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Abstract: In the short-term operation of the power generation of cascade reservoirs, uncertainty
factors such as inflow forecast errors could cause various types of risks. The inflow to a downstream
reservoir is not only affected by inflow forecast errors from upstream reservoirs but also the forecast
errors associated with inflow to the stream segment between the reservoirs, such as from a tributary.
The inflow forecast errors of different forecast periods may also be correlated. To address this
multivariate problem, the inflow forecast error variables were jointly fitted in this study using
the Gaussian mixture model (GMM) and a t-Copula function based on the analysis of the error
distribution characteristics in different forecast periods. Therefore, a stochastic model that coupled
with the GMM and t-Copula to calculate inflow forecast errors in multiple forecast periods was
established. Furthermore, according to the simulation results of the stochastic model and the
predicted runoff series, a set of simulated runoff processes were obtained. Then they were combined
with the existing power generation plan to carry out the risk analysis for short-term operation of the
power generation in a cascade reservoir. The approach was evaluated using the Jinguan cascade
hydropower system within the Yalong River basin as a case study. For this case study, the risk analysis
for short-term operation of the power generation was analyzed based on stochastic simulation of the
inflow forecast errors; the results show the feasibility and effectiveness of the proposed methods.

Keywords: cascade reservoirs; short-term operation of the power generation; risk analysis; multi-
variate analysis; inflow forecast errors

1. Introduction

The accuracy of inflow forecasts is crucial to the formulation of plans for short-term
operation of the power generation from cascade reservoirs [1,2]. Although hydrologic
forecast techniques have marked improvement in theory and practice in recent years [3–5],
forecast errors remain inevitable. Forecast inflow is often directly used to formulate
operation schemes for short-term operation of the power generation in cascade reservoirs.
Forecasted inflow does not currently consider the influence of various uncertainty factors
which may cause risks of insufficient output, wasted water and beyond-or-below-reservoir
limit water levels, because of deviations between the actual and predicted inflow. As a
result, the optimal operation schemes cannot be currently applied directly to actual power
generation processes [6]. Thus, the risk analysis for short-term operation of the power
generation in complex reservoirs is needed to reduce power and economic losses.
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The risk factors affecting reservoir operation include hydrologic, hydraulic and engi-
neering factors [7–10]. In recent years, scholars have conducted research on the reservoir
operation risk of these factors. Hydrologic factors mainly concern the uncertainty of hydro-
logic phenomena and hydrologic models [11–13]. Historically, the consideration of inflow
forecast errors mostly focused on stochastic simulations [14,15] and random quantifica-
tion [16–22]; some scholars used fuzzy theory to deal with inflow forecast errors [23]. For
example, to analyze the influence of forecast errors for different forecast periods on runoff
process forecast errors, Ji et al. [24] established a stochastic simulation model of inflow
forecast errors for multiple forecast periods for a single reservoir by using a meta-student
t-Copula function. An improved Gaussian mixture distribution and Markov chain Monte
Carlo algorithm were constructed to model the measured forecast errors and generate
ensemble inflow forecasts [25]. Most of these studies focus on a single forecast period; they
have not considered the correlation between different forecast periods, which reduces the
simulation accuracy of inflow forecast errors by calculating multiple errors.

However, for cascade reservoirs, which are usually placed in basins with many tribu-
taries, the factors that influence downstream reservoir inflow include not only the forecast
errors of the main stream, but also the forecast errors of inflow from tributaries between the
reservoirs. Thus, a comprehensive analysis of the correlation between each forecast period
and runoff process is needed in order to effectively handle the risk of power generation
operation and enhance the benefits of cascade reservoirs.

Previous studies mostly considered the inflow forecast errors of a single reservoir
and rarely considered the correlation of forecast errors between different sources of runoff
processes [23–25]. Few studies have examined the risk of power generation operation of
cascade reservoirs caused by forecast errors of different runoff processes [23–26]. Therefore,
this paper proposes a novel approach to consider the correlation between all forecast
errors in the forecast period. First, the forecast error variable which was described by
the Gaussian mixture model (GMM) function of each runoff process during each forecast
period was obtained using a statistical method based on historical (observed) and forecast
runoff data. Then, by analyzing the correlation among the forecast error variables, the joint
function of multivariate inflow forecast errors was developed using the t-Copula method.
Finally, runoff was simulated by the Monte Carlo method to analyze the risk for short-term
operation of the power generation in cascade reservoirs.

2. Materials and Methods

In the operation of cascade reservoirs, various tributaries may flow into the basin,
and forecast errors could occur and vary in the runoff forecasting of each tributary in
different forecast periods. Some of these forecast errors may have correlations with each
other while others may not have any correlations. The consideration of their correlation
has a significant impact on the accuracy of inflow forecast errors modeling. The analysis of
forecast errors proposed here is described below.

2.1. Multivariate Inflow Forecast Errors

As shown in Figure 1, for large cascade reservoirs, we assume that the main stream is
A, with n tributaries (B1, B2, . . . , Bn) and k reservoirs. There are T forecast periods and M
sets of forecast inflow.
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The inflow forecast errors are in the form of a relative value, as shown by:

X j =
Qj

f orecast–Qj
actual

Qj
actual

× 100% (1)

where X j, Qj
f orecast and Qj

actual represent the relative inflow forecast errors, the forecast
inflow value and the actual inflow value during the forecast period j (j = 1, 2, . . . ,
J), respectively.

The simulated inflow is shown as:

Qj
simulated =

Qj
f orecast

1 + X j
simulated

(2)

where Qj
simulated is the simulated inflow, and X j

simulated is the simulated inflow forecast error.
Then based on simulated inflow forecast errors, simulated inflow can be obtained by

Equation (2).
If the forecast error vector of the main stream A under one set of runoff data is

expressed as (X1, X2, . . . , XJ), then the following forecast error matrix can be established
under M sets of historical runoff data, such that:

X =


x1

1 x2
1 · · · x J

1
x1

2 x2
2 · · · x J

2
...

...
...

...
x1

M x2
M · · · x J

M

 (3)

The forecast error vector of tributary Bn under one set of runoff data is expressed as (Y1, Y2,
. . . , YJ), and its error matrix can be expressed as

[
yj

n,i

]
M×J

where n, n ∈ (1, 2, · · · , N) is the

tributary from which runoff is derived.
Figure 1 shows that there are many factors affecting the runoff supplied to downstream

reservoirs, which could come from the main stream and tributaries. Thus, the inflow
forecast errors are multivariate. Taking the second reservoir as an example, the inflow
forecast error matrix of the main stream A and tributary B1 are

[
xj

i

]
M×J

and
[
yj

1,i

]
M×J

,

respectively. The inflow forecast errors of the second reservoir are then a combination of
the error matrices of A and B1, which have M ×M combinations in total. Correspondingly,
the forecast errors of reservoir k should be the combination of the error matrices of A, B1,
B2, . . . , Bn, with M(n+1) combinations in total.
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2.2. Stochastic Simulation of Multivariate Inflow Forecast Errors

GMM is suitable for describing the inflow forecast errors with different distribution
characteristics with its flexibility; thus it was used in this study. The distribution function of
the inflow forecast error variable during one forecast period is one-dimensional. Assuming
that the forecast error variable of inflow A is Xj, its probability density function can be
obtained by using the GMM, such that:

f (xj; θ) =
K

∑
k=1

αk N(xj|uk, σ2
k ) (4)

where K is the number of mixed Gaussian models; θ is the parameter to be estimated in the
model; αk, uk and σ2

k are respectively the weight, the mean value and the variance of the

Gaussian distribution k,
K
∑

k=1
αk = 1; N(xj

∣∣uk, σ2
k ) is the expression of Gaussian distribution.

Similarly, the set of probability density functions of tributary Bn is:

f (yn) =
{

f
(

yj
n

)
|j = 1, 2, . . . , J

}
(5)

Kendall’s rank correlation coefficient method is applicable to the calculation of the
correlation coefficient between two or more rank variables. Therefore, the correlation
coefficient τ between each forecast error variable can be calculated by the Kendall rank
correlation coefficient method, as shown in Equations (6) and (7):

τ =
2

n(n–1) ∑
1≤i≤j≤n

sign[(xi–xj)(yi–yj)] (6)

sign(x) =


1 x > 0
0 x = 0
−1 x < 0

(7)

A Copula function can describe the correlation between random variables [27,28]. The
high-dimensional meta-student t Copula (t-Copula) and high-dimensional meta-Gaussian
copula in the family of meta-elliptic Copula Functions are commonly used in hydrology.
Compared with the high-dimensional Gaussian copula, high-dimensional t-Copula can
describe tail correlation among variables. Because it is difficult to quantify the interference
factors in the prediction process, the forecast error may deviate from the mean value at
a certain time point. High-dimensional t-Copula can describe the characteristics that the
forecast errors deviate greatly from the mean value at a certain time point. Therefore, based
on the analysis of correlation coefficients among forecast error variables in the different
forecast periods, with f

(
xj) and f

(
yj

n

)
, a stochastic joint distribution model of X and Y

can be established by using t-Copula. If the marginal distribution function of the forecast
error variable of tributary n during the forecast period t is defined as un

t , then the joint
distribution function of all runoff process forecast errors can be developed according to
Equation (8):

C
{(

u1
1
, u1

2
, . . . , u1

J

)
,
(

u2
1
, u2

2
, . . . , u2

J

)
, . . .

(
u(N+1)

1 , u(N+1)
2 , . . . , u(N+1)

J

)}
= tΣ,v

[
t−1
v (u1

1
), . . . , t−1

v (u(N+1)
J )

] (8)

where C{·} is copula function, tΣ,v(·) is the t-distribution function with ν degrees of freedom,
whose covariance matrix is ∑ and t−1

ν (·) is the inverse t-distribution function with ν degrees
of freedom, and N is the total number of tributaries.
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For the goodness of fit test, this study utilized the squared Euclidean distance (D2).
The D2 value is calculated as follows:

D2 =
n

∑
i=1

∣∣∣∣_Cn(xi, yi)−
_
C(xi, yi)

∣∣∣∣2 (9)

where
_
Cn(xi, yi) is the empirical copula function.

The steps involved in the simulation of the inflow series based on GMM-Copula are
as follows:

Step 1: Establish the forecast error matrix using the measured and forecast runoff data.
Step 2: Use the appropriate probability density function to fit the forecast error variable.

In this study, the GMM was adopted to fit the inflow forecast error function for each forecast
period, the initial value of the GMM was determined by K-mean clustering analysis [29],
and its applicability was tested with the K-S test.

Step 3: Analyze the correlation between the forecast error variables using the Kendall
rank correlation coefficient method.

Step 4: Use a t-Copula function to fit the marginal distribution function of each forecast
error variable and obtain the joint distribution function.

Step 5: Based on the developed joint distribution function, use the Monte Carlo
method to simulate the forecast errors and obtain M sets of inflow forecast errors.

Step 6: Calculate the simulated inflow according to Equation (2).

3. Risk Analysis for Short-Term Operation of the Power Generation in
Cascade Reservoirs
3.1. Short-Term Operation of the Power Generation Model of Cascade Reservoirs
3.1.1. Maximum Power Generation Capacity Model of Cascade Reservoirs

For the formulation of a power generation plan, the inflow is the forecast runoff
process, and the maximum cascade power generation capacity is taken as the objective to
establish the optimal scheduling model:

E = max
T

∑
t=1

Nt∆t = max
T

∑
t=1

n

∑
i=1

KQt
i Ht

i ∆t (10)

where E is the total power generation capacity of the system; n and T are the total number
of hydropower stations and total periods considered, respectively; Nt is the total output of
the system in the T period; ∆t is the length of the period; K is the output coefficient; Qt

i is
the generation reference flow of i power station in the t period; and Ht

i is the generating
head of i power station in the t period.

3.1.2. Minimum Energy Consumption Model of Cascade Reservoirs

The principle of minimum energy consumption of the cascade hydropower stations is
used for load distribution among hydropower stations to implement the power generation
plan, and the objective function is as follows:

F = min
n

∑
i=1

T

∑
t=1

Ht
i Qt

i (11)

where F is the total energy consumption of the system; n and T are the total number
of hydropower stations and total periods considered, respectively; Qt

i is the generation
reference flow of i power station in the t period; and Ht

i is the generating head of i power
station in the t period.
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3.1.3. Restrictions

The short-term optimal operation in cascade reservoirs is constrained by reservoir and
hydropower station-related characteristics and comprehensive utilization rules related to
water supply and power generation. These are outlined below.

Water volume balance constraint

Vt+1
i = Vt

i+(Q t−τi
i−1 +At−τi

i−1 +Rt
i−Qt

i−At
i)∆t (12)

where Vt
i and Vt+1

i are the initial and final storage capacities of reservoir i in period t,
respectively; τi is the flow lag time of reservoir i; Rt

i is the interval inflow of reservoir i in
period t; and At

i is the abandoned water flow of reservoir i in period t.
Reservoir capacity constraint

Vmin
i,t ≤ Vt

i ≤ Vmax
i,t (13)

where Vt
i is the water storage capacity of reservoir i in period t, and Vmin

i,t and Vmax
i,t are the

minimum and maximum water storage capacity of i in period t, respectively. Generally,
Vmin

i,t is the storage capacity corresponding to the dead water level, and Vmax
i,t is the storage

capacity corresponding to the water level limit set for flood control during the flood season
or the storage capacity corresponding to the normal pool level during the non-flood season.

Reservoir discharge constraint

qmin
i ≤ qt

i ≤ qmax
i (14)

where qt
i is the discharge flow of reservoir i in period t, and qmin

i and qmax
i are the minimum

and maximum allowable discharges from reservoir i, respectively.
Output constraint

Nmin
i,t ≤ Nt

i ≤ Nmax
i,t (15)

where Nmin
i,t and Nmax

i,t are the minimum and maximum electrical output limits of the
hydropower station i in period t, respectively, and Nt

i is the output of hydropower station i
in period t.

Power balance constraint
Nplan

i,t = Nactual
i,t (16)

where Nplan
i,t is the power generation of the hydropower station i in period t when the

power generation plan is made, and Nactual
i,t is the power generation of the hydropower

station i in period t when the power generation plan is implemented.
Variables are not negatively constrained.
Due to the large number of reservoirs and the large scale of the calculation involved

in the modeling of the short-term optimal operation of large-scale cascade reservoirs, a
uniform self-organizing map genetic algorithm (UGA) [30] was used to run the power
generation model.

3.2. Risk Analysis for Short-Term Operation of the Power Generation in the Cascade Reservoirs

The risk analysis for short-term operation of the power generation in the cascade
reservoirs is mainly conducted to calculate the probability of breaking a constraint and
to provide risk indicators for decision-makers. In the risk analysis of the operation of
power generation, the usual risk events include the failure of hydropower generating
units to deliver the scheduled output, the exceedance of maximum or minimum operating
water level control ranges in the reservoir and the non-utilization of more water in the
reservoir for power generation than was predetermined. The risk rate of power generation
operation is the probability of occurrence of these risk events. In this paper, three indicators
were used.
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Insufficient output risk rate: the probability demonstrates that the hydroelectric gener-
ating set cannot produce the predetermined output. This is mathematically expressed as:

r1 = P(N ′t< N∗t ) =
m1

p

M
×100% (17)

where N′t is the actual output of the system in period t, N∗t is the predetermined output
of the system in time period T, the predetermined output of each period is obtained by
calculating the maximum power generation capacity model of cascade reservoirs, M is
the total simulated runoff, and m1

p is the number of damaged runoff processes. If the
system output is blocked in one period of a runoff process, the runoff process is a damaged
runoff process.

Beyond-or-below-limit water level risk rate: the probability of the water level exceed-
ing the operating water level control range is mathematically expressed as:

r2 =
m2

p

M
×100% (18)

where m2
p is the number of damaged runoff processes. If the water level of any reservoir in

any period of a runoff event exceeds the operating water level control range, the runoff is
considered damaged.

Wasted water risk rate: the probability of wasted water at the cascade hydropower
stations is mathematically expressed as follows:

r3= P (Wt,a > W∗t ) =
m3

p

M
×100% (19)

where Wt,a is the actual wasted water volume of the system in period t, W∗t is the planned
wasted water quantity of the system in the period, and m3

p is the number of damaged
runoff processes t. If there is a period of time when Wt,a is more than W∗t , then runoff is not
fully utilized and is considered to be damaged runoff.

3.3. Calculation Steps for Short-Term Operation of the Power Generation Risk Rate of
Cascade Reservoirs

The steps taken to calculate risks associated with short-term operation of the power
generation of a cascade hydropower system include the following (Figure 2):

Step 1: Taking the forecast runoff process as the input, the maximum power generation
model for cascade reservoirs is calculated. Then the power generation plan of the system
is obtained.

Step 2: The runoff of the M field is simulated based on the stochastic simulation
(Section 2.2), which includes multivariate inflow forecast errors.

Step 3: Using the runoff data and the power generation plan of the M field as input,
the calculation for short-term operation of the power generation in the reservoir group is
carried out to assess the minimum energy consumption of the cascade system.

Step 4: The risk rate of insufficient output, based on the above-or-below water level
limit and amount of wasted water, is calculated.
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Figure 2. Steps involved in calculating the risk rate.

4. Case Study

To verify the methodology proposed in this paper, the Jinguan cascade, consisting of
three hydropower stations (Jinxi, Jindong and Guandi) within the Yalong River basin, was
used as a case study. Since the Jinguan hydropower stations were put into operation, the
formulated power generation plans have been affected by inflow forecast errors, which has
led to insufficient power generation or wasted water during some periods. The Jindong
hydropower station is a diversion-type hydropower station. Inflow to the Guandi Reservoir
includes the outflow from the Jindong Reservoir and the inflow from the Jiulonghe tributary,
which enters the channel along the river segment between the Jindong Reservoir and
Guandi Reservoir. During the flood season, flood control is a priority; thus, the runoff
data during the dry season from 2013 to 2017 were selected to study the risk for short-term
operation of the power generation. The spatial distribution of the hydropower stations is
shown in Figure 3, and their general characteristics are listed in Table 1.
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Table 1. Characteristics of the Jinguan cascade hydropower stations.

Hydropower Station Installed Capacity
MW Firm Power MW

Designed Annual
Energy Output
×108 kW·h

Jinxi 3600 1086 166.20
Jindong 4800 1443 237.60
Guandi 2400 709.80 110.16

4.1. Analysis of Forecast Error Characters in Different Forecast Periods

Due to the limitations of forecast data, only 6, 12, 18 and 24 h inflow forecast data
were available. Therefore, an interpolation method was used to obtain runoff data for the
other forecast periods in a day. The length of a forecast period is one hour. Based on the
analysis of the measured historical runoff data and the forecast data, the forecast error
parameters of the Jinxi Reservoir inflow and Guandi Reservoir interval inflow (i.e., inflow
to the reach between the reservoirs) in the different forecast periods were obtained by the
GMM (Tables 2 and 3, respectively). The number of mixed Gaussian models and the initial
parameter values of the GMM were determined according to Ji et al. [24]. According to
reference [24], simplified treatment K was taken as 2 for the Jinxi Reservoir inflow and
Guandi Reservoir interval inflow.

Table 2. Fitted Gaussian mixture model (GMM) parameters of Jinxi Reservoir inflow in different forecast periods.

Forecast Period K Weight (α) Mean Value (u) Variance (σ2)

6 h 2 α1 = 0.9577, α2 = 0.0423 u1 = −1.0001, u2 = 18.8304 σ1
2 = 32.5671, σ2

2 = 28.6849
12 h 2 α1 = 0.4928, α2 = 0.5072 u1 = −3.0380, u2 = −0.8373 σ1

2 = 112.2997, σ2
2 =29.8075

18 h 2 α1 = 0.6912, α2 = 0.3088 u1 = 1.6888, u2 = −2.5080 σ1
2 = 50.7381, σ2

2 = 36.5538
24 h 2 α1 = 0.6404, α2 = 0.3596 u1 = −2.8084, u2 = 3.6344 σ1

2 = 47.6983, σ2
2 = 78.0387

Table 3. Fitted GMM parameters of Guandi Reservoir interval inflow in different forecast periods.

Forecast Period K Weight (α) Mean Value (u) Variance (σ2)

6 h 2 α1 = 0.8264, α2 = 0.1736 u1 = −0.2519, u2 = 0.5758 σ1
2 = 10.8288, σ2

2 = 0.3925
12 h 2 α1 = 0.2239, α2 = 0.7761 u1 = −0.2722, u2 = −0.5653 σ1

2 = 50.2290, σ2
2 = 7.8424

18 h 2 α1 = 0.6840, α2 = 0.3160 u1 = −0.4602, u2 = 1.7341 σ1
2 = 15.5119, σ2

2 = 50.1798
24 h 2 α1 = 0.4690, α2 = 0.5310 u1 = −0.5955, u2 = −0.1940 σ1

2 = 69.3037, σ2
2 = 12.8721

From Tables 2 and 3 we can see that there were no trends or similarities of each
parameter with respect to the increase of periods due to random generation of errors.

Figure 4 shows the performance of the single Gaussian distribution model (GM) and
the GMM in fitting the inflow forecast errors of the Jinxi Reservoir inflow and Guandi
Reservoir interval inflow for the different forecast periods. From the perspective of describ-
ing the overall characteristics of the error data, the GMM fit the data better than that of the
single Gaussian distribution. The fitting curve of the GMM was closer to the empirical data,
which means that the GMM is better than the GM in describing the probability density
estimation. Thus, the GMM was employed to create the inflow forecast error probability
density function in each forecast period.



Sustainability 2021, 13, 3689 10 of 16
Sustainability 2021, 13, x FOR PEER REVIEW 10 of 16 
 

 
(a) 

 
(b) 

Figure 4. Probability density function curves of inflow forecast errors; (a) Jinxi Reservoir inflow; (b) Guandi Reservoir 
interval inflow. 

Figure 5 illustrates the probability density function curves of inflow forecast errors 
of the Jinxi Reservoir inflow and the Guandi Reservoir interval inflow in different forecast 
periods as determined by the GMM. Figure 5 shows that with an increase in the forecast 
period, the shape of the error distribution gradually changes from sharp and narrow to 
short and wide, indicating that forecast uncertainty rises with an increase in time. This 
pattern conforms to the general expectations of deterministic forecast models; for inflow 
along the Guandi interval, the inflow forecast error probability density function curves 
exhibit a larger difference among each forecast period. This is also expected because there 

-60 -40 -20 0 20 40 60
forecast error sample value

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
6h

GM

GMM

Empirical histogram

-60 -40 -20 0 20 40 60
forecast error sample value

0

0.02

0.04

0.06

0.08

0.1
12h

GM

GMM

Empirical histogram

-60 -40 -20 0 20 40 60
forecast error sample value

0

0.02

0.04

0.06

0.08
18h

GM

GMM

Empirical histogram

-60 -40 -20 0 20 40 60
forecast error sample value

0

0.01

0.02

0.03

0.04

0.05

0.06
24h

GM

GMM

Empirical histogram

Figure 4. Probability density function curves of inflow forecast errors; (a) Jinxi Reservoir inflow; (b) Guandi Reservoir
interval inflow.

Figure 5 illustrates the probability density function curves of inflow forecast errors of
the Jinxi Reservoir inflow and the Guandi Reservoir interval inflow in different forecast
periods as determined by the GMM. Figure 5 shows that with an increase in the forecast
period, the shape of the error distribution gradually changes from sharp and narrow to
short and wide, indicating that forecast uncertainty rises with an increase in time. This
pattern conforms to the general expectations of deterministic forecast models; for inflow
along the Guandi interval, the inflow forecast error probability density function curves
exhibit a larger difference among each forecast period. This is also expected because
there are many uncertainty factors affecting the inflow to the reach between the reservoirs,
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making it difficult to determine the inflow from the upper reaches of the Jiulong River
tributary. Consequently, the longer the forecast period, the greater the forecast errors.
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4.2. Analysis of the Joint Distribution Function

The correlation between each forecast period’s inflow errors was initially analyzed,
where x(6), x(12), x(18) and x(24) are the respective inflow forecast errors for the Jinxi
Reservoir inflow for the 6 h, 12 h, 18 h and 24 h forecast periods. The parameters y(6), y(12),
y(18) and y(24) are the respective inflow forecast errors of the Guandi Reservoir interval
inflow for the 6 h, 12 h, 18 h and 24 h forecast periods. The Kendall correlation coefficient
was used to determine the relationships between the parameters of the differing forecast
periods, and a bilateral test was carried out. The bilateral significant level was 0.05. Table 4
shows the calculation and test results.
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Table 4. Correlation coefficients of inflow forecast errors between each forecast period.

x(6) x(12) x(18) x(24) y(6) y(12) y(18) y(24)

x(6)

Correlation coefficient 1.000 0.312 0.123 0.230 −0.022 0.032 −0.030 0.020

p value of bilateral
significance test - 0 0 0 0 0 0 0

x(12)

Correlation coefficient 0.312 1.000 0.160 0.226 0.001 0.001 0.003 −0.016

p value of bilateral
significance test 0 - 0 0 0 0 0 0

x(18)

Correlation coefficient 0.123 0.160 1.000 0.282 0.021 0.003 −0.040 0.001

p value of bilateral
significance test 0 0 - 0 0 0 0 0

x(24)

Correlation coefficient 0.230 0.226 0.282 1.000 −0.004 −0.005 −0.011 0.008

p value of bilateral
significance test 0 0 0 - 0 0 0 0

y(6)

Correlation coefficient −0.022 0.001 0.021 −0.004 1.000 −0.025 0.004 0.034

p value of bilateral
significance test 0 0 0 0 - 0 0 0

y12)

Correlation coefficient 0.032 0.001 0.003 −0.005 −0.025 1.000 0.006 0.023

p value of bilateral
significance test 0 0 0 0 0 - 0 0

y(18)

Correlation coefficient −0.030 0.003 −0.040 −0.011 0.004 0.006 1.000 0.001

p value of bilateral
significance test 0 0 0 0 0 0 - 0

y(24)

Correlation coefficient 0.020 −0.016 0.001 0.008 0.034 0.023 0.001 1.000

p value of bilateral
significance test 0 0 0 0 0 0 0 -

Table 4 demonstrates that the p values of the two-sided hypothesis test are less than
the significance level. Therefore, the zero hypothesis is rejected. There is a correlation
between the forecast errors of each prediction time, and the forecast errors of each forecast
time are correlated.

The t-Copula functions were used to fit the forecast errors joint distribution function
of the Jinxi Reservoir inflow and Guandi Reservoir interval inflow in each forecast period.
The D2 value of the t-Copula was 0.1658. The fitting result is good. Hence, the t-Copula
function was selected to fit the forecast errors of the Jinxi Reservoir inflow and the Guandi
Reservoir interval inflow in each forecast period.

Based on the stochastic simulation model of inflow forecast errors using GMM-Copula
(GMM and t-Copula), 10,000 sets of inflow forecast errors of the Jinxi Reservoir inflow and
the Guandi Reservoir interval inflow were simulated (Table 5).

Table 5. Parameter values of the simulated and measured errors.

Forecast
Period Inflow

Mean Value Variation Coefficient Variance

Simulated Measured Simulated Measured Simulated Measured

6 h
Jinxi Reservoir inflow 0.315 0.309 30.573 31.456 96.504 94.453

Guandi Reservoir
interval inflow −0.034 −0.033 −114.425 −116.529 21.141 20.659

12 h
Jinxi Reservoir inflow −0.646 −0.669 −14.778 −15.179 104.810 103.239

Guandi Reservoir
interval inflow −0.031 −0.030 −195.442 −196.682 33.812 34.822

18 h
Jinxi Reservoir inflow −3.733 −3.626 −3.291 −3.420 149.759 153.795

Guandi Reservoir
interval inflow 0.493 0.508 15.009 14.582 55.801 54.902

24 h
Jinxi Reservoir inflow −4.229 −4.133 −3.602 −3.495 210.848 208.739

Guandi Reservoir
interval inflow 0.642 0.661 14.050 13.544 79.093 80.054



Sustainability 2021, 13, 3689 13 of 16

From Table 5 we can see that, when using the GMM-Copula, the calculation results
were similar to the measured values. The results show that the random simulated sequence
has nice simulation effect, since it keeps the correlation, overall distribution and error-
specific distribution of the original sequence. The results show that the random simulated
sequence can keep the correlation, overall distribution and error-specific distribution of the
original sequence; the simulation effect is good. Therefore, the random simulated sequence
can be used for risk analysis.

4.3. Risk Analysis for Short-Term Operation of the Power Generation

Based on the simulated forecast errors and the actual Jinxi Reservoir inflow and
Guandi Reservoir interval inflow data, 10,000 sets of simulated reservoir inflow data were
obtained for short-term operation of the power generation. A wet day, normal day and
dry day during the non-flood season from 2013 to 2017 were selected to calculate the risk
indexes and analyze their patterns in variation. The resulting risk index values of the
cascade reservoirs’ short-term operation of the power generation are provided in Table 6.
According to the power generation plan, if the water level falls below the lower limit, the
power output will be undermined; when the water level exceeds the upper limit, there will
be wasted water. The risk rate represents the sum of the risk rate of the beyond-upper-limit
water level and the risk rate of the below-lower-limit water level.

Table 6. Risk index value.

Typical Day
Risk Rate of
Insufficient
Output/%

Risk Rate of Wasted
Water/%

Risk Rate of Beyond-
or-Below-Limit
Water Level/%

Wet day 1.48 2.02 3.50
Normal day 1.56 0.63 2.19

Dry day 1.80 0.52 2.32
Mean value 1.61 1.06 2.67

The following information can be extracted from Table 6. The risk rate of insufficient
output differs between typical days. For the wet day, the risk rate of insufficient output was
the lowest because runoff was abundant, whereas for the dry day, due to less runoff, the
inflow was fully utilized in the formulated power generation plan. The forecast accuracy
had a considerable influence on the actual output, resulting in the highest risk rate of
insufficient output; the risk rate of wasted water also differed between typical days. It was
the highest during the wet day and the lowest for the dry day. For the wet day when runoff
was abundant, the power generation plan was formulated with the forecast inflow, and
wasted water was reduced as much as possible to maximize power generation. However,
during the actual operation (which used the actual inflow), due to less inflow forecast
error, the risk rate of the beyond-upper-limit water level was relatively high. The risk
rate of the beyond-or-below-limit water level was the highest on the wet day and the
lowest on the normal day. For the normal day, the risk rates of both insufficient output
and wasted water were comparatively small, thereby producing the lowest risk rate for the
beyond-or-below-limit water level.

5. Discussion

1. From the analysis of this paper, it can be found that the simulated result is close
to the measured data, and the average value of simulated accuracy is 97.52%. The
average value of simulated accuracy for reference [25] is 97.87%. Compared with
reference [25], the simulated accuracy is similar. The GMM-Copula in this study
also exhibited a satisfactory performance that was consistent with those reported
by Ji et al. [24]. These indicate that the methodology proposed in this study can
effectively describe the statistical characteristics of the inflow forecast error series and
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provides a reference value for short-term operation of the power generation in large
cascade reservoirs.

2. From the aspect of risk rate, the hydropower generation plan usually takes the forecast
runoff as the input data directly, without considering the inflow forecast errors, which
leads to the risk and failure of the generation plan. We also can see there is little
difference in the risk rate value of insufficient output among the three representative
days. The predetermined output we select is the target output obtained with the
forecast runoff process as the input, while the calculated output is obtained with the
simulated runoff process based on the forecast error as the input. Because the forecast
error distribution function we consider is the same, the risk rate value is similar. The
risk rate value obtained in this study can be a useful reference for the decision-making.
Therefore, this paper not only considers the risk of hydropower generation caused
by inflow forecast errors but also analyzes and discusses the seasonal change of
risk of hydropower generation in different periods including the dry period and
wet period in detail. Compared with reference [26] which also analyzes the risk of
short-term operation of the power generation of reservoirs, the simulated forecast
errors considering the correlation between each forecast period are closer to the actual
process, and the risk rate value in our study can be more reasonable. When planning
hydropower generation, it is helpful to reduce the risk rate of power generation by
adding the prediction value and the simulation prediction errors.

3. This approach provides some guidance for hydropower station operations. Since the
characteristics of the inflow forecast error vary seasonally, the risk rate of hydropower
generation operation also varies. Therefore, examination of the risk for hydropower
generation operation of cascade reservoirs under inflow uncertainty for different
runoff periods for a comprehensive analysis will be the focus in the next study.

6. Conclusions

The forecast error variables of reservoir inflow and interval inflow were jointly fit
using a GMM-Copula, which considered the correlation between inflow sources. The
stochastic model of inflow forecast errors in multiple forecast periods was then established.
The simulated runoff was used to analyze the risk of short-term operation of the power
generation. The analysis found that:

1. GMM-Copula model was more suitable to simulate the inflow errors in different
forecast periods. By comparing the mean values, variance and variation coefficients of
the simulated and the actual inflow forecast errors, the accuracy of the joint simulation
was greater. Thus, the proposed approach provides a novel means of simulating
inflow forecast errors with multivariate combinations.

2. Through the analysis of power generation risk during the non-flood season, it was
determined that the risk rates of wasted water (3.50%) and beyond-or-below-limit
water levels (2.02%) were the highest on wet days. The risk rate of insufficient output
was the highest on dry days, which offers new insights into the short-term operation
of the power generation of the Jinguan hydropower stations.
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