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Abstract: Long queues of arrival trucks are a common problem in seaports, and thus, carbon
emissions generated from trucks in the queue cause environmental pollution. In order to relieve
gate congestion and reduce carbon emissions, this paper proposes a lane allocation framework
combining the truck appointment system (TAS) for four types of trucks. Based on the distribution
of arrival times obtained from the TAS, lane allocation decisions in each appointment period are
determined in order to minimize the total cost, including the operation cost and carbon emissions
cost. The resultant optimization model is a non-linear fractional integer program. This model was
firstly transformed to an equivalent integer program with bilinear constraints. Then, an improved
branch-and-bound algorithm was designed, which includes further transforming the program into
a linear program using the McCormick approximation method and iteratively generating a tighter
outer approximation along the branch-and-bound procedure. Numerical studies confirmed the
validity of the proposed model and algorithm, while demonstrating that the lane allocation decisions
could significantly reduce carbon emissions and operation costs.

Keywords: container seaport; carbon emissions; lane allocation; truck appointment system; infras-
tructure scheduling; fractional integer programming; branch-and-bound algorithm

1. Introduction

With the development of economic globalization and the fast growth of international
trade, maritime transportation plays an increasingly important role in the international
supply chain [1,2]. As a result of the continuous increase in container shipments, the
working intensity of seaports has been increasing, and long queues in the gate system
have become a serious problem in seaport operations management. Arrival trucks must
wait for a long time before entering the gate. The more time the trucks spend in the
gate, the greater the operational challenge for container seaports. For container seaports,
there is the risk that ships will not sail on schedule if the trucks do not deliver or collect
containers punctually. In terms of the truck companies, waiting too long leads to a low
turnover efficiency and limits the daily task capacity of trucks. For society, a large amount
of greenhouse gas emissions are generated as a consequence of the extra fuel consumed
by trucks that are idling or moving at a low speed in the queue, leading to environmental
pollution at the seaport.

Combatting global warming is an integral goal for society as a whole. Nowadays,
governments have introduced energy-efficient measures to control carbon emissions. The
carbon tax mechanism is considered as one of the most important methods of developing
a low-carbon economy. Finland was the first country to impose the carbon emission
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tax in the world. The UK initiated the “floor carbon price” mechanism in 2013, that
involved setting a lower limit on the price of carbon. At the end of 2018, the New Zealand
government decided to strengthen the operation of the carbon trading system in order to
achieve the contribution goal set by the nationally determined allowances. The International
Maritime Organization (IMO) has also responded actively to reduce carbon emissions. The
IMO claims that the greenhouse gas emissions produced by international shipping will
increase by 50–250% in the next 30 years, without efforts to limit emissions [3]. In order to
shoulder social responsibility, the IMO promises to take certain measures, e.g., imposing
a carbon tax and promoting the innovation of green shipping equipment, in order to cut
emissions by 50% by 2050 [4]. National maritime authorities have established appropriate
regulations to limit high-emission activities in seaports. Reducing carbon emissions has
drawn the attention of scholars. There are a number of published studies on low carbon and
sustainability in fleet deployment [5–8], berth allocation [9–12], quay crane planning [12–15],
yard management [16,17] and dry port deployment [18–20]. How to shorten the queue time
and guide trucks to move faster in order to relieve congestion in the gate has become a
necessary breakthrough to achieve the green management of seaports.

Two components of seaports directly affect congestion in the gate system, namely, the
truck appointment system (TAS) and lane allocation planning. The TAS is a widely used
system for appointing the period at which trucks can enter the gate, where the opening
time of gate, appointment periods and service quota within each appointment period are
provided. Some international ports, such as Rotterdam, Shanghai, and Dalian, require
trucks to make an appointment 24 h in advance [21]. Trucks can choose the expected arrival
period. If there are no available slots in in the expected period, the seaport will require
the trucks to choose another period. Thus, the TAS can guide the arrival trucks from the
peak period to the off-peak period to some extent [22]. However, it also causes tedious
smartphone app operations and represents an irritating experience for truck drivers in the
event that they unfortunately appoint the arrival time in an overflow appointment period.
Therefore, there is a need for the efficient allocation of lane resources in order to balance
arrival flows of different types of trucks. The paper designs a framework to combine the
lane allocation problem with TAS (see Figure 1) to try to figure out an effective green lane
allocation policy for seaport operations.

Figure 1. A lane allocation framework combining truck appointment system (TAS).

As shown in Figure 1, based on the data recorded in TAS, the distribution of the
arrival time can be obtained. This is a typical process that transforms the data into useful
information. The time each truck spent in the seaport consists of four parts: the transport
time from gate to yard, the temporary parking time, the waiting time in the yard and the in-
service time by the quay crane. The service time for the trucks is recorded by RFID (Radio
Frequency Identification) [23,24] and stored in the seaport information management system,
which could be used to estimate the service rate of lanes. With the distribution of arrival
time and the service rate of lanes, the opening planning of lanes for different types of trucks
in each appointment period is made, in order to minimize the total cost including the carbon
emissions cost and operation cost. The green lane allocation model is established, which is
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a nonlinear fractional integer programming. Firstly, it can be equivalently transformed into
an integer programming with bilinear constraints. Furthermore, an improved branch-and-
bound algorithm is designed, which includes transforming the relaxation programming
into a linear program by the McCormick approximation method and iteratively generating
tighter outer approximation in the branch-and-bound tree. A numerical study shows the
effectiveness of the proposed model and algorithm, and demonstrates that the resulting
lane allocation policy could relieve congestion and reduce carbon emissions.

The rest of this paper is organized as follows: Section 2 reviews the related literature.
Section 3 describes the lane allocation problem and proposes the lane allocation model.
Section 4 equivalently transforms the model and proposes an improved branch-and-bound
algorithm. The numerical results of a case study of a seaport in the south of China are
reported in Section 5. Conclusions and future research directions are outlined in Section 6.

2. Literature Review

Resource allocation in the seaport mainly involves three subsystems, namely berth,
yard and gate. In the berth subsystem, the resources are berth and shore crane. The studies
about berth allocation usually consider them together [10,25]. In the yard subsystem, the
slot stores a specific container and the quay crane are used to load, discharge and overturn.
Li et al. [26] studied the quay crane allocation problem and proposed a non-dominated
genetic algorithm II-based approach to solve it. Fan et al. [27] considered the external
yard slot allocation in a multi-ports truck scheduling problem. In the gate subsystem, Yu
and Zhou [28] studied the lane allocation problem in the daily plan ignoring the types of
trucks. Facchini et al. [18] proposed to allocate several dry ports inland to take on a part
of container handling tasks of the seaport yard system, in order to improve operations
efficiency and reduce congestion for the seaport.

Nowadays, with the enhancement of environmental consciousness, much importance
is attached to carbon emissions in seaports by IMO and governments. Recent studies haven
taken green resource allocation into account [5–8]. For research on green berth allocation,
Du et al. [9] concerned the vessel emissions generated by fuel consumption in the berth
allocation problem. Zhen et al. [10] considered the uncertain arrival time of vessels and
workloads of shore crane in the berth allocation problem with the objective of minimizing
the carbon taxation cost. Venturini et al. [11] studied the speed-based vessel berth matching
problem in multi-ports. Sun et al. [12] proposed a berth allocation problem considering
quay crane pre-scheduling with the objective of minimizing the carbon taxation cost. For
research on green yard management, Talavera et al. [13] found that the quay crane emission
played an important role in the seaport emissions. Based on the actual quay crane data in
Shanghai Yangshan Deep Water Port (SYDWP), Sha et al. [14] studied the crane moving
problem with the objective of minimizing fuel consumption. Peng et al. [15] formulated
a green quay crane scheduling problem in a yard network. Except for the quay crane,
the carbon emissions from the transport equipment in yard the subsystem—such as inner
trucks and automated guided vehicles (AGVs)–were considered in Kavakeb et al. [16] and
Yu et al. [17]. For green lane allocation in the gate subsystem, Yu et al. [28] studied the
lane allocation problem, but they did not consider carbon emissions. Facchini et al. [18],
Digiesi et al. [19] and Kurtulus and Cetin [20] considered carbon emissions due to containers
handing, but they focused on dry ports. Lane allocation in seaports influences the queue
length of trucks and is thus closely related to large amounts of carbon emissions generated
due to the low speed moving or engine idling of trucks. This paper focuses on lane
allocation problem with the consideration of carbon emissions. Most studies above used
fuel consumption factors or carbon emissions factors to measure carbon emissions. In
contrast, we propose a simplified and tractable measure method based on the carbon
emissions cost involving the speed, weight and engine of trucks in Bektas and Laporte [29]
and Ricke et al. [30].

As the bridge between trucks and seaports, the TAS has drawn a great deal of attention
in recent years. There is extended research on the one-way appointment mechanism and
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multi-time appointment mechanism. For research on the one-way appointment mech-
anism, Zeng et al. [31] studied the optimal quota in each appointment period by using
the fluid flow-based pointwise stationary approximation (PSFFA) on the basis of the ge-
netic algorithm. Ma et al. [32] considered the storage capacity and queue length upper
bound constraints in a quota optimization problem with a dependent time window. They
designed a hybrid genetic algorithm based on simulated annealing method. Phan and
Kim [33] explored the congestion rates and verified that a pricing toll mechanism, such
as an additional entrance fee in peak periods or in late arrival periods, could effectively
relieve congestion in seaports. Im et al. [34] considered the truck waiting time and the
container rehandling time in a TAS optimization model. For research on a multi-time
appointment mechanism, Li et al. [35] introduced the concept of disruption management
to construct a robust interruption recovery appointment mechanism. Shao et al. [36] and
Yang et al. [22] proposed a second time appointment mechanism, that is order–reject–
reorder–accept. However, the multi-time appointment could cause interference to the
daily scheduling of truck companies [37]. Thus, this paper also adopts the commonly used
one-way appointment mechanism.

At present, most studies on green resources allocation in seaports concentrate on
the berth subsystem and yard subsystem. In comparison, lane allocation in the gate
subsystem draws less attention. However, the congestion problem and the resultant carbon
emissions problem have become serious problems in seaport management. In view of
this problem, we studied the green lane allocation problem combing with TAS. The green
lane allocation optimization model was established with the objective of minimizing
the total cost, including the operation cost and carbon emissions cost. We designed
an improved branch and bound to solve the model in order to obtain the optimal lane
allocation decisions.

3. The Green Lane Allocation Model
3.1. Problem Description

This paper considered green lane allocation with the consideration of carbon emis-
sions generated by trucks in the gate. There are four types of trucks: sending loaded
container (SL), sending empty container (SE), taking loaded container (TL) and taking
empty container (TE). Under the TAS, the seaport divided the day into equal appointment
periods. For example, if there are six appointment periods during a day, then the span of
each appointment period is 4 h. Each truck is required to appoint one period to arrive at
the seaport 24 h in advance. When each truck arrives at the gate in the appointment period,
this truck could choose any available lane to join the queue, if any, to wait for service.

Figure 2 shows the operation flow of a gate system. There are four lanes available at
the gate. In the appointment period (04:00, 08:00), the gate system opens only one lane
to serve trucks of type TE (Suppose Lane A) and three lanes to serve trucks of type SL
(Suppose Lane B, Lane C, Lane D). Each truck of type TE joins the queue of Lane A to enter
the seaport. Each truck of type SL could choose the shortest queue between Lane B, Lane
C, and Lane D to enter the seaport. The waiting time in lane could be different for each
truck. The trucks are idling during queuing at the gate, thus generating carbon emissions.
The opening of lanes leads to the operation cost of seaport.
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Figure 2. Operation flow of gate system.

3.2. Assumptions

The green lane allocation model is based on the following assumptions:

• Truck arrival process: Under the TAS collection, each truck appoints the expected
arrival period, not the exact arrival time. Due to the individual driving habit of
different truck drivers and unknown urban traffic congestion, the arrival process of
each type of truck in each appointment period is the Poisson process and the interval
time between any two trucks of the same type obeys independent and identically
exponential distribution.

• Lane service process: The service for trucks in each lane follows a first-come-first-
served basis. The lane could not serve the next truck until the truck before has been
served. Due to the interval time between any two trucks of the same type obeying
exponential distribution, the service time for each type of trucks obeys independent
and identically exponential distribution.

• Lane operational rule: The switching time for serving different types of trucks between
adjacent appointment periods is sufficiently short. The switching costs could be
negligible in seaport operation.

3.3. Parameters and Variables

The green lane allocation model defines the following symbols:

• Parameters: I: The set of types of trucks, i = 1, 2, 3, 4 respectively, denote trucks for
SL, SE, TL and TE; T: The set of appointment periods; ci: The average operation cost
of lanes in service for trucks of type i, USD/hour; co: The average carbon emissions
cost, USD/hour; g: The scale of lanes in the gate system; λit: The average number
of trucks of type i in unit time of appointment period t, truck/hour; µi: The average
service rate of lanes for trucks of type i, truck/hour; t0: The span of each appointment
period, hour.

• Decision Variables: Nit: The number of lanes available for trucks of type i in appoint-
ment period t.

3.4. Mathematical Model
3.4.1. Structure of Objective Function

(1) The operation cost

The lanes that incur the operation cost mainly refer to serving all types of trucks. The
operation cost can be expressed as

C1 = ∑|T|
t=0 ∑4

i=1 cit0Nit (1)
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(2) The carbon emissions cost

The carbon emissions cost is related to the average queue length of trucks, the average
carbon emissions cost of each truck and the average number of arrival trucks in each
appointment period. Therefore, the queueing structure of trucks is an M/M

(
Njt
)
/1

system, the average queue length can be obtained, which is λit
Nitµi(Nitµi−λit)

. Thus, the carbon
emissions cost can be expressed as

C2 = ∑|T|
t=0 ∑4

i=1 coλitt0
λit

Nitµi(Nitµi − λit)
(2)

3.4.2. Optimize Model Settings

Based on the cost considered in Section 3.4.1, the green lane allocation model is
formulated as follows:

Model (a)

min ∑
|T|
t=0 ∑4

i=1 cit0Nit + ∑
|T|
t=0 ∑4

i=1 coλitt0
λit

Nitµi(Nitµi−λit)

s.t.
(3)

∑4
i=1 Nit ≤ g, ∀t ∈ T (4)

λit
Nitµ i

< 1, ∀t ∈ T, i ∈ I (5)

Nit ∈ Z+, ∀t ∈ T, i ∈ I (6)

The objective function (3) minimizes the total cost, which is the sum of the operation
cost and carbon emissions cost. Constraints (4) ensure that the number of lanes available for
all types of trucks in appointment period t should be less than the scale of lanes. Constraints
(5) ensure that the average number of trucks of type i arriving at the lanes in appointment
period t does not exceed the average service capacity. Constraints (6) enforce that the
decision variables are integer.

Model (a) is a fractional integer programming, which is difficult to solve directly. Then,
we further analyze model (a) and propose an efficient algorithm to solve it.

4. An Improved Branch-and-Bound Algorithm

Fractional programming is a class of non-convex nonlinear mathematical program-
ming problem. There may be multiple non-global optimal solutions for fractional program-
ming. There is no existing general global convergence criterion, which makes it difficult to
solve the fractional programming problem. In addition, if the decision variables are integer,
then solving the fractional integer program is more challenging. We first transformed the
fractional integer programming into a discrete programming with linear objective and bilin-
ear constraints (Section 4.1). We then proposed an improved branch-and-bound algorithm,
including further the transformation of the program relaxation into a mixed-integer linear
program by the McCormick approximation method and iteratively generating tighter outer
approximation in the branch-and-bound tree.

4.1. Equivalent Transformation of Fractional Integer Programming

For the fractional objective function in model (a), by introducing the variable Wit =
1

Nitµi(Nitµi−λit)
(∀t ∈ T, i ∈ I), model (a) can be equivalently transformed into the follow-

ing model:
Model (b)

min ∑
|T|
t=0 ∑4

i=1 cit0Nit + ∑
|T|
t=0 ∑4

i=1 coλ2
itt0Wit (7)

s.t. Equation (4)–(6)
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Wit =
1

Nitµi(Nitµi − λit)
, ∀t ∈ T, i ∈ I (8)

Wit > 0, ∀t ∈ T, i ∈ I (9)

The objective function of model (b) is linear, but there are still fractional constraints (8).
By introducing variable αit = WitNit and βit = Nitαit (∀t ∈ T, i ∈ I), constraints (8)
can be transformed into µi

2βit − µiλitαit = 1. Thus, the following equivalent model can
be obtained:

Model (c)
min Equation (7)
s.t. Equation (4)–(6), (9)

µi
2βit − µiλitαit = 1, ∀t ∈ T, i ∈ I (10)

αit = WitNit, ∀t ∈ T, i ∈ I (11)

βit = Nitαit , ∀ ∈ T, i ∈ I (12)

αit, βit > 0, ∀ ∈ T, i ∈ I (13)

Compared with model (a), there are no fractional terms in model (c), thus reducing
the complexity of solving the problem to some extent. However, there are still bilinear
functions in constraints (11) and (12), which makes solving model (c) a challenge.

4.2. Algorithm Designing

In this section, we design an improved branch-and-bound algorithm to solve (c). In the
framework of branch-and-bound algorithm, we started solving the continuous relaxation
programming of model (c), that is:

Model (d)
min Equation (7)
s.t. Equation (4)–(6), (9)–(13)

Nit ∈ R+ , ∀t ∈ T, i ∈ I (14)

For the bilinear functions in constraints (11) and (12), we adopted McCormick ap-
proximation method to linearize them. McCormick envelope is the tightest convex hull of
bilinear function [38].

Lemma 1. For the points (x, y, xy) such that (x, y) belongs to the rectangle [lx, ux]×
[
ly, uy

]
,

their convex hull is equivalent to the set of points that satisfy the following McCormick inequalities:
wxy ≤ lxy + uyx− lxuy
wxy ≤ uxy + lyx− uxly
wxy ≥ lxy + lyx− lxly

wxy ≥ uxy + uyx− uxuy

(15)

By Lemma 1, the envelopes of bilinear functions in constraints (11) and (12), respec-
tively, are:

αit ≤ lWit Nit + uNitWit − lWit uNit , ∀t ∈ T, i ∈ I (16)

αit ≤ uWit Nit + lNitWit − uWit lNit , ∀t ∈ T, i ∈ I (17)

αit ≥ lWit Nit + lNit Wit − lWit lNit , ∀t ∈ T, i ∈ I (18)

αit ≥ uWit Nit + uNitWit − uWit uNit , ∀t ∈ T, i ∈ I (19)
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and:
βit ≤ lNit αit + uαit Nit − lNit uαit , ∀t ∈ T, i ∈ I (20)

βit ≤ uNit αit + lαit Nit − uNit lαit , ∀t ∈ T, i ∈ I (21)

βit ≥ lNit αit + lαit Nit − lNit lαit , ∀t ∈ T, i ∈ I (22)

βit ≥ uNit αit + uαit Nit − uNit uαit , ∀t ∈ T, i ∈ I (23)

Thus, the relaxation programming (d) can be transformed into the following model
Model (e)
min Equation (7)
s.t. Equation (4)–(6), (9) and (10), (13) and (14), (16)–(23)

Compared with model (d), model (e) becomes a linear program which is easy to deal
with, reducing the complexity of solving model (d).

If the relaxation program (e) is infeasible, then we conclude that the original problem
is infeasible. Otherwise, we need to determine a branching variable to generate two

subproblems. Let LPk denote the subproblem, where k represents the current node, Njt
k

and z LPk denote the optimal solution and the associated optimal objective function value,

respectively. If Nj′t′
k is a nonintegral value, then we can branch on Nj′t′

k to, respectively,

add Nj′t′ ≤
⌊

Nj′t′
k
⌋

and Nj′t′ ≥
⌊

Nj′t′
k
+ 1
⌋

to LPk to create two subproblems. To create
tighter outer approximations, after branching each time, we need to refine envelopes
(16)–(23) in the two resulting subproblems.

After solving LPk, we can fathom nodes in the branch-and-bound tree if one condi-
tion holds:

(1) If LPk is infeasible, there are no feasible points. Then, this node can be fathomed.
(2) If LPk produces an integer solution, this node can be fathomed. If z LPk < U, where U

is the current upper bound, then update U = z LPk .
(3) If LPk produces a non-integer solution, and if z LPk ≤ L, where L is the current lower

bound, there is no better solution. Then, this node can be fathomed.

Summarizing the above, the improved branch-and-bound algorithm is stated below:
Step 1: Initialize U = +∞, L = −∞, k = 1, and choose a tolerance ε > 0
Step 2: Solve LPk, if LPk is infeasible, fathom this node, else obtain Njt

k and z LPk

Step 2.1: If Njt
k is integer, fathom this node

Step 2.1.1: If z LPk < U, update U = z LPk , then new incumbent N∗jt = Njt
k;

Step 2.2: If Njt
k is non-integer

Step 2.2.1: If z LPk ≤ L, fathom this node

Step 2.2.2: If z LPk > L, randomly choose a variable Nj′t′
k with non-integral

value to branch, then respectively add Nj′t′ ≤
⌊

Nj′t′
k
⌋

and Nj′t′ ≥
⌊

Nj′t′
k
+ 1
⌋

to LPk to create two subproblems, and refine the envelopes (16)–(23) in the
resultant two subproblems

Step 3: Set k = k + 1, then go to step 2
Step 4: Return the optimal solution N∗jt.

5. Numerical Study
5.1. Numerical Settings

The numerical study selects a container seaport in the south of China. RFID [20,21]
recorded the TAS data of this container seaport from 10 October 2020 to 10 November 2020,
which contain 83,582 records. These records include information of trucks, e.g., arrival
time, in-port time, off-port time, the average tractor weight, the average container weight
in loaded, the average container weight in empty, and engine working parameters. The
gate system has eight lanes available to serve trucks. The numbers of four types of trucks
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each 4 h form 0:00 a.m. within a day are illustrated in Table 1, including the maximum
number, minimum number and average number. In addition, the numbers of each type of
trucks each hour during a day are recoded, which is depicted in Figure 3.

Table 1. Number of four types of trucks each four hours during a day.

Arrival Number SL SE TL TE

Max. 204 156 168 119
Min. 68 34 71 90

Average 134 103 119 109

Figure 3. Truck arrival flow during a day.

5.1.1. Seaport Operational Settings

This section analyzes the service time (i.e., off-port time minus in-port time) spent
by each type of trucks in port by using the Kolmogorov–Smirnov (K–S) test in the SPSS
16.0 software. As results showed in Table A1 in Appendix A, the absolute distances are
all less than 0.3 and all of the asymptotic significances are not more than 0.05. That is, the
exponential distribution of the service time in port for all types of trucks passes the K–S
test in the confidence threshold of 95%. The service rate of all types of trucks was listed in
Table 2 below.

Table 2. Service rate.

Type of Trucks SL SE TL TE

Service Rate
(truck/hour) 19.11 24.90 15.92 23.62

Based on the data, the unit operation cost is listed in Table 3 below.

Table 3. Unit operation cost.

Type of Trucks SL SE TL TE

Operation Cost
(USD/hour) 20.01 16.95 22.05 14.12

5.1.2. Appointment Period Settings in TAS

The span of appointment period in the data is 4 h. We use the Kolmogorov–Smirnov (K–
S) test in SPSS 16.0 software to analyze the distribution of truck arrival flow in appointment
period with span (1, 2, 3, 6 h). As results showed in in Table A2 in Appendix A, the
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exponential distribution of all the spans passes the K–S test. With the increase in the span,
the maximum and average asymptotic significance level would decrease to 0. Since that
the significance level with a span of 4 h is quite close to that with span of 6 h and there may
be longer queue length due to less appointment periods with span of 6 h, we select 4 h as
the appropriate span. The numbers of trucks during a day are given in Table 4 below.

Table 4. Number of trucks in each appointment period.

Number
Appointment Period

[0, 4] [4, 8] [8, 12] [12, 16] [16, 20] [20, 24]

λ1 (SL) 29.99 15.85 15.55 38.90 47.40 40.75
λ2 (SE) 15.25 7.88 22.72 36.63 35.38 27.12
λ3 (TL) 27.43 16.90 20.73 23.70 38.68 39.34
λ4 (TE) 28.72 24.13 20.81 24.59 26.50 27.89

5.2. Carbon Emissions Measurement
5.2.1. Unit Carbon Emissions Cost Settings

Carbon emissions generated by one truck in each second proposed in [29] is:

e = sp +
(

wav + 0.5Cd Aρν3 + wgCr cosθv + wgv sinθv
)

/εη (24)

where s is the brake-specific fuel consumption, p is the engine power output, v is speed, w
is weight, ρ is air density, θ is angle of slope, A is frontal surface area of the vehicle, g is
gravity, Cr and Cd are the coefficients of rolling resistance and drag respectively, ε is vehicle
drivetrain efficiency, and η is efficiency of engine. Then, the carbon emissions cost of each
truck is EC = ce, where c is the price of unit carbon. Due to the variation of speed, it is
difficult to use equation (21) to accurately calculate the carbon emissions of each truck.
Thus, we intend to calculate the average carbon emissions of each type of trucks.

Based on the data of the seaport, we calculated the average weight of each type of truck as
w, and, respectively, set the lowest speed (i.e., 0 km/h) and highest speed (usually, 20 km/h) as
s. Based on Equation (21), and the value of the above parameters (see Appendix B) in [29], we
calculated the carbon emissions e (s = 0) and e(s = 20), and took the average as the average
carbon emissions of each type of trucks in each hour. Combing with the price of carbon in [30]
(i.e., USD 24 per kg), the average carbon emissions cost of each type of trucks can be obtained.
The results are summarized in Table 5.

Table 5. Unit carbon emissions cost.

Type of Trucks Average Carbon Emissions Cost (USD/Hour)

SL 1.348
SE 1.034
TL 0.720
TE 0.720

SE—sending empty container, SL—sending loaded container, TE—taking empty container and TL— taking
loaded container.

We added up the products of average carbon emissions cost times number of each
type of trucks, and then divided the total number of four types of trucks to obtain the
average carbon emission cost (i.e., co), which is USD 0.954 per hour.

5.2.2. Evaluating Carbon Emissions Policy on Seaport Decision

This section focused on the effect of government policy on lane allocation decisions
and total cost. We vary the unit carbon emissions cost by increasing R times as the average
carbon emission cost (i.e., co). The bigger the R is, the stricter the government policy is.
Specifically, R is set as 1 (i.e., the baseline case), 5, 10, 25, 50 and 100, respectively. The
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optimal allocated lanes for each type of truck in each appointment period are shown
in Table 6.

Table 6. Solution of the lane allocation under different emission policy.

Appointment
Period SE SL TE TL

R = 1

[0, 4] 1 2 2 2
[4, 8] 1 1 1 1

[8, 12] 1 1 1 2
[12, 16] 2 2 1 2
[16, 20] 2 2 1 2
[20, 24] 2 2 2 2

Appointment
Period SE SL TE TL

R = 5

[0, 4] 1 2 2 2
[4, 8] 1 1 1 1

[8, 12] 1 1 1 2
[12, 16] 2 2 1 2
[16, 20] 2 2 1 2
[20, 24] 2 2 2 2

Appointment
Period SE SL TE TL

R = 10

[0, 4] 1 2 2 2
[4, 8] 1 1 1 1

[8, 12] 1 1 1 2
[12, 16] 2 2 1 2
[16, 20] 2 2 2 2
[20, 24] 2 2 2 2

Appointment
Period SE SL TE TL

R = 25

[0, 4] 1 2 2 2
[4, 8] 1 1 1 1

[8, 12] 1 1 1 2
[12, 16] 2 2 1 2
[16, 20] 2 2 2 2
[20, 24] 2 2 2 2

Appointment
Period SE SL TE TL

R = 50

[0, 4] 1 2 2 2
[4, 8] 1 1 1 1

[8, 12] 1 2 1 2
[12, 16] 2 2 2 2
[16, 20] 2 2 2 2
[20, 24] 2 2 2 2

Appointment
Period SE SL TE TL

R = 100

[0, 4] 1 2 2 2
[4, 8] 1 1 2 2

[8, 12] 1 2 1 2
[12, 16] 2 2 2 2
[16, 20] 2 2 2 2
[20, 24] 2 2 2 2

R—coefficient of average carbon emission cost, SE—sending empty container, SL—sending loaded container,
TE—taking empty container and TL— taking loaded container.
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As R increases, there are more lanes opened, especially for trucks of type SL and TL.
Compared with the trucks of type SE and TE, the trucks of type SL and TL are heavier in
weight, thus generating more carbon emissions while idling or moving. In order to reduce
carbon emissions and therefore carbon emissions cost, more lanes would be opened to
relieve congestion in the gate.

With the increase in R, the total cost would increase, which is shown in Table 7
and Figure 4.

Table 7. Total cost under different emission policy.

R 1 5 10 25 50 100

Total Cost
(USD) 3047.3 3912.9 4411.8 6023.5 10127.4 27192.0

R—coefficient of average carbon emission cost.

Figure 4. Effect of emission policy on total cost.

5.3. Sensitivity Analysis about Scale of Lanes

This section focuses on the effect of the scale of lanes on seaport operations. We varied
the scale for 8 to 12. The findings are summarized in Table 8. As the scale increases, the total
cost decreases. Obviously, increasing the scale of lanes would lead to a less total cost. The
most probable cause is that the decrease in marginal carbon emissions cost is faster than the
increase in marginal operation cost due to the growth of scale. As shown in Figure 5, the
total cost is minimal when the scale is 11, and the total cost remains unchanged when the
scale continues to increase. Thus, the optimal scale of lanes is 11. Due to the current scale
being 8, the seaport could appropriately invest the gate to increase the scale of lanes to 11 to
achieve optimal operation.

Table 8. Total cost under different scale of lanes.

Scale of
Lanes 8 9 10 11 12

Total Cost
(USD) 3047.3 2984.5 2966.5 2909.5 2909.5
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Figure 5. Effect of scale of lanes on total cost.

5.4. Computational Performance Analysis

This paper used MATLAB R2018a to implement the proposed algorithm and model,
and all experiments in this paper were evaluated on PCs with Intel(R) Core (TM) i7-4710MQ
CPU @2.50 GHz and a memory of 8.0 GB. Table 9 shows the computational time for cases
in Sections 5.2.2 and 5.3. All the computational times are less than 120 s. Based on the
requirements of solving the time limitation (less in 7.5 min) proposed in [39], the proposed
algorithm is effective to deal with lane allocation problems in seaports.

Table 9. Computational time.

Section 5.2.2
R 1 5 10 25 50 100

Time (s) 102 89 86 86 91 88

Section 5.3

Lane
Scale 8 9 10 11 12

Time (s) 88 109 156 169 202

6. Conclusions

At container seaports, the service demand of arrival trucks and the service supply of
lanes are not always balanced, resulting in long queues of trucks and carbon emissions at
the gate. In order to alleviate gate congestion, this paper focuses on lane allocation decisions
combining with TAS, in order to minimize the total cost including the operation cost and
carbon emissions cost. The resulting model is a nonlinear fractional integer programming.
We first equivalently transformed it into an integer programming with bilinear constraints,
and then proposed an improved branch-and-bound algorithm to solve it.

The numerical study and comparative analysis confirmed the validity of the proposed
model and algorithm. In order to relieve congestion and reduce carbon emissions, more
lanes could be allocated, especially for trucks of the type to send a loaded container and
take a loaded container. The seaport could increase investment properly to build more
lanes and further improve operations.

In this work, the lane allocation problem focused on arrival trucks and does not
involve the departure trucks. Future studies will consider the joint allocation problem of
arrival and departure trucks. In addition, the weather condition could be considered in the
lane allocation problem.
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Appendix A

Table A1. K–S test for the distribution of service time.

Type of Trucks SL SE TL TE

Record Number 24106 18581 21357 19538

Average Service Time 1 37.85 39.09 49.36 34.39
Exp. Para. 2 2.52 2.61 3.29 2.29

Distance
Abs. 0.124 0.234 0.231 0.256

Positive 0.042 0.065 0.060 0.085
Negative −0.124 −0.234 −0.231 −0.256

K–S Test Result 16.86 36.34 32.25 37.45
Asymptotic Significance 0.012 0.006 0.030 0.004

1 The average service time is reported in minutes. 2 Exp. Para. is reported in minutes.

Table A2. K–S test for the distribution of arrival time under different span.

Type Item 1 h 2 h 3 h 4 h 6 h

SL

Max. 1 0.750 0.063 0.001 <0.001 <0.001
Avg. 2 0.049 0.015 0.001 <0.001 <0.001

Over Num. 3 3 1 0 0 0
>0.05 (%) 4 12.50 8.33 0.00 0.00 0.00

SE

Max. 0.541 0.263 0.088 0.002 <0.001
Avg. 0.099 0.025 0.012 0.001 <0.001

Over Num. 8 1 1 0 0
>0.05 (%) 33.33 8.33 12.50 0.00 0.00

TL

Max. 0.519 0.766 0.469 0.004 <0.001
Avg. 0.118 0.079 0.059 0.001 <0.001

Over Num. 9 3 1 0 0
>0.05 (%) 37.50 12.50 12.50 0.00 0.00
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Table A2. Cont.

Type Item 1 h 2 h 3 h 4 h 6 h

TE

Max. 0.056 <0.001 <0.001 <0.001 <0.001
Avg. 0.003 <0.001 <0.001 <0.001 <0.001

Over Num. 1 0 0 0 0
>0.05 (%) 4.17 0.00 0.00 0.00 0.00

1 The max confidence level among all the appointment periods. 2 The average confidence level among all the appointment periods. 3 The
numbers of group whose K–S test confidence level are less than 95%. 4 The percentage of group whose K–S test asymptotic significance
level are more than 0.05.

Appendix B

s = 70 (kw), p = 220 (g/KW.hr), θ = 0, v = 5(m/s), a = 0
(
m2/s

)
, A = 4 (m3),

g = 9.788
(
m2/s

)
, Cr = 0.012, Cd = 0.9, ρ = 1.293

(
kg/m3), ε = 0.9, η = 0.45.
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