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Abstract: Biochar, an alkaline carbonaceous substance resulting from the thermal pyrolysis of
biomass, reportedly enhances the micronutrient availability in acidic soils with little or no effect on
alkaline soils. In this study, biochars were produced from poultry manure (PM) at 350 ◦C and 550 ◦C
(BC350 and BC550 respectively). The acidified biochars (ABC350 and ABC550, respectively) were
incorporated into an alkaline sandy soil, and their effects on the soil micronutrients (Cu, Fe, Mn and
Zn) availability, and CO2–C efflux were investigated in a 30-day incubation study. The treatments
(PM, BC350, BC550, ABC350, and ABC550) were administered in triplicate to 100 g soil at 0%, 1%,
and 3% (w/w). Relative to the poultry manure treatment, acidification drastically reduced the pH of
BC350 and BC550 by 3.13 and 4.28 units, respectively, and increased the micronutrient availability
of the studied soil. Furthermore, the biochars (both non-acidified and acidified) reduced the CO2

emission compared to that of the poultry manure treatment. After 1% treatment with BC550 and
ABC550, the CO2 emissions from the soil were 89.6% and 91.4% lower, respectively, than in the 1%
poultry manure treatment. In summary, acidified biochar improved the micronutrient availability
in alkaline soil, and when produced at higher temperature, can mitigate the CO2 emissions of soil
carbon sequestration.

Keywords: biochar; alkaline sandy soil; acidified biochar; CO2–C efflux; micronutrients

1. Introduction

Biochar is a carbonaceous substance resulting from biomass pyrolysis under low- or
no-oxygen conditions. In recent times, biochar has been widely used as a soil additive, and
its applicability to C sequestration by mitigating CO2–C emissions has also been seriously
considered [1]. Biochar derived from biomass can potentially sequester carbon without
contributing to climate change. As a soil additive, it might improve the soil quality for
the enhanced growth and development of crops [2]. Studies have shown that biochar
can improve the chemical, physical and biological properties of soil [3]. Besides carbon
sequestration [4], biochar-incorporated soil improves soil fertility [4,5] by improving the
crop water and efficiency of plant nutrient uptake [6], and by retaining the nutrients
required by plants [7]. The crop yield is then increased [8]. An estimated 1.8–9.5 Pg of
annually released carbon dioxide is reportedly sequestered by biochar [9]. Nevertheless,
biochar stability in the soil is necessary for long-term carbon sequestering [10]. Depending
on its interaction with the microorganisms and organic matter in the soil, biochar can either
sink or source carbon [11].

Greenhouse gases, such as CO2 release to the atmosphere have a profound effect on
global warming. A possible way of mitigating greenhouse gas emission especially CO2
is the use of biochar which has the ability to capture C [12]. According to Weng et al.
(2017), the rhizodeposits which is absorbed by biochar and enzymes in the soil hinder the
activities of soil microorganism responsible for the degradation of C, hence mitigate CO2
emission [13]. Abagandura et al. (2019) reported a reduction in CO2 emission following
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the addition of biochar and manure at the rate of 10 Mg ha−1 [14]. However, according
to their study, soil texture played a role in the extent of CO2 mitigation following biochar
application as CO2 was mitigated in sandy loam soil while CO2 was not mitigated in clay
loam soil. Also, Yang et al. (2020) investigated the influence of biochar on CO2 emission in
a two-year field experiment, biochar was found to reduce CO2 emission by 18–25% and
19–41% in the first and second growing seasons, respectively [15]. Furthermore, cumulative
CO2 emissions were reduced by 20% and 24% following the addition of banana peel biochar
at 1% and 2%, respectively to the soil [16].

In alkaline soils, fixation of micronutrients (with the exception of molybdenum) lowers
the availability of micronutrients for plants. Introducing biochar as a soil additive can
improve the micronutrient availability, but biochar studies on micronutrient availability
have obtained conflicting results. In one study, biochar derived from poultry manure (PM)
increased the availability of Cu, Zn, and Mn, but reduced the amount of plant-available
Fe [17]. Contrarily, after incorporating Conocarpus wood-waste biochar in calcareous soil
and incubating the sample for 90 days, El-Naggar et al. (2015) reported a decrease in all
plant-available micronutrients (Fe, Zn, and Mn) except Cu.

Most biochars, especially those produced at higher temperatures, are alkaline. The
biochar pH increases with increasing temperature of pyrolysis [18–20]. As a soil additive,
biochar increases the pH of acidic soils [21–23] and some alkaline soils [24]. Owing to
its inherently alkaline nature, biochar does not always alter the pH of alkaline soil [7,25].
Acidification can bring the pH of biochar into the acidic region, thereby reducing the pH of
alkaline soil when incorporated as a soil additive. If acidified biochar can reduce the pH of
alkaline soil to near-neutral, it could overcome the micronutrient fixation that challenges
plant growth in alkaline or calcareous soils. Hence, the current research investigates the
effects of acidified biochar from PM on (i) CO2–C efflux, (ii) changes in some chemical
properties of alkaline soil, and (iii) availability of micronutrients (Cu, Fe, Mn, and Zn) in
alkaline soil.

2. Materials and Methods
2.1. Feedstocks, Production of Biochar, and Acidification

The biochar was produced by pyrolyzing PM feedstock at 350 ◦C or 550 ◦C. The
produced biochar was ground, sieved through a 53-µm mesh, and stored in an airtight
container. The biochars produced at 350 ◦C and 550 ◦C were labeled as BC350 and BC550,
respectively (where “BC” denotes biochar, and the number is the pyrolysis temperature).
The biochar was then acidified by shaking in 0.5 N HCl for 45 min. Here the biochar: liquid
ratio was 1:10. The suspension was stood for 24 h, then filtered through Whatman 42 filter
paper. The biochar collected on the filter paper was oven-dried at 65 ◦C for 48 h and then
stored in an airtight container. The acidified biochars produced at 350 ◦C and 550 ◦C were
tagged as ABC350 and ABC550, respectively.

2.2. Soil, Poultry Manure, and Biochar Characterization

The experimental soil was gathered from the agricultural farm at King Saud University
located in the kingdom of Saudi Arabia. In preparation for analyzing their physical and
chemical properties, the collected samples were dried in air, crushed, and filtered through
a 2-mm sieve. The physicochemical properties of the soil were characterized by standard
methods [26], and the texture was characterized using the hydrometer technique [27]. The
textural group of the soil was determined from the soil textural triangle described by the
United States Department of Agriculture [28]. The soil pH and electrical conductivity (EC)
were measured with a pH and EC meter, respectively, in a soil:water mixture of 1.0:2.5.
The soil organic matter (SOM) was analyzed [29], and the calcium carbonate (CaCO3) in
the experimental soil was measured with a calcimeter. The concentrations of the available
forms of micronutrients (Fe, Mn, Zn, Cu), were determined in an inductively coupled
plasma (ICP) (Perkin Elmer Optima 4300 DV ICP-OES, USA) with ammonium bicarbonate
diethylenetriaminepentaacetic acid (AB-DTPA) as the extracting solution [30]. Flame
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photometer was used to measure K while P was determined using the color method in
a spectrophotometer after being extracted by AB-DTPA solution [31]. To determine the
total contents of micronutrients in the soil sample, the sample was digested following the
Hossner method [32] and the solution was read with ICP. The saturation percentage of the
experimental soil was determined by measuring a known weight of soil, saturating the
sample with water, and re-weighing after saturation. The soil was placed in the oven and
dried at 105 ◦C until its weight remained constant. The percentage saturation was then
calculated by Equation (1):

SP =
loss in weight

oven − dried soil weight
× 100% (1)

Proximate Analysis of Biochar

The biochars were subjected to a proximate analysis of their yields, moisture contents,
volatile matters, and ash contents. The proximate analysis method followed the ASTM
E872-82 standard [33]. To obtain the biochar yield, the biochar weight was divided by the
biomass weight. The moisture content was measured by heating the biochar at 105 ◦C for
24 h. The volatile matter was measured by heating the materials (in covered crucibles) at
450 ◦C for 30 min, and the ash content was measured by heating the produced biochars
(in open crucibles) at 750 ◦C for 30 min. The difference between 100% and the summed
percentages of moisture content, ash content, and volatile matters computed the resident
matter (representing the fixed carbon). All the measured soil and biochar properties were
computed in Table 1.

Table 1. Properties of Soil and Biochars.

Sand Silt Clay Textural
Class

pH
(1:2.5)

EC
(dS m−1) SOM CaCO3 Cu Fe Mn Zn

% % AB-DTPA (mg kg−1)

Soil 95.62 1.25 3.13 Sandy
soil 8.20 0.15 0.39 18.00 0.00 0.56 0.00 0.00

pH
(1:10)

EC
(ds m−1)

Yield Moisture Volatile
matter Ash Fixed

carbon Total P
Total
Cu Total Fe Total

Mn
Total
Zn

% %

PM 7.54 8.20 - 8.94 47.05 22.71 21.30 2746.38 14.80 1439.00 249.80 272.03
BC350 8.83 2.77 53.27 0.98 16.19 42.28 40.55 2765.45 3.20 1587.00 404.55 404.08
BC550 10.97 1.11 38.96 0.44 3.12 37.88 58.55 3660.35 1.45 1972.25 611.00 569.75

ABC350 5.70 6.50 - 1.12 27.19 50.08 21.61 2666.90 8.00 2364.00 356.20 602.00
ABC550 6.69 0.75 - 1.17 4.22 49.09 45.52 3588.82 3.23 2874.50 761.50 911.25

2.3. Incubation Experiment

The influences of acidified biochar on the CO2–C efflux and micronutrient availability
were investigated in a 30-day incubation study. One hundred grams of the prepared
alkaline sandy soil were placed in 250-mL glass vessels. For simplicity, the treatments
with 0%, 1%, and 3% (w/w) of PM, BC350, BC550, ABC350, and ABC550 were denoted
by the treatment type followed by the added amount in parentheses: PM(1%), PM(3%),
BC350(1%), BC350(3%), BC550(1%), BC550(3%), ABC350(1%), ABC350(3%), ABC550(1%),
ABC550(3%). All treatments were homogeneously applied to the glass vessels containing
the experimental soil. The untreated soil (0% w/w treatment) was the control (CK) sample.
All treatments were replicated 18 times where each sampling period had 3 replicates of
each treatment. Deionized water was added to the treated and untreated soils to a field
capacity of 80%. Each treatment was incubated at 30 ◦C. At 0, 1, 3, 7, 15, and 30 days, three
replicates of each treatment were collected from the incubator, and their plant-available
micronutrients (Mn, Fe, Cu, and Zn), EC, and pH were analyzed. The CO2–C efflux was
captured and measured at 1, 3, 7, 10, 15, 20, 25, and 30 days. To determine the CO2–C efflux,
the evolved CO2–C was collected into small vials containing 5 mL of 1.0 M NaOH solution.
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The NaOH solution in the vials was replaced at each sampling interval. The soil chemical
properties were measured as described earlier. The excess CO2 evolved and trapped was
titrated against 0.1 M HCl after adding a few drops of BaCl2 solution. The CO2–C efflux
rate (in mg C g−1 soil day−1) and the cumulative CO2–C efflux (in g kg−1 soil) were then
calculated [34,35].

2.4. Statistical Analysis

The collected data were subjected to analysis of variance using Statistica software. The
means of the treatments were separated using the least significant difference (LSD) at the
5% probability level.

3. Results and Discussion
3.1. Effect of Acidified Biochar and Incubation Periods on the pH and EC Dynamics

Table 2 lists the pH changes in the soils after applying different treatments (PM, BC,
and ABC) at different amounts at each incubation time. At the beginning of the incubation
experiment (Day 0), the pH values of the soils treated with ABC350(1%), ABC350(3%),
ABC550(1%), and ABC550(3%) were significantly lower than the control pH (p > 0.05). The
PM(1%) and PM(3%) treatments also significantly decreased the soil pH from the control
pH (p > 0.05), but the BC350(1%), BC350(3%), BC550(1%), and BC550(3%) treatments
significantly increased the soil pH (p > 0.05). The ABC350(3%) treatment yielded the
greatest pH decrease (6.38 versus 8.21 in the control). The pH reduction in the ABC-treated
soil can be explained by the reduced pH of ABC following acidification. When BC350 and
BC550 were acidified to ABC350 and ABC550, respectively, the pH reductions were 8.83 to
5.70 and 10.97 to 6.69, respectively (Table 1).

Table 2. Effect of the treatments (PM, biochar, and acidified biochar) on soil pH.

Order Treatment Application
Rate (%)

Period of Incubation (d)
LSD

0 1 3 7 15 30

1 CK 0.0 8.21 e 8.06 c 8.07 f 8.26 f 8.15 h 8.22 f 0.145
2 PM 1 7.62 f 7.16 e 8.34 cd 8.51 e 8.54 e 8.71 d 0.084
3 3 7.42 g 6.92 f 8.52 b 8.56 de 8.66 c 8.66 d 0.184
4 BC350 1 8.42 d 8.00 c 8.38 c 8.72 c 8.42 g 8.73 d 0.063
5 3 8.48 c 8.07 c 8.56 b 8.93 b 8.76 b 9.15 b 0.087
6 BC550 1 9.02 b 8.78 b 8.47 bc 8.76 c 8.45 fg 8.80 c 0.061
7 3 9.48 a 9.26 a 8.97 a 9.28 a 9.19 a 9.40 a 0.039
8 ABC350 1 6.99 h 6.92 f 8.20 e 8.54 de 8.47 f 8.56 e 0.103
9 3 6.38 i 6.25 g 8.23 de 8.67 cd 8.61 d 8.52 e 0.116

10 ABC550 1 7.57 f 7.41 d 8.01 fg 7.94 g 7.95 i 8.25 f 0.186
11 3 7.38 g 7.20 e 7.92 g 7.60 h 7.81 j 8.03 g 0.132

LSD 0.065 0.097 0.145 0.181 0.054 0.071
Different letters indicate significant differences among different treatments according to the least significant
difference (LSD) test at p < 0.05 where letter a is the most significant difference and j is the least significant
difference.

There are different trends in changes in soil pH as affected by treatments application.
The pH of the ABC-treated soils increased with incubation time in most cases. At the end
of the incubation period (Day 30), the pH of the soils treated with all additives except
ABC550(3%) exceeded the pH of the control soil. The pH increase is feasibly explained by
the buffering capacity of the soil. A similar result was reported by Hartley et al. (2016). They
found that biochar produced from woody materials raised the pH from that of untreated
soil [36]. Oo et al. (2018) also recorded a pH increase in biochar-amended soil after a 71-day
incubation period [37]. Likewise, the biochar produced from Conocarpus increased the soil
pH when applied at 1%, 3%, and 5% application rates. At the highest application rate (5%),
the increase was most significant (0.16–0.17 units) [38].

Table 3 reports the EC dynamics in the treated and untreated soils at each incubation
time. Relative to the untreated soil, the treatments significantly increased the soil EC
throughout the incubation period. The exceptions were ABC550(1%) at all incubation
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times, and ABC550(3%) on Days 1 and 30. At the end of the incubation period, the soil
treated with 3% PM exhibited the maximum EC increase (823% higher than that of the
control soil). A similar soil EC after biochar addition was reported by Al-Wabel et al. (2015).
This outcome might result from the accretion of soluble salts present in ashes [7].

Table 3. Effect of the treatments on EC (dS m−1) dynamics in soil at different incubation times.

Order Treatment Application
Rate (%)

Period of Incubation (d)
LSD

0 1 3 7 15 30

1 CK 0 0.15 g 0.18 fg 0.14 h 0.12 h 0.14 h 0.13 f 0.022
2 PM 1 0.45 d 0.40 c 0.41 f 0.50 e 0.46 de 0.43 d 0.073
3 3 0.77 b 0.80 b 1.00 b 1.15 b 1.18 a 1.20 a 0.249
4 BC350 1 0.34 e 0.41 c 0.59 d 0.53 de 0.52 c 0.44 d 0.039
5 3 0.85 a 0.88 a 1.38 a 1.25 a 1.16 a 1.04 b 0.078
6 BC550 1 0.28 e 0.32 d 0.37 f 0.36 f 0.45 e 0.39 d 0.039
7 3 0.64 c 0.77 b 0.93 c 0.86 c 0.98 b 0.91 c 0.045
8 ABC350 1 0.25 f 0.23 e 0.28 g 0.27 g 0.28 f 0.25 e 0.014
9 3 0.33 e 0.29 d 0.51 e 0.59 d 0.50 cde 0.47 d 0.039

10 ABC550 1 0.20 fg 0.16 g 0.18 h 0.15 h 0.17 gh 0.14 f 0.021
11 3 0.24 f 0.21 ef 0.24 g 0.23 g 0.20 g 0.22 ef 0.039

LSD 0.070 0.056 0.061 0.080 0.061 0.136
Different letters indicate significant differences among different treatments according to the least significant
difference (LSD) test at p < 0.05 where letter a is the most significant difference and j is the least significant
difference.

3.2. CO2–C Emissions

The CO2–C efflux rates and cumulative CO2–C amounts in the treated soils throughout
the incubation period are shown in Figures 1 and 2, respectively.

Figure 1. CO2–C efflux rates (mg C/g soil/day) from soils treated with poultry manure (CK), biochar (prefixed with BC)
and acidified biochar (prefixed with ABC) throughout the incubation period.
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Figure 2. Effect of the treatments on cumulative CO2–C (g/Kg) efflux from soil.

On the first day, the soil treated with PM(3%) and PM(1%) exhibited the highest and
second-highest CO2–C efflux rates, respectively, and this trend was maintained throughout
the incubation period. Similar results were reported by El-Naggar et al. (2015), who found
that PM with Conocarpus waste additive emitted the highest CO2–C amounts among
the treatments applied to a calcareous soil. In the present study, the increased CO2–C
emissions from PM-treated soil added at 1% and 3% can be explained by the presence of
easily decomposed organic matter, which is readily attacked by soil microorganisms [34,39].
The CO2–C efflux rate reduced as the incubation proceeded. On Day 1, the maximum
CO2–C efflux rate was recorded in the PM(3%) treated sample with a value of 0.1380 while
BC550(1%) and BC550(3%) had the least CO2–C efflux rate with value of 0.0007 mg C/g
soil/day. Also, on Day 30 of the incubation period, PM(3%) and ABC550(1%) treated soil
had the maximum and minimum CO2–C efflux rate with values of 0.0145 and 0.0005 mg
C/g soil/day respectively. According to previous studies, the soil respiration rate is
enhanced by biochar application at the beginning of the incubation but tends to decrease
over the experimental period [40–42]. The high rate of CO2–C emission at the beginning
of our experiment can be explained by the high readily labile fraction of organic carbon,
which is readily attacked by soil microorganisms. This fraction apparently decreases at
later incubation times [39,43]. The consumption of labile carbon and other nutrients by
microorganisms also explains the decreased CO2 emissions over the incubation period [44].

Furthermore, the cumulative CO2-C effluxes of the treated and the untreated soils are
in the order PM(3%) > PM(1%) > ABC350(3%) > BC350(3%) > BC350(1%) > ABC350(1%) >
ABC550(3%) > BC550(3%) > CK > BC550(1%) > ABC550(1%) (Figure 2). Similar to the rate
of CO2-C efflux, soil treated with PM(3%) also exhibited the cumulative CO2–C efflux was
maximized in the soil treated with PM(3%). In the sample, the cumulative CO2–C efflux
was 10.3-fold above the control value, probably because the content of easily degraded
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carbon compounds was much higher in the PM [29] than in the untreated and biochar-
treated soils. The CO2-emission effects of the treatments can also be explained by the
treatment characteristics. Regardless of acidification, the biochars produced at 350 ◦C
contained more volatile matter than those produced at 550 ◦C (Table 1); consequently, soils
treated with these biochars emitted more CO2 than soils treated with biochars produced at
550 ◦C. Similarly, Yuan et al. (2014) reported that soil treated with biochars produced from
Radix isatidis residue released more CO2 after pyrolyzing R. isatidis at 300 ◦C than after
pyrolyzing at 500 ◦C and 700 ◦C. Deng et al. (2019) also observed that in biochar-treated
soils, the CO2 emission rate decreased with increasing pyrolysis temperature (300 ◦C,
450 ◦C, 600 ◦C) of biochars produced from spent mushroom substrate [45]. In the present
study, it was deduced that increasing the pyrolysis temperature increased the carbon-
sequestering affinity of biochar.

In general, the C substrate contents available to soil microorganisms are increased by
adding biochar. Therefore, the biochar additive should aid the organic carbon mineraliza-
tion [46,47] or stimulate biochar-C oxidization [48,49], thus increasing the subsequent CO2
release. In soils amended with biochar, if the CO2–C accumulates slowly and its release
rate is low, the biochar is not readily biodegradable and remains in the soil for a longer
time than the feedstock, which contains readily available organics [50–52]. Experiments
have indicated that biochar mineralizes very slowly, with low CO2–C emissions [53,54].
From the results of the present study, it was deduced that biochar can potentially sequester
soil carbon with high efficacy.

3.3. Influence of Acidified Biochar and Incubation Periods on the Availability and Dynamics of
Micronutrients (Cu, Fe, Mn, and Zn)

The availabilities and dynamics of the micronutrients (Cu, Fe, Mn, and Zn) in the soils
treated with biochars and PM are shown in Tables 4–7. At the beginning of the incubation
period, the available micronutrient contents (except Cu) were higher in all treated soils than
in the control. On Day 0 of the incubation, the Cu availability was raised above the control
value (p > 0.05) only in the soil treated with BC350(3%). At the end of the incubation period
(Day 30), the Cu availability was raised above the control value in most of the treated soils,
the exceptions being BC550(1%), BC550(3%), ABC350(1%), and ABC550(1%) (Table 4).

Table 4. Impact of the treatments on Cu (mg kg−1) dynamics in soil at different incubation times.

Order Treatment
Application

Rate (%)

Period of Incubation (d)
LSD

0 1 3 7 >15 30

1 CK 0 0.000 b 0.000 b 0.000 b 0.177 b 0.000 e 0.000 e 0.045
2 PM 1 0.000 b 0.000 b 0.000 b 0.175 b 0.230 a 0.170 b 0.035
3 3 0.082 ab 0.000 b 0.296 a 0.537 a 0.000 e 0.472 a 0.273
4 BC350 1 0.010b 0.027 b 0.022 b 0.011 d 0.068 c 0.133 bc 0.033
5 3 0.203 a 0.110 a 0.036 b 0.079 cd 0.168 b 0.119 bcd 0.241
6 BC550 1 0.107 ab 0.113 a 0.002 b 0.134 bc 0.164 b 0.053 de 0.125
7 3 0.124 ab 0.070 ab 0.035 b 0.129 b 0.215 a 0.065 cde 0.056
8 ABC350 1 0.000 b 0.000 b 0.000 b 0.151 b 0.000 e 0.000 e 0.058
9 3 0.000 b 0.000 b 0.000 b 0.195 b 0.000 e 0.087 cd 0.029

10 ABC550 1 0.000 b 0.000 b 0.000 b 0.132 b 0.009 e 0.021 e 0.028
11 3 0.000 b 0.000 b 0.000 b 0.139 b 0.033 d 0.163 b 0.036

LSD 0.188 0.085 0.117 0.116 0.020 0.093

Different letters indicate significant differences among different treatments according to the least significant difference (LSD) test at p < 0.05
where letter a is the most significant difference and j is the least significant difference.
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Table 5. Effect of the treatments on Fe (mg kg−1) dynamics in soil at different incubation times.

Order Treatment
Application

Rate (%)

Period of Incubation (d)
LSD

0 1 >3 7 15 30

1 CK 0 0.587 h 0.463 f 0.152 e 0.989 0.977 g 1.998 f 0.295
2 PM 1 1.883 f 1.784 de 1.677 c 2.421 f 3.281 cd 8.491 abc 4.733
3 3 2.763 d 2.042 d 1.548 cd 3.168 e 2.123 f 9.547 ab 16.157
4 BC350 1 0.857 gh 0.710 f 0.969 cd 3.754 d 2.786 e 6.325 cde 0.192
5 3 0.945 g 0.830 f 1.051 cd 4.597 c 3.925 b 7.651 bcd 0.249
6 BC550 1 0.629 h 0.697 f 0.830 de 3.367 e 2.736 e 6.323 c 0.136
7 3 1.151 g 1.198 ef 1.235 cd 4.928 b 4.170 b 8.639 abc 0.522
8 ABC350 1 2.432 e 2.319 cd 1.309 cd 2.355 f 3.178 d 4.135 ef 0.361
9 3 4.175 b 4.128 b 2.479 b 3.329 e 3.562 c 6.017 cde 0.361

10 ABC550 1 3.788 c 2.747 c 2.463 b 3.577 de 8.565 a 4.590 def 0.564
11 3 9.036 a 7.597 a 6.335 a 7.852 a 2.232 f 11.249 a 1.516

LSD 0.383 0.734 0.934 0.304 0.438 3.773

Different letters indicate significant differences among different treatments according to the least significant difference (LSD) test at p < 0.05
where letter a is the most significant difference and j is the least significant difference.

Table 6. Effect of the treatments on Mn (mg kg−1) dynamics in soil at different incubation times.

Order Treatment
Application

Rate (%)

Period of Incubation (d)
LSD

0 1 3 7 15 30

1 CK 0 0.000 g 0.000 g 0.000 e 0.000 i 0.374 i 1.109 g 0.260
2 PM 1 5.260 ab 4.902 b 3.876 ab 3.137 e 4.107 d 7.777 cd 1.458
3 3 5.543 a 5.578 a 2.657 c 3.470 de 4.401 d 7.711 cd 0.955
4 BC350 1 2.521 d 2.222 d 2.501 c 8.525 b 6.995 b 8.519 bc 0.435
5 3 2.855 d 2.619 c 2.645 c 9.353 a 9.409 a 13.099 a 0.626
6 BC550 1 0.574 f 0.663 ef 0.744 d 2.286 f 2.703 f 1.641 g 0.143
7 3 0.944 e 0.935 e 0.964 d 3.715d 3.622 e 3.674 e 0.365
8 ABC350 1 4.703 c 4.634 b 3.546 b 4.235c 1.414 g 7.024 d 0.496
9 3 5.061 b 5.569 a 4.159 a 4.520c 2.852 f 9.345 b 0.437

10 ABC550 1 0.000 g 0.000 g 0.466 de 0.719h 4.831 c 1.653 g 0.327
11 3 0.421 f 0.397 f 0.759 d 1.381g 0.891 h 2.629 f 0.229

LSD 0.428 0.363 0.617 0.429 0.365 1.071

Different letters indicate significant differences among different treatments according to the least significant difference (LSD) test at p < 0.05
where letter a is the most significant difference and j is the least significant difference.

Table 7. Effect of the treatments on Zn (mg kg−1) dynamics in soil at different incubation times.

Order Treatment
Application

Rate (%)

Period of Incubation (d)
LSD

0 1 3 7 15 30

1 CK 0 0.000 f 0.000 e 0.000 g 0.032 i 0.000 h 0.000 j 0.033
2 PM 1 0.639 de 0.218 de 0.241 ef 0.753 g 1.954 c 1.183 g 0.534
3 3 3.178 a 1.754 b 1.186 b 2.357 c 0.765 f 3.384 c 0.735
4 BC350 1 0.319 ef 0.259 de 0.438 de 1.607 e 1.000 e 0.683 h 0.184
5 3 0.872 d 0.789 c 1.036 b 4.171 a 3.188 a 3.599 b 0.081
6 BC550 1 0.105 f 0.128 e 0.172 fg 0.433 h 0.597 fg 0.232 i 0.160
7 3 0.293 f 0.520 cd 0.534 cd 1.859 d 1.665 d 1.897 e 0.316
8 ABC350 1 0.279 f 0.520 cd 0.110 f 1.088 f 2.258 b 1.567 f 0.334
9 3 2.426 b 2.485 a 1.804 a 2.685 b 0.465 g 4.961 a 0.388

10 ABC550 1 0.074 f 0.000 e 0.000 g 0.677 g 1.456 d 0.612 h 0.140
11 3 1.339 c 0.713 c 0.718 c 1.547 e 0.541 g 2.691 d 0.269

LSD 0.411 0.474 0.289 0.218 0.268 0.241

Different letters indicate significant differences among different treatments according to the least significant difference (LSD) test at p < 0.05
where letter a is the most significant difference and j is the least significant difference.
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At this time, the Cu availability was maximized in the soil treated with PM(3%)
(0.472 mg kg−1, versus 0.00 mg kg−1 in the control). The high Cu availability in the
soil treated with PM(3%) probably results from the high Cu content in poultry manure
(Table 1), which might have mineralized during the incubation period. Furthermore, from
Day 0 to Day 30, the available Fe in the CK, PM(1%), PM(3%), BC350(1%), BC350(3%),
BC550(1%), BC550(3%), ABC350(1%), ABC350(3%), ABC550(1%), and ABC550(3%) treated
soils increased from 0.587, 1.883, 2.763, 0.857, 0.945, 0.629, 1.151, 2.432, 4.175, 3.788, and
9.036 mg kg−1 to 1.998, 8.491 18.595, 6.325, 7.651, 6.323, 8.639, 4.135, 6.017, 4.590, and
11.249 mg kg−1, respectively where BC550(3%) and ABC550(1%) recorded the maximum
and minimum increase of 7.488 and 0.802 mg kg−1 (Table 5).

Like the available Cu, the available Fe content was highest in the soil treated with
PM(3%). The soil treated with ABC550(3%) also showed a high Fe availability at the
end of the incubation period. This result might be explained by the lower pH of the soil
treated with ABC550(3%) than of the untreated soil. It was suggested that biochar mediates
the transfer of electrons by acting as an electron shuttle, promoting Fe oxidization on its
surfaces [55]. The ferrous ions in solution can be electrostatically attracted to the reactive
phenolic and carboxylic functional groups on the char’s surface [56].

The trends of the available Mn dynamics differed among the treatments, but the Mn
availability in all treatments was higher at the end than at the beginning of the incubation.
On Day 30, the available Mn was significantly increased from that of the control value
(p > 0.05) in all treatments except BC550(1%) and ABC550(1%) (Table 6).

An increase in available Mn after biochar application was also reported in a previous
experiment [57]. The available Zn trended similarly to the available Mn. At the end of the
incubation period, the available Zn was significantly higher in all treated soils than in the
untreated soil (p > 0.05), and was maximized in the soil treated with ABC350(3%) (Table 7).

The incremental bioavailabilities of Zn, Cu, and Mn were expected because manure is a
known source of nutrients [58]. The increased bioavailability of nutrients following biochar
addition has been reported previously [59], and Cu and Zn availability has been improved
by PM in previous experiments [60,61]. In fact, nutrient concentration enhancement after
incorporating manure and biochar has been widely reported [5,62,63]. Like other organic
additives, biochar additive can enhance the functions of soil and conserves nutrients. In
this way, biochar behaves as an efficient fertilizer that improves the physicochemical soil
properties and concentrates the soluble and/or absorbed nutrients through its charges and
surface-area properties [17,64,65].

4. Conclusions

Acidification dramatically reduced the pH of biochar (by 3.13–4.28 units). The pH of
acidified biochar was considerably lower than the control pH, but both the acidified and
non-acidified biochars reduced the CO2–C efflux from that of the organic additive (PM).
In all treatments, the rate of CO2–C flux decreased over time. The experimental results
confirmed the potential carbon-sequestering ability of biochar derived from PM. At the end
of the incubation period, the availabilities of all micronutrients (Cu, Fe, Mn, and Zn) were
higher in the treated samples than in the untreated soil. Therefore, PM and biochar can
enhance the availability of micronutrients to plants. Biochar is an environmentally friendly
alternative to organic additives (such as PM), as it mitigates global warming effects while
improving the soil nutrients in alkaline sandy soils. Therefore, its use is recommended to
farmers.
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