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Abstract: Complex systems consist of multiple machines that are designed with a certain extent of
redundancy to control any unanticipated events. The productivity of complex systems is highly
affected by unexpected simultaneous machine failures due to overrunning of machines, improper
maintenance, and natural characteristics. We proposed realistic configurations with multiple ma-
chines having several flexibilities to handle the above issues. The objectives of the proposed model
are to reduce simultaneous machine failures by slowing down the pace of degradation of machines,
to improve the average occurrence of the first failure time of machines, and to decrease the loss of
production. An approach has been developed using each machine’s degradation information to
predict the machine’s residual life based on which the job adjustment strategy where machines with
a lower health status will be given a high number of jobs to perform is proposed. This approach
is validated by applying it in a fabric weaving industry as a real-world case study under different
scenarios and the performance is compared with two other key benchmark strategies.

Keywords: semi-fully flexible systems; degradation modelling; residual life prediction; job adjust-
ment strategy

1. Introduction

Production industries are adapted to face a certain level of challenges, although
many firms are incapable of meeting the accelerated pace of change to keep up with the
current global competition and technological advancements. Digital transformation driven
by smart manufacturing is the basis of the current paradigm shift. Most factories are
composed of resources such as machines, assembly lines, and automatic devices that are
properly integrated but not always connected. In order to make a factory smarter, the
Industrial Internet of Things (IIOT) has emerged as a new and innovative platform that
enables Industry 4.0 key technologies [1–3]. In handling customized orders that are low
in volume, frequent demand shifts, and long lead times, current manufacturing systems’
configurations are not capable enough to manage the production process. Moreover,
every machine in the production system has its own health status and, therefore, its
remaining useful life (RUL). Its degradation status is highly responsible for the operational
performance of the production system [4].

In this unique circumstance, profound research activity is necessary for the develop-
ment of smart factories in the industrial world. Although the maximum rate of production
of a particular machine is designed to be greater than its actual need, according to the
reports from the Federal Reserve Board, the United States’ fabrication industries are facing
nearly 20 percent of redundancy, which is an alarming issue for the production system
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industries [5,6]. However, this is not uncommon because an enormous number of ma-
chines tend to degrade at a similar rate, particularly when an equal amount of workload is
allocated to those machines [7]. Therefore, evaluation of system performance in real-time
by capturing the performance of a machine is a challenge.

Although, a good amount of research investigated the effect of component-level and
machine-level degradation on system performance, a significant research gap exists on
the unit-level analysis for controlling the degradation of machines in order to enhance the
system-level performance. The proper choice of machine configuration greatly impacts the
production system with regard to its machine reliability and system reliability. As a result,
numerous scholars have published articles by optimizing the configurations to get better
productivity [8–11].

Therefore, this study seeks to address the following questions:

1. How can a mathematical model be developed to minimize the average degradation
level of all machines with a job adjustment strategy in the industries by considering
the machine failure condition?

2. How can the proposed model be applied to the fabric weaving industry to test the
efficiency in real-world situations?

Hence, in this paper, we proposed different configurations having different degrees
of flexibility to estimate the system performance under simultaneous multiple-machine
breakdown in a real-time environment. Here, we developed a stochastic linear degradation
model to find the real-time degradation coefficient of each machine in a system at every
instance. We established a case study with the key assumption that includes the degradation
rate of each machine as a random variable following a normal distribution to apprehend
the deviation in the degradation process due to natural characteristics. Hence, a Bayesian
approach was deployed to update the prior distribution of the degradation coefficient to
get a posterior distribution with the help of measurements that were collected in real-time
and then the remaining useful life of machines was predicted from degradation signals.
With the available health status value of each machine and their corresponding degrees of
flexibility, the dynamic job adjustment strategy was applied to achieve the maximum output
for the system. The job adjustment strategy is the assignment greater jobs to machines
having poorer health status and vice versa. The greater work will lead to the machine’s
failure as early as possible, by that time the failed machine’s pending jobs can be assigned
to the remaining functional machines. In this way, the production rate is maintained and
the overlap of machine failures can be reduced. In the context of this paper, predictive
maintenance means predicting the health status of individual machines and, based on this
health status, maintenance is done by improving the average occurrence of the first failure
of the machines by predicting how much workload needs to be assigned to the machine for
the next step. To the best of the authors’ knowledge, there have been very few works on
degradation rate prediction to estimate the real-time system-level performance. Through
the proposed method, we contributed to the literature by developing a model that can
predict the real-time health status of a machine and can help in protecting the production
system from the overlap of machine failures to enable a smart factory.

On the whole, the contributions in this paper are summarized as follows:

• Proposed realistic configurations that are flexible and able to withstand changes in
demand and the occurrence of breakdowns.

• Developed an objective function that slows the average degradation rate of machines
by assigning a number of jobs to each machine based on the health status of that
machine at each time interval.

• Validated proposed models in real-world situations.

The remainder of the paper is as follows: Section 2 provides a comprehensive overview
of the relevant literature. Section 3 demonstrates the degradation modelling based on the
flexibility of a manufacturing system framework. Section 4 discusses the development of
a job adjustment methodology. Next, Section 5 describes the experimentation procedure.
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Section 6 discusses the analysis part of the dynamic job adjustment strategy. Finally,
Section 7 presents conclusions and a discussion of future research.

2. Literature Review

Many studies have been conducted in the industrial production systems field although
most of these studies have focused on component-level or machine-level degradation
models to estimate the system performance. The degradation model defines a particular
time-to-failure distribution [12]. Most of the researchers investigated component-level
degradation, where the Bayesian updating method has been implemented to update the
prior distribution based on real-time condition monitoring information and majorly focused
on demonstrating the progression of the degradation process in every step to predict RUL.

In this literature, few studies are related to the design of a sustainable manufactur-
ing system [13,14]. The integration of a degradation model for those systems has been
mentioned by Gebraeel et al. [15], who implemented a Bayesian method for updating pa-
rameters and to predict the RUL of a bearing component. Hao et al. [16] and Song et al. [17]
adopted the stochastic model and proposed a prognostic method to predict the residual life
of each component in a composite manufacturing system by modelling degradation signals
as an instantaneous stochastic process. The functional form of degradation endeavours
to explain probabilistically the progression of the physical degradation process. Various
techniques have been explained by Bian et al. [18], and they have modelled the evolution of
degradation signals based on sensor data to estimate lifetime distribution. Later, Deutsch
et al. [19] conducted research focused on prediction of the RUL of a rotating element with
big data by presenting a deep-learning-based technique. Their technique has been tested
and validated by collecting the data from a gear test rig. Similar work has been carried out
by Ren et al. [20], a deep-learning-based method has been proposed to predict the RUL of a
bearing component combined with the deep neural network and deep auto encoder. Fur-
ther, supervised and unsupervised data analysis techniques have been used [19,21,22] for
the maintenance of a vessel based on its condition in a diesel–electric gas propulsion plant.

At the machine level, a case study has been presented for finding the degradation level
by monitoring industrial pumps [23]. In this work, vibration data were collected from a
chemical plant on 30 industrial pumps for a period of 2.5 years, and by applying the random
forest algorithm, Key Condition Indices (KCIs) were found for condition-based monitoring.
Similarly, data analysis and simulation tools have been used to analyse the machine failure
data and system failure prediction, and a novel procedural approach has been proposed
by [24]. Later, to reduce the impact of the degradation process on machine performance
and machining precision, using sensory data such as emission rate, maintenance rate, and
production rate, the performance indices have been identified by [25,26].

Ni et al. [27] mentioned that system degradation is not a single-staged process instead
it is a multi-stage process in real life. Li et al. [28] proposed a method for predicting the
RUL by changing the degradation rate of systems and causing conditional signal jumps to
change points as the two factors. With this information, a multi-stage stochastic degradation
model was proposed by [29], using Bayesian updating methods to extract real-time data
from machines and update the degradation model for finding the RUL for degraded
machines. Further, numerous studies focused on the modelling of the degradation process
with an insight to capture the degradation [28–32]. Few more papers studied various
techniques for predicting the RUL and understanding the progression of degradation in
machines [22,33–37].

To the best of the author’s knowledge, only a few studies, e.g., Chandra et al. [7],
Hao et al. [16], and Manupati et al. [38], address the phenomena of controlling the pace of
degradation among the machines in a real-time manufacturing environment. Their studies
proposed a workload strategy to dynamically control the degradation rate by predicting
the residual life on parallel and hybrid configurations. Past studies mostly concentrate
on parallel and hybrid configurations. Through this, we contribute to the literature on
the problems of developing smart factories by proposing a method that can predict the
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real-time health status of the machines and minimize the average degradation level of all
machines in a semi, fully flexible configuration environment by assigning the number of
jobs to be processed on them dynamically. Further, it can help in protecting the system
from the overlap of machine failure to create a smart factory.

3. Problem Description

We developed a linear degradation model for the proposed configurations associated
with their manufacturing flexibility ranging from single-degree to fully flexible systems
to control the pace of degradation among the machines for preventing the system from
failure and indirectly controlling the loss of production of the system. To highlight the
main idea, these systems undergo various analyses to predict the RUL of the machines that
further improves the throughput through the minimization of the average degradation
level. We define “throughput rate” as the overall output of the system, i.e., TH(x ) =

∑
N(x)
q=1,r=1 O(q,r)(x), where TH(x) represents the throughput rate at the time x, and N(x)

presents the number of machines. Here, we assume that the machines in the system are
identical in nature. Now, let the number of operating machines at time x, be Ñ(x), then the

maximum throughput rate becomes ∑
Ñ(x)
q=1,r=1 C(q,r), where C(q,r) indicates the “capacity” of

a machine q, r at time x. The throughput rate of a system concerning demand is defined as

TH(x) = min
[

∑
Ñ(x)
q=1,r=1 C(q,r), D

]
, where D stands for “Demand”. If demand of the system

is less than capacity, ∑
Ñ(x)
q=1,r=1 C(q,r) ≥ D, then the throughput rate can be considered

as equal to the demand, TH(x) = D. Alternatively, when the capacity of the operating

machines is lower than the demand, ∑
Ñ(x)
q=1,r=1 C(q,r) ≤ D, then the throughput rate becomes

equal to the maximum capacity of the operating machines, TH(x) = ∑
Ñ(x)
q=1,r=1 C(q,r), which

in turn raises the possibility of assigning the maximum amount of jobs to the machines.
Here, 0 ≤ O(q,r)(x) ≤ C(q,r), for q, r ∈ 1, 2, . . . , N, O(q,r)(x) denotes assigned jobs for the
machine q, r at time x and acts as a control variable. When machine breakdown occurs,
the job processed on the machine becomes zero for the machine q, r at the time x, i.e.,
O(q,r)(x) = 0.

3.1. System Model Description

Yoram et al. [39] pointed out the impact of various configurations on manufacturing
system performance in terms of productivity, reliability, and life cycle cost. Among all the
existing manufacturing systems’ configurations, we considered flexible real-time configura-
tions, i.e., one-degree, two-degree, semi-flexible, and fully flexible configurations. Flexible
systems consist of N identical machines operating simultaneously to process the assigned
number of jobs. Here, when a job arrives, it has to be assigned to any available machines in
the following configuration to be completed.

To recap, the main highlight of this paper is to determine the number of jobs that
are to be assigned to each machine based on the health status of a machine at a unit time.
Each of the models illustrated in Figure 1a–d have a different level of flexibility. In this
paper, we deliberated the degree of flexibility as the ability of a machine to adjust the
assigned number of jobs for completion in response to failure or maintenance. For instance,
Figure 1a presents a one-degree flexible environment, here machines work individually
and simultaneously in a linear path to fulfil the necessity of the system, but if the machine
(1,1) fails, the pending assigned jobs on the machine (1,1) can be processed by the adjacent
machine (1,2) depending upon the availability of the machine, stating one-degree flexibility.
Figure 1b articulates a two-degree flexible environment, here the availability of machines
for job adjustment increases, i.e., in case of failure in the machine (1,1), the adjacent machine
(1,2) or machine (2,2) can process the pending jobs of the machine (1,1). Followed by this
are semi-flexible and fully flexible configurations in Figure 1c,d, respectively, where the
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options for workload adjustment are more in comparison to one-degree and two-degree
flexible systems.
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Figure 1. Proposed flexible configurations.

3.2. Essential Assumptions

Demand is constant in the system, whereas the resulting number of jobs can vary on
machines at a certain time.

1. The degradation coefficient for the machine q, r, i.e., α(q,r) is unknown and random.
For that, we assumed “machine to machine variability” to capture the uncertainty in
the manufacturing environment.

2. At a time, only one job can be handled on one machine.
3. Once a machine initiates the processing of a job, the obstruction of its processing is

not allowed.
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4. Machine failure is only considered in relation to its degradation rate.

3.3. Proposed Degradation Framework

At first, we propose a framework of the methodology followed in this paper as
depicted in Figure 2.
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Figure 2. Proposed degradation framework.

The framework depicts a tool for decision-making by delivering the condition of the
machine at each decision epoch and predicting the real-time health status of machines in
a manufacturing flexible systems scenario. Recall, the machines are identical in nature,
where the assignment of the jobs on each machine is carried out based on the capacity and
the demand of the system. Though the machines are identical in nature, their degradation
rate differs not only concerning the number of jobs and demand but also due to the natural
characteristics such as processing variations, friction, material inhomogeneity, etc. These
characteristics provide information about the real-time degradation rate of each machine,
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denoted as i(q,r)(x). With the available degradation information of each machine, a linear
stochastic differential equation is developed as follows:

dA(q,r)(x) = i(q,r)(x)dt + dW(q,r)(x) (1)

Here, A(q,r)(x) represents the amplitude of degradation signals for the machine q, r
at the time x, and W(q,r)(x) is a Brownian motion error function. The formulation of
Equation (1) is inspired by the modelling of degradation efforts in the absence of prior
degradation information [40]. The main idea here is to develop a job assignment strategy
to effectively control acceleration in the degradation rate of machines by considering the
relationship shown in Equation (1). Based on the past research efforts made on charac-
terizing the relationship between degradation rate and number of jobs assigned through
several mathematical assumptions and historical data, we considered a special case, stat-
ing the real-time degradation rate is directly proportional to jobs assigned as shown in
Equation (2) below.

i(q,r)(x) = α(q,r)O(q,r)(x) (2)

where α(q,r) is considered as the degradation coefficient of the machine q, r. From Equation (2),
Equation (1) can be rewritten as below in Equation (3).

dA(q,r)(x) = α(q,r)O(q,r)(x)dt + dW(q,r)(x) (3)

Furthermore, condition monitoring of systems is executed at discrete observation
epochs [40]; therefore, we performed the sampling of job adjustment in discrete epochs,
i.e., x1 − x0 = x2 − x1 = . . . = xu − xu−1 = δx, where the sampling interval is kept
constant, and xu denotes the latest observation epoch. Then, A(q,r)(xu) is the amplitude of
the degradation signal of the machine q, r at time xu, and the corresponding jobs assigned
are O(q,r)(xu−1). To facilitate solving, the formulation in Equation (3) can be simplified as
below in Equation (4).

δA(q,r)(xu) = α(q,r)O(q,r)(xu−1)δt + W(q,r)(xu)−W(q,r)(xu−1) (4)

From the properties of Brownian motion W(q,r)(xu)−W(q,r)(xu−1) ∼ N(0, d2
(q,r)δx).

Next, we have the corresponding jobs assigned as O(q,r)(xu−1) and degradation coefficient
α(q,r), the conditional distribution developed by Manupati et al. [38] is expressed as below
in Equation (5).

A(q,r)(xu)|O(q,r)(xu−1), α(q,r) ∼ N(α(q,r)O(q,r)(xu−1)δx, d2
(q,r)δx) (5)

As per the characteristics of the Wiener process, Brownian motion has an independent
increment, stating δA(q,r)(x1), . . . , δA(q,r)(xu) are statistically independent [32]. As a result,
the probability density function of the amplitude function can be evaluated as below in
Equation (6).

p(δA(q,r)(xu)|O(q,r)(xu−1), α(q,r)) =
u

∏
i=1

p(δA(q,r)(xi)
∣∣∣O(q,r)(xi−1), α(q,r)) (6)

where δA(q,r)(xu) = [δA(q,r)(x1), . . . , δA(q,r)(xu)] and O(q,r)(xu−1)= [O(q,r)(x0), . . . , O(q,r)
(xu−1)]. Here, the random variable α(q,r) is modelled, whose prior distribution was normal
distribution with mean β(q,r) and variance γ2

(q,r). This prior distribution is updated to get
posterior distribution with the help of a Bayesian approach by the use of measurements
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that are collected in real time [16]. Then, the posterior distribution’s mean and variance of
degradation coefficient α(q,r) are represented in Equations (7) and (8).

β(q,r)(xu) =

γ2
(q,r)

u
∑

i=1
δA(q,r)(xi)O(q,r)(xi−1) + β(q,r)d2

(q,r)

γ2
(q,r)

u
∑

i=1
[O(q,r)(xi−1)]

2δx + d2
(q,r)

(7)

γ2
(q,r)(xu) =

d2
(q,r)γ

2
(q,r)

γ2
(q,r)

u
∑

i=1
[O(q,r)(xi−1)]

2δx + d2
(q,r)

(8)

Next, the posterior mean of degradation coefficient assists in updating the residual life
distribution of each machine that follows inverse Gaussian (IG) distribution developed [14]
as shown below in Equation (9).

P(T(q,r) ≤ x
∣∣∣A(q,r)(xu), O(q,r)(xu), α(q,r)) ∼ IG(x; µ(q,r)(xu), S(q,r)(xu)) (9)

where IG(t;.,.) indicates the cumulative distribution function with µ(q,r)(xu) =(F(q,r) −
A(q,r)(xu))/(α(q,r)O(q,r)(xu)) S(q,r)(xu) =([F(q,r) − A(q,r)(xu)]

2)/(d2
(q,r)) and as the mean

parameter and the shape parameter of an IG distribution, respectively. Here, to es-
timate α(q,r) at a certain decision epoch, we propose to replace α(q,r) with the poste-
rior mean β(q,r)(xu) which in turn helps in finding the approximated mean parameter
of the IG distribution, i.e., µ(q,r)(xu) =(F(q,r) − A(q,r)(xu))/(β(q,r)(xu)O(q,r)(xu)). Here,
(F(q,r) − A(q,r)(xu))/β(q,r)(xu) is the health status of the machine q, r at the time x rep-
resented by di(q,r)(xu). As a result, the predicted residual life (mean parameter of IG
distribution) can be shown below in Equation (10).

µ(q,r)(xu) =
di(q,r)(xu)

O(q,r)(xu)
(10)

After finding each machine’s health status value, di(q,r)(xu), the degree of flexibility of
the system is checked according to which the number of jobs is assigned dynamically to
prevent the simultaneous multiple-machine failure, which is the primary objective of this
study. This procedure repeats for every trial until maximum throughput is achieved.

4. Development of a Job Adjustment Methodology

We formulate our methodology for dynamically assigning jobs as a minimization prob-
lem that controls the degradation of machines by modifying the remaining task at hand.
Given the posterior mean of the degradation coefficient, α(q,r), of functioning machines,
β(1,1)(xu) . . . βÑ(u)(xu), and the corresponding degradation levels, A(1,1)(xu) . . .A(Ñ(u))(xu),
the average degradation of all machines at the next decision epoch is minimized by adjust-
ing the jobs O(1,1)(xu) . . . O(Ñ(u))(xu) as shown in Equation (11) and it is summation of two

parts. The first part
Ñ(xu)

∑
q=1,r=1

[β(q,r)(xu)O(q,r)(xu)δx] indicates the incremental growth in the

degradation rate of the system concerning time. Meanwhile, the second part A(q,r)(xu)
measures the degradation signal amplitude of the machine q, r at the time x.

Objective function: minimize Z, where

Z =
1

Ñ(xu)

Ñ(xu)

∑
q=1,r=1

[β(q,r)(xu)O(q,r)(xu)δx + A(q,r)(xu)] (11)
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Subject to the following constraints:

Ñ(xu)

∑
q=1,r=1

O(q,r)(xu) = min

 Ñ(xu)

∑
q=1,r=1

C(q,r), D

 (12)

O(1,1)x(u) ≥ . . . ≥ O(Ñ(xu))
(xu) (13)

0 ≤ O(q,r)(xu) ≤ C(q,r), q, r ∈ 1, . . . , N (14)

E(q,r)δx
4 [O(q,r)(xu) + O(q,r+1)(xu)]

2 ≤ di(q,r+1)x(u)O(q,r)(xu)− di(q,r)(xu)O(q,r+1)(xu)

for q ∈ 1, 2, . . . , Ñ(xu)

r ∈ 1, 2, . . . , Ñ(xu)− 1

(15)

E(q,r)δx
4 [O(q,r)(xu) + O(q+1,r+1)(xu)]

2 ≤ di(q+1,r+1)x(u)O(q,r)(xu)− di(q,r)(xu)O(q+1,r+1)(xu)

for q ∈ 1, 2, . . . , Ñ(xu)− 1
r ∈ 1, 2, . . . , Ñ(xu)− 1

(16)

E(q,r)δx
4 [O(q,r)(xu) + O(q+1,r)(xu)]

2 ≤ di(q+1,r)x(u)O(q,r)(xu)− di(q,r)(xu)O(q+1,r)(xu)

for q ∈ 1, 2, . . . , Ñ(xu)− 1
r ∈ 1, 2, . . . , Ñ(xu)

(17)

E(q,r)δx
4 [O(q,r)(xu) + O(q+a,r+1)(xu)]

2 ≤ di(q+a,r+1)x(u)O(q,r)(xu)− di(q,r)(xu)O(q+a,r+1)(xu)

for r = 1
q ∈ 1, 2, . . . , Ñ(xu)

a ∈ 1, 2, . . . , Ñ(xu)− 1

(18)

E(q,r)δx
4 [O(q,r)(xu) + O(q,r+a)(xu)]

2 ≤ di(q,r+a)x(u)O(q,r)(xu)− di(q,r)(xu)O(q,r+a)(xu)

for r = 1
q ∈ 1, 2, . . . , Ñ(xu)

a ∈ 1, 2, . . . , Ñ(xu)− 1

(19)

E(q,r)δx
4 [O(q,r)(xu) + O(q+a,r+b)(xu)]

2 ≤ di(q+a,r+b)x(u)O(q,r)(xu)− di(q,r)(xu)O(q+a,r+b)(xu)

for q, r = 1
a ∈ 1, 2, . . . , Ñ(xu)− 1

b ∈ 0, 1, 2, . . . , Ñ(xu)− 1

(20)

The purpose of the objective function is to ensure that, on average, the failure of all
machines occurs at the slowest rate, shown in Equation (11).

Recall, in the system, when the demand of the system is lower than its capacity,
the throughput rate is equivalent to demand. Conversely, if the capacity is less than
the system’s demand, then the system’s capacity becomes the throughput rate. This
constraint is determined as presented in Equation (12). Despite the fact that flexibility in a
system develops a certain amount of robustness for production, it will become ineffectual
if the simultaneous breakdown occurs in multiple machines exceeding a certain limit.
Therefore, to prevent multiple machine failures at a time, we proposed a method that
assigns machines having poorer health status, with a greater workload. The fundamental
assumption of this approach is that a greater workload speeds up the process of degradation
and, thus, distinguishes these machine’s anticipated failure time from that of the others,
i.e., assigning O(1,1)(xu) ≥ O(1,2)(xu) ≥ . . . ≥ O(q,r)(xu) for machines having health
status di(1,1)(xu) ≤ di(1,2)(xu)≤ . . . ≤ di(q,r)(xu), where O(q,r)(xu) and di(q,r)(xu) denote
the number of jobs assigned and health status, respectively, of machine q, r calculated at
time xu, with Ñ(xu) indicating the number of functional machines computed at time xu.
This method as a constraint is reflected in Equation (13). The constraint in Equation (14)
refers to the allotment of a non-negative quantity of jobs to the respective machines.
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To intercept the system from breakdown, the key challenge is to prevent the overlap
of machine failure. The solution to this problem is that the failure of a machine should
occur after the repair of another machine as stated in Equation (21) as for a one-degree
flexible system.

µ(q,r)(xu) + E(q,r)δx ≤ µ(q,r+1)(xu) (21)

From Equation (10), Equation (21) can be rewritten as shown in Equation (22)

E(q,r)δxO(q,r)(xu)O(q,r+1)(xu) ≤ di(q,r)(xu)O(q,r)(xu)− di(q,r+1)(xu)O(q,r+1)(xu) (22)

While solving, it results in nonconvex quadratic programming equations that are
NP-hard in nature. An algorithm has been proposed by [41–44] that provides an optimal
solution to the nonconvex quadratically constrained quadratic programming problems by
finding a convex space, covering the original nonconvex space. Later on, Radu et al. [45]
addressed certain challenges that arise while optimizing nonconvex problems, and further
proposed a cutting plate strategy to recognize strong cuts to select and generate to improve
solutions by using a branch and cut algorithm. The drawback of using this mentioned
approach for our problem is that an optimal solution may not be feasible for the nonconvex
space, providing misleading results. In this paper, we search for a convex subspace in the
nonconvex space so that until unless there is an optimal solution, it falls under the feasible
region and prevents the overlap of machine failures. Based on Hao et al. [16], we utilized
the arithmetic mean–geometric mean inequality to convert the nonconvex form from which
the constraint in Equation (15) is generated.

For a one-degree flexible system, the overlap of machine failure is controlled by
Equation (15). Recall, as flexibility increases the availability of machines for adjusting jobs
increases. As a result, for a two-degree flexible environment, the problem is controlled by
Equations (15) and (16). Similarly, Equations (15), (17), and (18) prevent the intersection
of machine failure in the semi-flexible system. Meanwhile, in a fully flexible system, the
problem is to be controlled using the constraints in Equations (19) and (20).

5. Case Study

In this section, a case study is provided to evaluate the performance of the proposed
configurations and the effectiveness of the method adopted within a fabric weaving indus-
try. The related data are collected from the zone Surat situated in the northern region of
India. This industry consists of power loom machines that operate identically to weave
fabrics from the thread. The factors that influence the productivity of power looms are
equipment factors, technological factors, and manufacturing flexibility [46].

5.1. Data Gathering and Parameter Setting

In this paper, the power loom machine degradation data of 1460 machines were
considered to validate and verify the proposed model. These 1460 machines operate under 4
proposed configurations with 3 different instances until there is a catastrophic interruption.
The number of machines and the degree of flexibility for a particular configuration with
different instances and flexibilities is shown in Table 1. An effective arrangement of
machines in the configurations has an impact on increasing the performance [47]. In this
study, the machine arrangement is planned for each configuration in a particular instance
in such a way that maximum production and highest productivity must be achieved. For
example, in instance 1 for a one-degree flexible system, the number of machines is 70,
arranged in the sequence 10 rows and 7 columns. To capture the real-world characteristics
of the power looms, we considered the following parameter settings stated in Table 2.
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Table 1. Overview of the system.

Sr. No. Degree of
Flexibility

No. of
Machines
Instance 1

No. of
Machines
Instance 2

No. of
Machines
Instance 3

1 One Degree 70 90 110

2 Two Degree 80 120 140

3 Semi-flexible 100 140 160

4 Highly Flexible 100 150 200

Table 2. Parameters for experimentation.

Parameters Unit

Production of jobs kg/day

The capacity of each machine 48 kg/day

Demand for one-degree flexible system 3400 kg/day

Demand for two-degree flexible system 4000 kg/day

Demand for semi-flexible system 5000 kg/day

Demand for fully flexible system 5250 kg/day

The prior mean for the degradation coefficient of each machine, β(q,r) 5.97 × 10−8 inch/kg

Brownian motion error for the diffusion parameter, d(q,r) 2.03 × 10−5 inch/day

Failure threshold of each machine, F(q,r) 0.004

5.2. Experimental Procedure

We investigated the performance of our approach concerning effectiveness in increas-
ing the residual life of machines by comparing our strategy with two other benchmark
strategies mentioned in [7], i.e., (1) jobs are assigned equally to each machine, and (2) as-
signment of jobs is done randomly among the machines in a given particular configuration.
To be more specific, on each observation epoch, for the first benchmark, an equal number
of jobs are assigned to each machine in the system, while in benchmark 2, all possible
solutions of the number of jobs assignment are identified, and one is randomly selected
from the entire solution set. Next, for the proposed methodology, based on the degradation
framework in Section 3, the rate of degradation of each machine in each decision epoch
was calculated. Further, based on the health status of the machine, a number of jobs were
assigned to it following the methodology in Section 4. The experimentation on each config-
uration in each instance simultaneously was conducted for 350 days. The observation time
for each decision epoch was considered as 1 day.

To examine the performance and enumerate the results, we contemplated two perfor-
mance indices: (1) the occurrence of a failure in machines for the first time and (2) loss of
production. Since the objective of this paper is to find the degradation information for ma-
chines, these indices are more informative for our proposed manufacturing configurations
as the loss of production will be influenced if multiple-machine breakdown occurs. Here,
the maintenance time for a repaired machine is considered as 3 days according to power
loom industry data.

6. Results and Discussion

In this section, for 3 different instances of 4 flexible configurations, we ran 12 exper-
iments. For every condition, we plotted the graph by considering the two performance
indices as shown in Figures 3–6. The following discussions can be made based on the
results obtained.
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Figure 3. Occurrence of machine failure in the system (Instance 1).
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Figure 4. The occurrence of machine failure in the system (Instance 2).
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Figure 6. Percentage loss of production.

Figure 3 depicts the experimental results for the first instance of machine configuration.
As the demand is high, the machines are made to work up to their limit, accelerating the
degradation process, resulting in reduced machine life. Figure 3a shows the result of a
one-degree flexible system. From the plot, it should be noticed that when an equal number
of jobs are assigned to all the machines in the configuration, the rate of degradation remains
similar in all the machines, which leads to failure within a short period, i.e., between the
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41st and the 50th day. However, when the random workload was assigned, a deviation
in the range was found between the 40th and the 65th day. In the proposed methodology,
it was found that in a row (10 machines) there was a gap of at least 3 days (repair time)
in between any two machines’ failure. Figure 3b presents the graph of a two-degree
flexible system. Here, similar results were observed when the number of jobs was assigned
equally and randomly, while in the proposed method a certain level of robustness was
found. The result of the semi-flexible system and fully flexible system is articulated in
Figure 3c,d, respectively. Recall, as flexibility increases, the availability of machines for
adjusting the remaining jobs increases. As a result, here in Figure 3c,d, when an equal
amount of jobs is assigned, the graph depicts almost a straight line stating very close failure
times of machines.

The results for instance 2 are illustrated in Figure 4. Here, as the number of machines
is more while the demand remains constant, a rise in the average life span of machines
was observed. In a one-degree flexible system, as shown in Figure 4a, it was found that
machines in a row tend to fail at the same time when an equal number of jobs was assigned
to the system. From Figure 4a, it is visible that as one machine in the row fails, the others
tend to fail in a similar range of days. For example, machines 1–10 fail approximately
between the 65th and the 67th day while machines 11–20 fail approximately in a range
55th–60th day. With the random assignment of jobs, the machines tend to fail randomly,
increasing the efficiency of the system somewhat compared to that for an equal workload.
In the proposed method, the tendency of multiple-machine breakdown reduced drastically
increasing the efficiency of the system. Similar but slightly better results were observed
in Figure 4b as the degree of flexibility increased compared to that in Figure 4a. For semi-
flexible and fully flexible systems, results are shown in Figures 4c and 4d, respectively; a
hike in points in the plot appeared for the proposed method, stating robustness in machine-
to-machine variability. On the contrary, the performance of the other two assignment
techniques reduced as the machine-to-machine variability decreased.

Figure 5 plots the results for instance 3. Compared to the other two instances, a certain
level of increased efficiency of the system is observed. Figure 5a,b illustrates the result
of a one-degree flexible system and two-degree flexible system, respectively. It can be
observed that here, for an equal number of jobs, the results were the same as Figure 4,
but as the number of machines increased, the average time of breakdown was increased.
In the case of random assignment of jobs, the deflection in points was in a higher range,
reducing the possibility of multiple-machine breakdown, but it was less compared to the
proposed methodology. In the case of semi-flexible and fully flexible systems articulated in
Figure 5c,d, the number of points presenting the machines for the proposed method in the
plot was less in comparison to the number of machines considered in instance 3, depicting
that not all machines failed during the experimentation. It was found that, in the observed
time, only 58 machines failed in the semi-flexible system, while in the fully flexible system
the count was 44.

In Figure 6, 1, 2, 3 and 4 on the horizontal axis indicate one-degree, two-degree, semi-
flexible, and fully flexible configurations. Based on the experimental results illustrated in
Figures 3–6, the performance for equal assignment of jobs is found to be the worst in all the
three instances. When the random assignment of jobs was carried out the machines tend
to fail randomly, showing slightly better results than the equal assignment of workload
reducing the possibility of multiple failures of machines, but still, it failed to control the
overall degradation rate, resulting in a system breakdown. In all the three instances, the
proposed method showed an effective impact on the efficiency of the system by reducing
the degradation process of each machine. When the number of machines was less, the
system exhibited a similar degradation process and as a result several machines tended to
fail at a similar range of time.
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7. Conclusions and Future Work

The stochastic nature of the degradation process always brings challenges to accurately
predict the residual life of machines in a system. First, each configuration of machines
in a system has a different level of flexibility, which varies the degradation rate of one in
comparison to others, thus making it difficult to formulate a degradation model. Second,
the workload adjustment in such a system is dependent on the type of configuration, which
makes it hard to frame an ideal dynamic workload adjustment strategy. Corresponding to
these two major challenges, in this paper, we proposed a degradation model framework
that explicates the degradation process and predicts the health status of any machine
regardless of the system configuration. The major contribution of this paper is the multiple
configuration, dynamic job adjustment strategy that can be applied to any manufacturing
system depending upon their flexibility. We applied a Bayesian approach that utilizes the
real-time degradation information from the machine to predict the health status of the
machine at each decision epoch. Then, based on the degradation condition of the machines,
our job assignment methodology assigns the jobs to the machines to prevent the overlap
of machine failure in the system. Later, the stochastic degradation model was adapted
to numerically evaluate the performance of a real-time manufacturing environment. We
compare our proposed method with the other two benchmark strategies, specifically equal
job adjustment and random job adjustment. The outcomes depicted that our method
consistently shows a certain level of robustness by preventing the overlap of machine
failure in each instance and reducing the loss in production to fulfil the required demand.
The average percentage of loss in production was 4.75% in case of the proposed model,
which is reduced compared to the average of 10.5% obtained in the case of equal job
adjustment and the average of 7.5% in random job adjustment in instance 1. Similarly,
the average percentage of loss in production was 2% in case of proposed model, which is
reduced compared to average of 6.67% in the case of equal job adjustment and average of
4.61% in random job adjustment in instance 2. The average percentage of loss in production
was 0.75% in the case of the proposed model, which is reduced compared to the average of
3.75% in the case of equal job adjustment and the average of 2% in random job adjustment
in instance 3. The minimization of degradation of the system indirectly controlled the
failure time of each individual machine; further, the average rate of failure of the machines
for the first time was increased. Although these are contemplated as major objectives, there
was an impact on efficiency of the system. The proposed model attempted to bring the
results closer to real-time situations of sustainable manufacturing system.

This research provides a new direction towards the upgradation modelling of the
machines specifically based on predictive maintenance. There are several important areas
of research work related to this work. First, this paper considers a linear degradation
model for flexible systems, additional efforts can be made by considering the process to
be exponential. Second, further studies can be made to predict at what point of time the
machine again starts to upgrade after a certain amount of continuous degradation.
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Nomenclature

N Number of machines
D Demand per unit time
C(q,r) Capacity of a machine with respect to position q and stage r
O(q,r)(x) Jobs assigned on a machine q, r at the time x
TH(x) System’s throughput at time x
Ñ(x) Number of operational machines at the time x
A(q,r)(x) Amplitude for degradation wave q, r at the time x
i(q,r)(x) Instantaneous degradation rate of the machine q, r at the time x
W(q,r)(x) Degradation error of Brownian motion for machine q, r at the time x
α(q,r)(x) Degradation coefficient for machine q, r
β(q,r) Mean of prior distribution of α(q,r)
γ2

(q,r) The variance of prior distribution of α(q,r)
δx Sampling interval
W(q,r)(xu−1) Column vector that constitutes the number of jobs of a machine q, r from x0 to xu−1

δA(q,r)(xu) Column vector that constitutes increments in degradation of machine q, r observed
from time intervals x0 to xu−1

p(.) Probability density function for distribution
β(q,r)(xu) Mean of posterior distribution for α(q,r) updated at xu

γ2
(q,r)(xu) Variance of the posterior distribution of α(q,r) updated at xu

F(q,r) Pre-defined failure threshold for a machine q, r
IG(.) An inverse Gaussian distribution for the cumulative distribution function
µ(q,r)(xu) Mean variable of the conditional residual life distribution of machine q, r computed

at xu
S(q,r)(xu) Shape parameter of the conditional residual life distribution of machine q, r computed

at xu
di(q,r)(xu) Degradation indicator of the machine q, r, which is identified with the severity of

degradation
E(q,r)δx Repair time of a machine q, r
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