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Abstract: Due to the increased development of the smart grid, it is becoming crucial to have an
efficient energy management system for a time-of-use (TOU) rate industrial user in Taiwan. In this
paper, an extension of the direct search method (DSM) is developed to deal with the operating
schedule of a TOU rate industrial user under the demand bidding mechanism of Taipower. To
maximize the total incentive obtained from the Taiwan Power Company (TPC, namely Taipower),
several operational strategies using a battery energy storage system (BESS) are evaluated in the
study to perform peak shaving and realize energy conservation. The effectiveness of the proposed
DSM algorithm is validated with the TOU rate industrial user of the TPC. Numerical experiments
are carried out to provide a favorable indication of whether to invest in a BESS for the renewable
energy-based TOU rate industrial user in order to execute the demand bidding program (DBP).

Keywords: smart grid; time-of-use; demand bidding program; battery energy storage system; direct
search method

1. Introduction

Due to the soaring prices of fossil fuels and the rising awareness of environmental
protection, renewable energy resources have attracted more and more attention from the
utility industry. In Taiwan, the development of the hybrid generation system composed
of different renewable energy sources (RESs) has been rapidly growing, and currently, it
is widely applied for the time-of-use (TOU) rate industrial users [1]. Despite the benefits
provided by the RES, the intermittency and unpredictability of renewable power generation
may cause operational issues and waste usable capacity when the installation of the
RES increases [2]. The power dispatch gap caused by the intermittency of renewable
power generation can be compensated for by the battery energy storage systems [3].
The uncertainties posed by renewable power generation also require the scheduling of
additional generation reserves to compensate for power fluctuations in the RES system [4,5].
However, the percentage of the reserve margin of generators in Taiwan has been decreasing
year by year, which may result in a high-risk situation for the system. To ensure the security
and reliability of a power system, a better understanding of the required operating reserves
with larger renewable penetrations is needed [6]. Moreover, in the smart grid system, a
variety of issues may arise for renewable energy-based TOU rate customers, particularly
in system operating and planning. Hence, the investigation into energy management has
become very important in recent decades [7,8].

In terms of energy management, it is commonly divided into three aspects: demand
side management, peak load regulation, and carbon emission reduction. In the last decade,

Sustainability 2021, 13, 3576. https://doi.org/10.3390/su13063576 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su13063576
https://doi.org/10.3390/su13063576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13063576
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13063576?type=check_update&version=2


Sustainability 2021, 13, 3576 2 of 15

studies have focused on load clipping with time-of-use rates [9], real-time pricing [10,11],
and demand bidding [12]. These topics were proposed either to increase society’s benefit
from the use of electrical power or reduce the cost of electricity for TOU rate users. The
TOU rate is usually regarded as a load management strategy to further smooth the demand
curve for the utility grid and enable a reduced cost for industrial customers. Recently, a
program has been implemented to encourage more TOU rate users to get involved with
load management. This program, named “demand bidding”, has been developed by the
Taiwan Power Company (TPC) [13]. For the TPC, the demand bidding program (DBP) was
designed to make a collaboration between customers and suppliers on demand response
(DR) to prevent the risks of energy shortage and reduce the operating cost of expensive
generators [14]. For certain TOU rate users with significant demand for electricity, electricity
bills account for a substantial proportion of their overall expenses. In fact, the electricity
bills include the total energy cost, the contract cost for the demand capacity, and the penalty
bills. In order to minimize the total electricity cost for a TOU rate customer, a variety of
energy storage technologies, such as a battery energy storage system (BESS), refrigeration
storage (RS), compressed air energy storage (CAES), etc., have been investigated. For TOU
rate users, the BESS is one of the most promising technologies for reducing electricity
expenses [15]. Promising results have been reached in most studies in terms of electricity
savings [16,17]. Therefore, when and how much power to charge and discharge turns out
to be a critical problem for maximizing the benefits provided by a BESS. Many studies
have focused on developing advanced algorithms for the DBP to increase the electricity
incentives received from the power utility.

The energy management system plays a crucial role in implementing the DBP for
the TOU customers in the smart grid. The aim of this study is to evaluate the operating
strategy of a BESS in a hybrid generation system for a TOU rate industrial user under
the demand bidding mechanism of Taipower. Many mathematical programming analysis
methods and random search optimization techniques were used to solve the extended
generation scheduling problem, such as multi-pass dynamic programming (MPDP) [15],
the direct search method (DSM) [18], genetic algorithm (GA) [19], and particle swarm
optimization [20]. Among them, the DSM method is especially of interest due to its simple
architecture, high-quality solution, and fast convergence. In this paper, an extension of the
DSM is developed to solve the optimal generation schedule problem in a TOU system for
executing the DBP. To deal effectively with the coupling constraints of a system operation
problem, the three-state dynamic programming (DP) is also incorporated into the DSM to
augment the direct stochastic search procedure. The developed DSM computation tool can
be used for addressing the key BESS integration issues. The developed DSM software can
also be used to maximize the contribution of a RES and a BESS for reducing the electricity
cost for a TOU rate industrial user. Test results are provided to assess the impact and
economic benefits of the installation of a BESS for executing the DBP.

In general, the technical novelty and contribution of this paper can be presented
as follows:

1. A demand bidding mechanism is designed to make a collaboration between customers
and suppliers on demand response to perform peak shaving and realize energy
conservation.

2. An improved DSM incorporated with a three-state DP is proposed to solve the oper-
ating schedule of a TOU rate industrial user under the demand bidding mechanism
of Taipower.

3. Several operational strategies of a BESS are evaluated for a TOU rate industrial user
to maximize the total incentive obtained from the TPC.

4. Numerical results are provided to assess the impact and economic benefits of the
installation of a BESS for executing the DBP. The proposed DSM is also efficient and
suitable for practical applications.

The remaining parts of this paper are presented in the following sequences. The
mathematical formulation of the demand bidding mechanism of Taipower is expressed in
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Section 2. Section 3 describes the extension of the DSM to coordinate the PV/wind, utility
grid, and battery generation scheduling. Detailed descriptions of the operational strategy
of the BESS are also provided for executing the DBP. Section 4 presents the simulation
results and the conclusions are drawn in Section 5.

2. Problem Formulation and System Modeling
2.1. Notation

TOC : Total electricity cost of the TOU rate industrial user (NT$).
CBL(d∗) : Customer baseline load for the day d* (kW).
PUmax(d∗) : Maximum demand during DR-execution time for the day d* (kW).
Pbt

D (d∗) : Load demand in period bt for the day d* (kW).
BDT(d∗) : DR-execution time (2 h or 4 h) for the day d* (hours).
ABP(d∗) : Actual load-reduction amount for the day d* (kW).
FBD(d) : Total incentive for the day d (NT$/h).
FPE(t, d) : Cost of the purchased power at interval t for the day d (NT$/h).
CBD(d) : Bidding price during the DR-execution time for the day d (NT$/ kWh).
CPE(t, d) : Tariff of the purchased power at interval t for the day d (NT$/kWh).
d : Index for day intervals (one day).
D : Total observation days (days).
t : Index for time intervals (15 min interval).
T : Number of time intervals (one day).
j : Index for non-dispatchable units.
ND : Number of non-dispatchable units in system.
PD(t, d) : System load demand at interval t for the day d (kW).
PNDj(t, d) : Power of non-dispatchable unit j at interval t for the day d (kW).
Pgrid(t, d) : Power of purchased from utility grid at interval t for the day d (kW).
Pmax

grid : Maximum output power from utility grid (namely, the contract capacity) (kW).

Pbat(t, d)
: Charging/discharging power of battery storage system at interval t for the day d
(positive for discharging and negative for charging) (kW).

Pmax
bat : Maximum power from the battery storage system (kW).

SOC(t, d) : State of charge of the battery at interval t for the day d (kWh).
SOCmin : Minimum battery state of charge (kWh).
SOCmax : Maximum battery state of charge (kWh).
ηB : Battery round-trip efficiency.
∆t : Sampling time interval.
P∗Wj(t, d) : Available power of wind power generation unit j at interval t for the day d (kW).
Pmax

Wj : Maximum power of wind power generation unit j (kW).
φj(•) : Wind power curve of wind power generation unit j (kW).
v(t, d) : Wind speed at interval t for the day d.
vI j : Cut in wind speed for wind power generation unit j.
vRj : Rated wind speed for wind power generation unit j.
vOj : Cut out wind speed for wind power generation unit j.
P ∗PVj(t, d) : Available power of solar power generation unit j at interval t for the day d (kW).

δj(•)
: Radiation/ambient temperature power curve of solar power generation unit
j (kW).

Pmax
PVj : Maximum power of solar power generation unit j (kW).

Sr(t, d) : Intensity of solar radiation at interval t for the day d.
Tr(t, d) : Ambient temperature at interval t for the day d.
SD : Minimum intensity of solar radiation.
SU : Maximum intensity of solar radiation.
Pvir(bt + l) : Virtual price at period bt+l (NT$/kWh).
α : Coefficient of virtual price.
Pmax

D /Pmin
D : Maximum/minimum load demand during the DR-executing time (kW).

PLC : Price of peak load periods (NT$/kWh).
LLC : Price of off-peak load periods (NT$/kWh).
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2.2. Demand Bidding Mechanism of Taipower

To increase the reliability of the power grid, the DBP is designed to encourage heavy
electricity consumers to alter their usage pattern and remove the peak demand by giving
rewards or bonuses. Recently, in many countries, power grid operators have applied
the DBP in practice. For instance, Southern California Edison (SCE) and Pacific Gas and
Electric Company (PG&E) have carried out DBPs [12,21]. SCE opens the DBP for customers
with at least one service account with a demand of 200 kW or greater. Customers are able
to participate in the DBP event from 12 p.m. to 8 p.m. and bid for at least 2 consecutive
hours to earn bonus or rewards. The minimum bid is required at 30 kWh/hour. The
payment is 50 cents per 1 kWh reduction minus the hourly price of energy. Apart from
SCE, Mashhad Electric Energy Distribution Company (MEEDC) in Iran also employed
the DBP [22]. Heavy electricity consumers with a demand of 100 kW can participate in
the DBP. In the period from 11:00 a.m. to 3:00 p.m., the DBP will last for a minimum of
2 h and a maximum of 4 h. In the period of collaboration, the DBP will be less than 200 h.
It is necessary for customers to eliminate the power consumption for more than 15% of
their hourly baseline value. As for the power baseline for customers, it is computed by
averaging the maximum load for 2 months before the start of the participation period. The
reward provided by MEEDC can be 2500 rial (Iran’s currency) per kWh in constant.

In Taiwan, with the demand bidding program, TOU rate users are able to determine
the amount of load for peak shaving and the bidding price for their available time. The
winning customers are then determined by the TPC according to the system marginal cost.
The demand bidding mechanisms of Taipower are categorized by economical type, reliable
type, and aggregated type [13]. In this study, the economical type is of particular interest
due to the incentive for customers. The general rule of economical type is described as
follows. Firstly, the TOU rate user can determine which month to conduct DR in and how
much the monthly minimum capacity for load reduction is in their contact with the TPC.
Next, the TOU user can decide the duration for DR implementation. Either 2 h or 4 h in a
single day is available as an option. In addition, the entire implementation time within a
month is not allowed to be more than 36 h. Thirdly, the customer baseline load (CBL) is
obtained by averaging the power in the DR implementation period in the previous five
days, except for weekends, off-peak days, holidays, and load-reduction days. Eventually,
the load reduction can be computed by the difference between the maximum demand and
CBL within the same period of the DR. If the amount of load reduction is less than the
minimum contract value (50 kW), it is treated as 0 without a penalty bill. Figure 1 gives an
explanation and it can be formulated as follows for the load-reduction day (d*):

CBL(d∗) =

d∗−1
∑

x=d∗−5
PUmax(x)

5
(1)

PUmax(d∗) = Max
{

Pbt
D (d∗) , Pbt+1

D (d∗), . . . . . . , Pbt+h
D (d∗)

}
h =

{
8 i f BDT(d∗) = 2

16 i f BDT(d∗) = 4
(2)

ABP(d∗) = CBL(d∗)− PUmax(d∗) (3)

ABP(d∗) =
{

ABP(d∗) , i f ABP(d∗) ≥ 50 kW
0 , else

(4)
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Figure 1. An exemplar figure to show the computation of actual load reduction.

2.3. Objective Function

The objective function is formulated as in (5) to minimize the total expenses for a TOU
rate industrial user. Meanwhile, it is important to satisfy the operational constraints of the
RES and BESS. Thus, the given scheduling problem can be presented in a mathematical
model as follows:

TOC = Minimize
D

∑
d=1

T

∑
t=1

FPE(t, d)−
D

∑
d=1

FBD(d) (5)

FPE(t, d) =

 CPE(t, d)× (PD(t, d)− Pbat(t, d)−
ND
∑

j=1
PNDj(t, d)) , i f Pgrid(t, d) ≥ 0

0 , else
(6)

FBD(d) =
{

CBD(d)× ABP(d)× BDT(d) , i f d ∈ load− reduction day
0 , else

(7)

2.4. Operational Constraints

To model the investigated system, mathematical modeling is utilized to mimic the
operations of generation sources and the BESS. Similar approaches can also be found
in [23,24] where multiple energy storage units are taken into account and logical variables
are used to distinguish the charging/discharging operations of each energy storage unit to
ensure security. In this study, it is noted that the BESS is taken as one energy storage unit.
The power command for the BESS will be determined from the proposed DP-based power
dispatch method. Limited by the rated power of a converter, the power command of the
BESS Pbat > 0 represents discharging, while Pbat < 0 implies charging. On the other hand,
references [25,26] show that loads could be classified into non-controllable, controllable
comfort-based loads. However, this paper focuses on the power dispatch problem, the
investigated load demand profile is statistical data from TPC customers and is regarded as
an uncontrollable load. The operational constraints of the hybrid system with a RES and
BESS are introduced as below.

2.4.1. System Constraints

• Power balance constraint

ND

∑
j=1

PNDj(t, d) + Pgrid(t, d) + Pbat(t, d) = PD(t, d) (8)
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2.4.2. Non-Dispatchable Unit Constraints

• Wind power curve constraints

P∗Wj(t, d) =


0 v(t, d) ≤ vI j or v(t, d) > vOj

φj(v(t, d)) vI j ≤ v(t, d) ≤ vRj
Pmax

Wj vRj ≤ v(t, d) ≤ vOj

(9)

• Solar radiation/ambient temperature power curve constraints

P∗PVj(t, d) =


0 Sr(t, d) ≤ SD

δj(Sr(t, d), Tr(t, d)) SD ≤ Sr(t, d) ≤ SU
Pmax

PVj Sr(t, d) ≥ SU
(10)

2.4.3. Battery Constraints

• Limits of charge/discharge power

− Pmax
bat ≤ Pbat(t, d) ≤ Pmax

bat (11)

• Upper and lower limits for state of charge

SOCmin ≤ SOC(t, d) ≤ SOCmax (12)

• State of charge for battery storage system

SOC(t, d) =

{
SOC(t− 1, d)− Pbat(t, d)× ηB × ∆t i f Pbat(t, d) < 0
SOC(t− 1, d)− Pbat(t, d)× ∆t

ηB
i f Pbat(t, d) ≥ 0 (13)

2.4.4. Constraints of the Utility Grid

• Limit of the purchased power

0 ≤ Pgrid(t, d) ≤ Pmax
grid (14)

3. Evaluation of Operating Policy for the TOU Rate Industrial User
3.1. Development of the DSM Software

To assess the potential of making a profit from the TPC, the DSM [27] is updated
to deal with the scheduling problem of a TOU rate industrial user under the demand
bidding mechanism of Taipower. Similar to other stochastic techniques, the main drawback
of the conventional DSM is its tendency to be easily trapped in a local optimal solution,
particularly when handling generating scheduling problems with a high number of local
optima and heavy constraints. The solutions obtained from the DSM would rely heavily
on the parameter selection, such as initial random starting points, values of the initial step
size S1, and reduced factor K. The previous work on the DSM approaches used a larger
initial step size S1 for effective search, and the step size was then successively refined until
the calculation step was less than the predetermined resolution. Clearly, the DSM with a
coarse convergence step can enhance the global exploration ability; however, it causes an
incapability to find nearby extreme points (exploitation problem). By contrast, the DSM
with a refined convergence step can enhance the local exploitation ability; however, it is
easily trapped in local minima (exploration problem). Consequently, the standard DSM
cannot guarantee that the solutions are optimal, or even close to the optimal, due to the
deficiency in the balance between global exploration and local exploitation. Providing a
well-balanced mechanism between these abilities is critical to avoid early convergence.

To elevate the global searching capability, a novel heuristic strategy is proposed to
employ the stochastic searching mechanism and make good use of the exploration and
exploitation capabilities. Generally, the initial candidate solutions are usually far from
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the global optimum; hence, a larger calculation step SP may prove beneficial. However,
making all candidate solutions take the same calculation step SP in a convergence level
is unreasonable. In the study, to balance the global and local exploration abilities, the
selection of step size SP for candidates are different. A large calculation step SP enables
the DSM to explore globally, and a small calculation step SP enables the DSM to explore
locally. Clearly, the reduced factor K prevents the premature convergence. Generally, as the
number of convergence level increases, the balance of exploration and exploitation abilities
is enhanced and the solution quality is improved. The proposed DSM algorithm is outlined
in Figure 2. Typically, the DSM with a high S1 and a low K is recommended. From our
numerical experience, S1 = 10% of upper limit for BESS and K = 5 are applied in this study.

Figure 2. Flow chart of the proposed direct search method (DSM) approach.

In this study, the energy stored in the BESS is taken as the state variables and they are
initialized stochastically. The constraints represented by (8)–(14) will be treated in different
ways. The operating constraints (8) and (11)–(13) are handled during the direct search
procedure. The available renewable power generation can be obtained from the wind
speed, solar radiation intensity, and ambient temperature by applying Equations (9) and
(10). To deal with the power limits of the BESS given in (11) and the limit of purchased
power from utility grid in (14), the non-negative penalty terms are integrated with the
electricity cost to penalize the violation of any constraint. In addition, considering the
coupling constraints of the power dispatch problem, three-state dynamic programming is
combined with the DSM to enhance the performances of the direct stochastic search. As
shown in Figure 3, three states of BESS are defined as follows: 1 implies charge, 0 implies
idle, and –1 implies discharge. An exemplar trajectory in Figure 3 illustrates the transition
from one state for a certain time interval to another state for the next time interval. Thus,
this transition may require charging and discharging of the BESS. In this way, the forward
dynamic programming can be employed to deal with the power dispatch problem. The
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accumulated electricity cost is evaluated along with each trajectory recursively. Then, the
path with the least cost will be backtracked at the final stage to obtain the optimum solution.

Figure 3. State transition diagram of the battery energy storage system (BESS) for dynamic program-
ming (DP).

3.2. Assessment of Operational Strategy for Executing the DBP

To realize the minimum total electricity costs of a TOU rate industrial user, several
operating strategies of the BESS are evaluated with the DBP to further reduce the peak
load demand and achieve energy conservation. Given that there is no DBP, it is widely
recognized that the BESS can store electrical power during the off-peak load periods
because of the low purchasing price of the energy provided by the utility grid. The BESS
system then discharges randomly in the periods of peak load demand as the high electricity
price. In this way, electricity costs can be saved and a penalty bill caused by exceeding
contracts can also be prevented. However, a more advanced operating strategy is required
to perform DBP to eliminate the power shortage of the BESS in a DR load-reduction
duration. To maximize the total incentive obtained from the TPC on a load-reduction day,
the best operating strategy for the BESS is to fully discharge at maximum power output
during the DR-executing time. This mechanism can significantly reduce the electricity
costs, increasing the economic benefits of energy generated by the BESS. In the study, a
virtual electricity price is designed during the DR-executing time and the recommended
value is chosen as follows:

Pvir(bt + l) = PLC + α×
PD(bt + l)− Pmin

D (bt + l)
Pmax

D (bt + l)− Pmin
D (bt + l)

l = 1, 2, . . . , h ; h =

{
8 i f BDT(d∗) = 2
16 i f BDT(d∗) = 4

(15)

But on a non-load-reduction day, another operating strategy is necessary for increasing
the actual load-reduction amount. According to the computation of load reduction, it is
found that electricity cost savings depend on the degree of CBL. With the larger CBL, the
TOU customers are prone to earn incentives received from the TPC for DR execution. To
raise the baseline load by using the BESS, the best operating strategy for the BESS is to fully
discharge during the peak-load periods except for DR-executing time. The BESS system
would then stop discharging at the predictive maximum demand period (or some higher
load periods) of DR implementation during the five days prior to the DR event. Although
this process may not be an economic policy for current non-load-reduction days, it has
more potential to decrease electricity costs in the future load-reduction days. The aim of
the study is to evaluate the dispatch strategy of the BESS for the TOU rate industrial user to
minimize the system electricity costs. In the study, a virtual electricity price is also designed
during the DR-executing time and the recommend value is chosen as follows:
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Pvir(bt + l) = PLC− (PLC− LLC)× PD(bt+l)−Pmin
D (bt+l)

Pmax
D (bt+l)−Pmin

D (bt+l)
l = 1, 2, . . . , h ; h =

{
8 i f BDT(d∗) = 2
16 i f BDT(d∗) = 4

(16)

4. Numerical Examples

A chemical industrial customer of the TPC is used as an example to show the effec-
tiveness and feasibility of the proposed DSM algorithm [27]. The pricing structure of three-
section TOU rates is considered for the high-voltage customer. The energy costs of peak
load (10:00–12:00 and 13:00–17:00), medium load (07:30–10:00, 12:00–13:00, and 17:00–22:30),
and light load (00:00–07:30 and 22:30–24:00) periods are 4.67, 2.90, and 1.32 NT$/kWh,
respectively. The contract capacity, namely, the maximum power purchased from the utility
grid, is assumed to be 350 kW. In the studied case, the DR-execution duration is chosen to
be 4 h (13:00–17:00) by the users. The bidding price is assumed to be 10 NT$/kWh during
the DR-executing time. The load forecasting of a typical day in the summer season is given
in Figure 4. The minimum and maximum loads for the study period of 24 h are 125 kW
and 250 kW, respectively. Figure 5 shows the investigated system consisting of wind farm,
solar PV array, BESS, and utility grid. The wind farm includes two wind turbine generators
(WTGs) and the total capacity of wind power installed is 40 kW. The capacity of solar PV
models is 37.8 kW. As illustrated in Figure 5, the solar PV modules and BESS are connected
to a step-up transformer via an inverter. The efficiency of the inverter is 0.95. Based on
Equations (9) and (10), the available power of the RES for a typical day in summer can be
obtained as given in Figure 6. To compensate the depleted and surplus power in the system,
a BESS with the capacity and power rated at 180 kWh/30 kW is simulated. The battery
round-trip efficiency is 0.9. In addition, the initial and end of SOC are set at 66.67%, and
the lower operating limit is set to SOC = 20%. The parameters of DSM are selected as: the
number of initial solutions NP = 1, the initial calculation step S1 = 18 kW, the reduced factor
K = 5, and the predetermined resolution ε = 0.01 kW. All the computation is performed
on a PC Intel(R) Core(TM) i5-4570 CPU, up to 3.2 GHz. Several scenarios are taken into
account and discussed as follows:

Figure 4. Load curve of a typical day in the summer season.
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Figure 5. A system diagram of a time-of-use (TOU) rate customer.

Figure 6. Power profiles of PV and wind power generation for a typical day in the summer season.

4.1. Performance of the Proposed DSM Algorithm

A good convergence of the proposed DSM algorithm is presented in Table 1. The
iteration numbers and electricity costs of different cases of convergence level are compared.
The results show that the proposed DSM program is able to achieve an advantageous
operation schedule for the TOU industrial customer while satisfying all the constraints
simultaneously. It is also observed that the total electricity cost is not sensitive to the calcu-
lation step S. Ignoring the BESS integration, the total electricity cost is about NT$12,975.646
in this test case. When the BESS is integrated into this customer system, the total electricity
charge is reduced to NT$12,544.588. It will save 3.32% of the electricity cost within a day.
To analyze the influences of the initial values on the final results, several random numbers
are taken as the initial values in the DSM approach. The corresponding results of the 10
trial tests are given in Table 2. The satisfactory solutions can be obtained in approximately
0.02 s with the proposed DSM. In fact, several different cases were studied and the results
demonstrated the merit of the proposed algorithm.
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Table 1. Comparison of iterations and total electricity cost (TOC) under various S in the TOU system.

Convergence Iterations TOC (NT$)

Initialization - 12,975.646
S1 = 18 kW 0 12,975.646
S2 = 3.6 kW 23 12,611.493

S3 = 0.72 kW 24 12,556.483
S4 = 0.144 kW 24 12,545.985
S5 = 0.0288 kW 12 12,544.726

S6 = 0.00576 kW 7 12,544.588

Table 2. Results of DSM after ten runs.

Run Initialization (NT$) TOC (NT$)

1 31,211,025 12,544.537
2 27,560,846 12,544.554
3 22,997,452 12,544.547
4 27,190,036 12,544.555
5 25,530,881 12,544.548
6 25,004,720 12,544.545
7 24,011,364 12,544.560
8 24,318,074 12,544.539
9 20,842,510 12,544.548
10 27,207,412 12,544.546

4.2. Prediction of Electricity Cost Savings for Executing the DBP

To evaluate the economic benefits of the installation of the BESS, the developed DSM
software is applied and validated as a useful tool for the TOU rate industrial users to
predict the cost savings. Table 3 gives a good indication to help understand the effects
of the BESS on the total cost savings for executing the DBP. In the previous TOU system,
when the BESS was excluded in the system, the total electricity cost was NT$12,975.646 in
Case 1. As given in Case 2, a 3.32% reduction in electricity cost is achieved when the TOU
system includes the BESS. Obviously, the installation of the BESS enables a reduction in the
electricity cost of 19.49% for executing the DBP in Case 3 when the bidding price is chosen
to be 10 NT$/kWh. Numerical results certainly provide valuable information and verify
that the installation of the BESS enables a reduction in the electricity cost in the TOU system.
Thus, different amounts of the BESS can be added to the original system to evaluate the
significant benefits of annual electricity cost savings. In this way, the economic penetration
limit of the optimal capacity of the BESS into a given TOU system can be determined.

Table 3. Comparison of the electricity cost saved by different simulation scenarios.

Case BESS
DBP

(Load-Reduction
Day)

DBP
(Non-Load-Reduction

Day)

TOC
(NT$)

Saving
(%)

1 Without Without Without 12,975.646 -
2 With Without Without 12,544.546 3.32%
3 With With Without 10,445.745 19.49%
4 With Without With 12,544.546 3.32%

4.3. Effects of BESS on the Operating Schedule for Load-Reduction Day

To demonstrate the performances of integrating the BESS into the TOU system for a
load-reduction day. Figure 7 shows the energy profiles of the BESS during a typical daily
load. The optimal power dispatch of the BESS can also be observed from Figure 8. Without
the DBP (Case 2), the BESS was charged in low load demand periods when the electricity
price is low (1.32 NT$/kWh). During heavy load demand periods, namely 10:00–12:00
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and 13:00–17:00, the BESS was discharged randomly when the electricity price is high
(4.67 NT$/kWh). However, a more advanced operational strategy of the BESS is necessary
to curtail the peak demand for the load-reduction day when the DBP is considered (Case
3). As shown in Figure 8, it is more cost-effective not to discharge at high system load
times (11:30–12:00) and keep the maximum power outputs (30 kW) of the BESS during the
DR-executing time (13:00–17:00). As shown in Table 3, it is found that there is a reduction
in electricity cost of 19.49% for executing the DBP (Case 3). The DSM can be used to test
the user system in many load conditions under different seasons, summarizing the test
results to develop expert knowledge for the BESS controller design. The developed DSM
software is therefore a useful tool for the TOU rate industrial user to maximize the benefits
of the BESS for reducing the electricity cost of grid dispatch on the load-reduction day.

Figure 7. Electrical energy changes in the BESS (Case 2 and Case 3).

Figure 8. Power profiles of the BESS during a typical daily load (Case 2 and Case 3).

4.4. Effects of BESS on the Operating Schedule for Non-Load-Reduction Day

To earn more incentive for DR execution, the developed DSM software is also a useful
tool for the non-load-reduction day to increase the actual load-reduction amount. To show
the effects of utilizing the BESS in the TOU system, Figure 9 shows the electrical energy
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changes in the BESS on the non-load-reduction day, and the power outputs are shown in
Figure 10. Without the DBP (Case 2), it can be seen that the operating strategy of the BESS
is to discharge randomly during peak load hours (10:00–12:00 and 13:00–17:00) for cost
savings. When the DBP is considered (Case 4), it is necessary to update the energy flow
control strategies from the BESS to fully explore the TOU rate customer system benefits.
The results show that the maximum power outputs (30 kW) of the BESS is kept for peak
load duration (10:00–12:00), and the BESS system stops discharging at some higher load
periods (15:00–15:15 and 16:45–17:00) of DR execution to raise the baseline load. In Case 4,
the baseline load (CBL) can be raised from 228.0 kW to 257.7 kW by using the BESS. This
mechanism can significantly reduce the electricity charges in the future load-reduction day,
increasing the economic benefits of energy generated by the BESS. As shown in Table 3, it
is found that the total electricity cost is NT$12,544.546 in Case 4, that is, identical to those
obtained in Case 2. The feasibility of the algorithm is confirmed and it is an effective power
dispatch solution for the BESS.

Figure 9. Electrical energy changes in the BESS (Case 2 and Case 4).

Figure 10. Power profiles of BESS during a typical daily load (Case 2 and Case 4).
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5. Conclusions

In a smart grid, it is crucial to have efficient energy management that provides a
reliable and beneficial scheduling solution for the TOU rate industrial customers. To
maximize the total incentive obtained from the TPC, an extended DSM was developed to
solve the scheduling problem of a TOU system under the demand bidding mechanism of
Taipower. The operations of the BESS was investigated and discussed with the proposed
DSM software. Several operational strategies of the BESS were also evaluated to curtail the
peak load demand and achieve energy conservation. The results demonstrated that the
BESS enables a reduction of the electricity cost of a TOU rate custom system for executing
the DBP. The proposed strategy is validated as a useful tool to determine the capacity of
the BESS in the TOU system. Numerical experiments were conducted to provide valuable
information for both operational and planning problems for the TOU rate industrial
customers. In real-time application, the proposed DSM can be used to determine the
optimal operating policy of the next time stage. This function can save on energy costs and
reduce the risk of the BESS running out of energy in a peak-demand reduction application.
In off-line application, the proposed DSM can also be used to evaluate the economic benefits
of the BESS. The computer program developed is currently being experimentally added to
a TOU management system as auxiliary software to support TOU rate users. Although this
study was based on the TPC rate structure, it can easily be modified to satisfy other TOU
rate structures.
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