, the extremely low-risk regions were mainly distributed in the hilly forest
areas of Xuzhou. The medium-risk regions were primarily in urban areas and central urban
areas of counties, coal mining subsidence areas, and river and reservoir areas that were
significantly influenced by human activities. The high-risk and extremely high-risk regions
were mainly at urban edges with high urban construction intensity and also the water
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area of Luoma Lake. In 2010, the extremely low-risk regions covered predominantly rural
areas of the original hilly forest, and many extremely low-risk regional plaques formed.
The medium-risk regions were still distributed within the urban area, urban areas of
counties, coal mining subsidence areas, rivers, and reservoir areas but were decreased. The
previously high-risk and extremely high-risk regions along the urban expansion directions
were transferred into other land-use types. In 2020, the extremely low-risk regions had
expanded and consolidated, and many extremely low-risk regional plaques in villages and
towns became contiguous. The medium-risk regions were considerably larger but still
distributed in their original locations. In urban areas, the high-risk and extremely high-risk
regions decreased in area, and their geographical centers had shifted. The risk values of
water areas were reduced, but Luoma Lake was still an extremely high-risk region.

The high-risk regions in 2000 and 2010 (Figure 6) mainly included water areas, unused
land, and construction land. In 2020, the extremely high-risk regions were primarily the
water areas, cultivated land, and unused land regions. In 2000, 2010, and 2020, the water
area occupied 44.85%, 37.40%, and 66.64% of the total area, respectively. In extremely
high-risk regions, the proportion of construction land was lower than that of unused and
cultivated lands at each time point. Unused land accounted for the greatest proportion
in 2010, reaching 25.54%, and the extremely low-risk regions mainly contained cultivated
land, forest, and construction land. Cultivated land occupied the highest proportion at
48.42%, 70.29%, and 68.54% in 2000, 2010, and 2020, respectively. In extremely low-risk
regions, the ratio of construction land increased over the twenty years from 5.23% to 16.81%
and then to 18.47%.

4.3. Landscape Ecological Risk Conversion Analysis

Statistical analyses of each ecological risk are shown in Table 6. Over the 20 years
between 2000 and 2020, the area of extremely low-risk regions increased with a maximal
growth of 4616.00 km2 in 2010. The area of low-risk regions decreased over the twenty years,
with a maximal reduction of 42,848.88 km2 in 2010. The area of medium-risk regions was a
minimum (1186.75 km2) in 2010, and the area of high-risk regions initially increased and
then consistently decreased from 243.54 km2 in 2010 to 216.85 km2 in 2020. The area of
extremely high-risk regions reached a maximum (117.75 km2) in 2010 and then decreased
to 32.90 km2 in 2020. Except for the increase in the are extremely high-risk regions due to
urban expansion in 2010, there was a downward trend in the overall risk levels in Xuzhou,
indicative of the gradually improving ecological environment.

Table 6. The changes of landscape ecological risk in Xuzhou from 2000 to 2020.

Year Extremely Low
(km2)

Low
(km2)

Medium
(km2)

High
(km2)

Extremely High
(km2)

2000 180.60 9142.48 1585.71 237.93 55.55

2010 4796.60 4857.60 1186.75 243.54 117.74

2020 5046.86 4541.15 1364.50 216.85 32.90

The conversions between different ecological risk grades between 2000 and 2010 are
shown in Table 7. The area that was converted from a low-risk to an extremely low-risk
grade was the most significant at 4523.80 km2, with an annual average conversion of
458.38 km2. The ecological risk of most Xuzhou regions improved during the 20-year trans-
formation period that was investigated. The conversion of medium-risk regions accounted
for the greatest increase in low-risk regions, with an area of 511.78 km2. Conversely, the
conversion of low-risk regions accounted for the greatest proportion of the increase in
medium-risk regions, with an area of 238.08 km2. The conversion of medium-risk regions
accounted for the greatest proportion of the increase in high-risk regions, with an area
of 126.29 km2. The total risk area accounted for the highest proportion in the extremely
high-risk regions, with an area of 54.92 km2. The total area that was converted from a
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low-risk to a high-risk grade was 492.33 km2, which occurred primarily in urban areas and
urban areas of counties. This change is mainly caused by urban construction. The total
conversion area from a high-risk to a low-risk grade was 5294.86 km2, which was mainly
concentrated in rural areas that were only slightly affected by urban construction. The risk
values of rural areas decreased because of changes in landscape patterns.
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Table 7. Ecological risk transition matrix of Xuzhou from 2000 to 2010.

2000/2010 Extremely Low
(km2)

Low
(km2)

Medium
(km2)

High
(km2)

Extremely High
(km2)

Extremely Low 162.26 16.55 1.76 0 0

Low 4583.80 4289.97 238.08 15.86 14.34

Medium 46.53 511.78 846.11 126.29 54.92

High 3.69 30.42 87.03 92.25 24.53

Extremely High 0.09 8.70 13.71 9.11 23.93

Note: Rows represent the transfer area of level i in 2000 to each other level in 2010; columns represent the transfer area of level i in 2010
from each other level in 2000.

The conversion between different ecological risk grades from 2010 to 2020 is shown
in Table 8. The area that was converted from a low-risk to an extremely low-risk grade
was 869.23 km2. The conversion of extremely low-risk regions accounted for most of the
increase in low-risk regions, with an area of 624.20 km2. The conversion of low-risk regions
accounted for the greatest proportion of the increase in medium-risk regions, with an
area of 346.45 km2. The conversion of medium-risk regions accounted for the greatest
proportion of the increase in high-risk regions, with an area of 67.60 km2. Similarly, the
conversion of high-risk regions accounted for the greatest proportion of the increase in
extremely high-risk regions, with an area of 8.69 km2. Except for the extremely low-risk
regions, the increased area of different risk grades was mainly due to conversion from the
immediately lower grade, indicating a stable overall risk variation pattern. The total area
that was converted from a low-risk to a high-risk grade was 1084.84 km2, and the total area
that was converted from a high-risk to a low-risk grade was 1393.53 km2. Both conversion
trends occurred predominantly in urban areas and central urban areas of counties where
urban construction significantly impacted conversions.

Table 8. Ecological risk transition matrix of Xuzhou from 2010 to 2020.

2010/2020 Extremely Low
(km2)

Low
(km2)

Medium
(km2)

High
(km2)

Extremely High
(km2)

Extremely Low 4150.73 624.20 20.49 1.02 0

Low 869.23 3626.00 346.45 15.68 0.09

Medium 25.10 259.22 834.13 67.60 0.62

High 1.40 16.45 127.91 89.05 8.69

Extremely High 0.21 15.14 35.40 43.47 23.49

Note: Rows represent the transfer area of level i in 2010 to each other level in 2020; columns represent the transfer area of level i in 2020
from each other level in 2010.

4.4. Spatial Autocorrelation Landscape Ecological Risk Index

The global autocorrelation of landscape ecological risk can meaningfully reflect spatial
changes. According to the ecological risk values during the study period, Moran’s I at
different distances were calculated, as shown in Figure 7. The Moran’s I values were all
greater than 0, indicating that the spatial autocorrelation of the ecological risk index (ERI)
was always positive. Moran’s I at a distance of 2 km was the largest and declined with
increasing spatial distance, indicating that higher spatial distance resulted in lower spatial
autocorrelation. When the spatial distance was beyond 20 km, the spatial pattern of the
ERI approached a random distribution. Moran’s I showed a consistent variation trend in
2000, 2010, and 2020 when the spatial distance exceeded 5 km. When considering Moran’s
I at equal distances, the values were smallest in 2020 and highest in 2010.
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Figure 7. Moran’s I value for the ERI under different granularities.

Local spatial autocorrelation for the ERI is shown in Figure 8. From 2000 to 2020, the
spatial distribution scale of L–L clusters was similar and mostly in rural and hilly forest
regions. The distribution of L–L clusters was the same in Xinyi, Pizhou, and Fengxian, and
it differed slightly in Peixian Suining and Tongshan. H–H clusters were mainly focused in
urban areas and the Luoma Lake area, accompanied by significant variations. H–H clusters
in the urban area decreased gradually, and their center shifted toward the southeast as they
became distributed along the southeast line of Xuzhou in 2020. In Peixian, H–H clusters
initially expanded along the coastline of Weishan Lake and then divided into two small
clusters towards the northwest. The H–H cluster in Tongshan near Weishan Lake gradually
expanded, a new H–H cluster formed in the main urban area of Xinyi in 2020, and the H–H
cluster in Luoma Lake changed slightly.
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5. Discussion

Resource exploitation induces urban development and causes extreme changes to
land-use structures in cities. When resources are exhausted and the increasing urban
development requirements impact the ecological environment, many traditional resource-
based cities gradually enter the transformation period. Once the new demands of urban
development commence, changes in urban landscape patterns become more evident. Land-
scape ecological risk assessments provide an integrated perspective on the transformation
period of resource-based cities. As a resource-based city, Xuzhou is transforming from a
resource-based industrial city to an eco-friendly city. The land-use coefficients and land-
scape ecological risk values are representative of the evolving urban development during
this transition.

Consistent with other studies during the same period [32,54], urbanization progress
in China was an essential motivation for land-use changes between 2000 and 2020. Con-
sequently, construction land became the land-use type with the highest growth rate. The
land-use conversion matrix indicated that cultivated land was the major source of annual
growth in construction land between 2000 and 2020. The land-use changes caused by urban
expansion being conversions from either cultivated land to construction land or cultivated
land to unused land and then to construction land. All the land-use conversions showed
that urban development disrupted the landscape ecology of cities.

However, in contrast to other studies [32,33], the research cycle in this study was
mainly based on three time periods: before the closure of the Xuzhou mine, immediately
prior to rapid expansion, and at the beginning of ecological restoration. Among these peri-
ods, 2010 was selected as the research object because it was just before the rapid expansion
of Xuzhou. A large amount of cultivated land was requisitioned for construction and was
in a state of disuse. This caused a sharp increase in the area of Xuzhou’s extremely high-risk
areas by a factor of two in 2010, reflecting the significant impact of urban expansion. More-
over, in contrast to other studies [33,36], this study selected five landscape pattern indices
to construct the landscape ecological risk index and used the entropy weight method and
AHP to determine their weightings. The calculated results were consistent with the actual
development of Xuzhou and, significantly, revealed the characteristics of ecological risks
as follows.

Economic factors and government policies, especially urban planning, resulted in the
development of the main urban area of Xuzhou in the southeast. Between 2000 and 2020,
the H–H clusters in Xuzhou’s urban areas moved toward the southeast continuously and
L–L clusters in Eastern Tongshan decreased in 2010. By 2020, the H–H cluster had moved
eastward by 8 km and the H–H clusters in older urban areas continued to decline. This
indicates that the increased ecological risk at the border regions of urban expansion will
probably continue to grow. Changes in H–H clusters in counties’ main urban areas caused
significant fluctuations in the ecological risk of rural regions surrounding the main urban
area. In contrast, L–L cluster distribution in distant rural areas was relatively stable and
only slightly influenced by urbanization changes. Therefore, Xuzhou should take measures
to limit the rapid expansion of the city and optimize the urban layout.

Consistent with other studies during the same period [30,55], during the twenty years
of the present study the ecological problems arising from coal mining still affected the
landscape ecology of Xuzhou. The subsidence area caused by coal mining limited the
flexibility of land-use change. Hence, important coal-mining areas were in the medium-
risk regions. In 2010, Xuzhou began the reclamation and ecological restoration of the
Jiuli Lake coal-mining subsidence area, which turned the waters northwest of Quanshan
into cultivated land and construction land. During the same period, the coal-mining
subsidence area in the southwestern area of Jiawang expanded and scattered water areas
increased, requiring timely intervention for ecological restoration. In 2020, the ecological
restoration of the Jiuli Lake coal-mining subsidence area was completed. The coal-mining
subsidence area in the northwest of Quanshan had reduced water areas and increased
construction land. Similarly, ecological restoration of the coal-mining subsidence area
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in Southwestern Jiawang was completed. The relatively scattered waters of the Pan’an
Lake area had disappeared, forming a larger water area. The changes in landscape pattern
indices reflected this evolution through steady reductions of C, S, and N in water areas;
steady increases in Do; and an inverted V-shaped variation in PAFRAC. The variations in
all of these indices reflected the gradually increasing contiguous water areas. Over these
two decades, Xuzhou has completed ecological restoration projects in the coal-mining
subsidence areas of Jiuli Lake and Pan’an Lake and transformed them into scenic eco-
tourism areas. While solving regional ecological problems, this has also brought new
development driving forces to the surrounding area.

This study confirmed that the ecological problems arising from rapid urban expansion
and coal mining were the main sources of ecological risks during the transformation
of resource-based cities. Of these, the rapid urban expansion brings about short-term
ecological risk, while the ecological problems caused by coal mining are of longer duration.
However, scientific planning can effectively improve the landscape ecology of a city and
reduce the overall landscape ecological risks from the perspective of the landscape pattern.
From the perspective of sustainable development, ecological protection and restoration are
necessary investments for resource-based cities during the transformation period. While
solving ecological risks, this can create a new focus on sustainable development and have
a longer-lasting impact.

This study explored the characteristics of land use and landscape ecological risks
during the transformation of a resource-based city. The evaluation method used in this
study can be used to evaluate the ecological risks of other resource-based cities during
their transformation or of other cities during rapid expansion. The results clearly indicate
the impact of land-use changes on the ecosystem, and the indicators and weights can
be adjusted as appropriate to different research contexts. Some limitations, however,
need to be acknowledged. For example, this study was based on the interpretation of
remote-sensing land-use classification data. There are errors in such data and in personal
interpretation, which may have resulted in uncertainty in the evaluation results. Therefore,
during processing, errors in the remote-sensing data in different periods were eliminated
as much as possible, and a unified standard was adopted for land-use classification to
ensure the accuracy of the data. Furthermore, the spatiotemporal evolution of ecological
risk is a comprehensive and complex process that is also affected by population, economy,
and production. Therefore, further research and analysis are needed to develop a complete
and comprehensive ecological-risk-assessment method.

6. Conclusions

This study analyzed the spatiotemporal variation of land use and landscape ecological
risk of a resource-based city in China. The main conclusions are as follows:

1. Cultivated land surrounding the urban area of Xuzhou and primarily urban counties
were predominantly occupied by construction land from 2000 to 2020. Urbanization
was the major driver of land-use changes. Due to rapid urban expansion, all landscape
ecological risk indices relating to expanding urban borders increased sharply. The
extremely high-risk regions being significantly affected by urban construction.

2. The ecological effects of the coal mining subsidence area were relatively profound,
with short-term changes to the land-use types in this area being difficult. Land-
scape reconstruction based on ecological restoration technologies could improve the
landscape pattern indices and the local ecological environment.

3. LISA results demonstrated that landscape ecological risks of rural areas near urban
areas of Xuzhou and rural border areas of significant urban expansion were mutually
influential. However, the landscape ecological risk for rural regions that were far
from an urban area or primary urban regions in counties was relatively stable.

4. Scientific planning improves the overall ecosystem of a city. In Xuzhou, changes in
landscape patterns resulted in a downward trend in the overall landscape ecological risk.
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These research results provide a reference for land-use planning and landscape ecolog-
ical risk control during the transition period of resource-based cities. Controlling landscape
ecological risks brought about by urbanization will become the focus of future resource-
based city transformation. Xuzhou should aim for smart growth, avoid the rapid expansion
of urban construction land, and prevent urban expansion from bringing drastic changes in
land use. Through scientific and reasonable planning, optimization of the distribution of
cities and towns will improve their ecosystems and reduce the landscape ecological risks
brought about by urbanization. As for the ecological damage resulting from coal mining,
ecological restoration should be carried out as soon as possible. This will avoid the aggra-
vation of ecological damage, which will harm economic development and form a vicious
cycle. The problem of landscape ecological risk should be dealt with from a sustainability
perspective and be transformed into a new force for the long-term development of the city.
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