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Abstract: The limitation of fossil fuel sources and negative environmental impact persuade scientists
around the world to find a solution. One possible solution is by using renewable fuel to replace
fossil fuel with an inexpensive, fast, and effective production process. The objective of this study
is to investigate the biodiesel production from crude Reutealis trisperma oil using the conventional
and the ultrasonic bath stirrer method through the esterification and transesterification process. The
result shows that the most effective reaction time with an optimum condition for the esterification
and transesterification of Reutealis trisperma oil is at 2 h 30 min by using the ultrasonic bath stirrer
method. The optimum conditions at a temperature of 55 ◦C for the esterification and at 60 ◦C for
transesterification with 2% (v/v) of sulphuric acid with catalyst concentration of 0.5 wt.% were a
methanol-to-oil ratio of 60%, and agitation speed of 1000 rpm. This optimum condition gives the
highest yield of 95.29% for the Reutealis trisperma biodiesel. The results showed that the ultrasonic bath
stirrer method had more effect on the reaction time needed than using the conventional method and
reduced half of the conventional method reaction time. Finally, the properties of Reutealis trisperma
biodiesel fulfilled the ASTM D6751 and EN 14214 biodiesel standards with density, 892 kg/m3; pour
point, −2 ◦C; cloud point, −1 ◦C; flash point, 206.5 ◦C; calorific value, 40.098 MJ/kg; and acid value,
0.26 mg KOH/g.

Keywords: biodiesel; non-edible oil; Reutalis trisperma oil; ultrasonic; transesterification

1. Introduction

The consumption of fossil fuels causes serious environmental concerns and global
warming from excessive emissions of carbon dioxide by burning fossil fuels. These factors
have prompted the research and development of biofuel and bioenergy that are environ-
mentally friendly [1]. Biodiesel is one of the solutions for fossil fuel. Biodiesel is composed
of mono-alkyl esters derived from long-chain fatty acids that can be made from renewable
lipid feedstock such as animal fats and vegetable oils that are available in a large amounts
in nature [2,3]. Biodiesel is considered as one of the candidates to replace petroleum-based
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fuels because its characteristics are almost similar but produce less emissions, sulphur-free,
it has a higher cetane number and it is biodegradable [4–6]. The main purpose of biodiesel
is to replace the petroleum diesel fuel or be mixed with petroleum diesel fuel in any certain
type of use to reduce greenhouse gas emission.

Some studies focus on getting renewable sources that are ideal for the production
of biodiesel without competing with food resources. Regarding this, there are some non-
edible oil methyl ester (biodiesel) investigated and reported such as Ceiba pentandra [7],
Sterculia foetida L [8], Calophyllum inophyllum L [9] and Jatropha curcas L [10]. Those works
prove that those non-edible oils can replace the use of vegetable oils. For example, from
vegetable oils, there are Jatropha curcas, Pongamiapinnata (Karanja), Madhucaindica (Mahua),
Linseed, Cottonseed, Azadirachtaindica (Neem), Camelina, Eutealis Trisperma, Hevea Brasiliensis,
Ricinus Communis, Schleichera Oleosa, Cerbera manghas and beauty leaf tree or polanga [11–14].
From wasted or recycled oils, there is cooking oil, frying oil, vegetable oil soap stocks, and
pomace oil [15–22]. Also, from animal fats, there is beef tallow, pork lard, yellow grease,
chicken fat, and products from fish oil [23–28]. Currently, there is a lot of research on algae
as biodiesel production [29]. This is due to the potential of the algae in supplying enough
oil for global consumption and utilization, and due to global warming caused by burning
fossil fuel [30–36].

Reutealis trisperma, locally known as Philippine Tung, is one of the non-edible oils that
belongs to the family Euphorbiaceae. It is a native plant of the Philippines and southeast
Asia [37]. This plant can grow up to 10–15 m, and can produce 25–30 kg of dry beans
per tree and per year, with a Reutealis trisperma oil content of 50–52% (w/w). Figure 1
shows Reutealis trisperma tree, fruit, seeds and kernels [38–40]. Figure 2 shows the crude oil
and biodiesel of Reutealis trisperma; the fruits of Reutealis trisperma can be found around
the countryside in Malaysia and Indonesia. In Indonesia, Reutealis trisperma is especially
distributed in West Java. Recently, it has been cultivated in the Sumedang area. Figure 3
shows the distribution map of Reutealis trisperma around the world.
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In the biodiesel production process, various methods can be used such as conven-
tional, ultrasound-assisted, non-catalytic supercritical, ultrasonic, and microwave methods.
Among these methods, ultrasonic and conventional are more preferable and widely stud-
ied by using varied raw materials. In many cases, the conventional method is preferred
because it is easy to use and simple, while on the other hand, the ultrasonic method offers
advantages due to its short processing time [41,42]. Ultrasonic waves that are propagated
in the liquid will cause an effect referred to as the cavitation phenomenon. In an ultrasound-
assisted reaction, fluid pressure would increase when the positive amplitude is propagated
and subsequently decrease when the negative amplitude is distributed [43]. Simultaneous
changes in pressure with the high frequency of the ultrasonic wave are reacted to slowly
by the liquid, resulting in the creation of microbubbles. The bubble continues to grow with
the application of the ultrasonic energy so that the diameter of the bubble grows larger
until it collapses violently, resulting in the cavitation effect. This cavitation phenomenon
will make the temperature and pressure increase by releasing the vapor contained in the
bubble and will help to improve the transfer of mass and heat into the liquid [44]. Utilizing
the ultrasonic waves for the esterification process has shown their ability to reduce the
free fatty acid content and improve the transesterification process to produce high-yield
biodiesel [45]. Andrade-Tacca et al. have conducted a study using ultrasonic irradiation
to reduce the acid value of the Jatropha oil from 36.5 to 0.236 mg KOH/g [46]. There are
many proven results of using ultrasound for the transesterification process that produces
high biodiesel yield. Chen et al. have successfully made biodiesel with a fatty acid methyl
ester (FAME) of 92.7% using heterogeneous catalyst [47]. From the numerous studies that
have been conducted, it has been shown that ultrasonic irradiation is a very cost- and
energy-efficient method to produce biodiesel. Georgogiani et al. [48] reported that using
the ultrasonic method for processing sunflower seed oil and by using methanol as the
chemical can produce biodiesel with ester yields as high as (98%) in 40 min of reaction
time. Using the conventional method gave the lower yield that is (88%) even after 4 h of
reaction time.
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Meanwhile, Holilah et al. [50] investigated the Reutealis trisperma oil by using conven-
tional methods through two stages esterification and transesterification with an optimum
result of biodiesel production yield of 95.15% at a temperature of 65 ◦C with 3 h of reaction
time. However, the application of ultrasound for biodiesel production from the Reutealis
trisperma oil still has not received practitioners’ and scientists’ attention and there is even
very little information available in the literature about the production of biodiesel from
crude Reutealis Trisperma oil. However, many have successfully proven the applicablility
of biodiesel fuels in blending form to be applied to the unmodified diesel engine [51,52].
The objective of this study is to produce biodiesel with the shortest processing time from
crude Reutealis trisperma oil and to compare the quality of the biodiesel produced based
on several important characteristics such as the acid value, kinematic viscosity, and yield
between conventional and ultrasonic bath stirrer method by using potassium hydroxide as
a catalyst.

2. Materials and Methods
2.1. Materials and Apparatus

Crude Reutealis trisperma oil from Indonesia was produced by the Department of
Chemical Engineering, University of Indonesia, Jakarta, Indonesia. All reagents used are
methanol, sulphuric acid (H2SO4), phosphoric acid (H3PO4), potassium hydroxide (KOH),
and Whatman filter papers size 150 mm (filter fioroni, France) were purchased from local
suppliers. The equipment used for the experimental process of crude Reutealis trisperma
oil esterification and transesterification process is presented in Figure 4. The ultrasonic
bath stirrer (Model: Powersonic 410, 500 W–40 kHz) with bath size (mm) 300 × 240 × 150
is made by Copens Scientific (M) Sdn. Bhd (Malaysia) and the thermometer was settled
down using the rubber stand in one neck of the flask.
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2.2. Degumming Process

In this process, 5 vol.% of phosphoric acid (H3PO4 20%) was added into the crude
Reutealis trisperma oil at 60 ◦C with a stirring speed of 1000 rpm for 30 min. This was
followed by a simple filtration process for 4–5 h, and it could be seen at the bottom
of the flask there was the formation of the gums (phosphatides) from the experiment.
The gums were removed manually from the oil and washed several times with warm
water at temperature 45–50 ◦C. After being washed and separating oil from water, the oil
was evaporated using a vacuum pump at 60 ◦C for approximately 20–30 min to remove
remaining water in the oil.

2.3. Esterification Process

In this research, the biodiesel production process for Reutealis trisperma oil went
through two steps—(1) esterification, and (2) transesterification. The main objective of
this esterification process is to reduce the amount of free fatty acids contained in crude
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oil. There are two methods used in the esterification process which are conventional and
ultrasonic bath. For the conventional method, 2% (v/v) of sulphuric acid (H2SO4) and a
methanol-to-oil molar ratio of 60% were added to 500 mL of degummed Reutealis trisperma
oil then placed in a double jacketed glass reactor with a stirrer speed of 1000 rpm and the
temperature was set to 55 ◦C. The reaction time parameter ranged from 60 to 180 min.
For the second method of esterification, the same amount of catalyst, methanol, and oil
were used and it was carried out using a glass reactor placed in an ultrasonic bath and
the ultrasonic bath power supply was set to deliver 100% of total power (Powersonic 410,
500 W) of 40 kHz with stirrer speed at 1000 rpm at different time parameters (60, 90, 120,
150 and 180 min) and a temperature of 55 ◦C. Once the reaction based on the required
parameter was completed, the product was poured into a separation funnel to separate
H2SO4, methanol, and impurities. After leaving it for 6 h in the separating funnel, H2SO4,
methanol and impurities were found at the top layer of the oil while and the esterified oil
at lower layer was obtained. After that, the esterified Reutealis trisperma oil was collected
and placed in a rotary evaporator at a temperature of 60 ◦C for 30 min under vacuum
conditions to remove water and methanol residues in the esterified oil.

2.4. Transesterification Process

In this process, the esterified Reutealis trisperma oil was preheated at a temperature
60 ◦C and the methanol-to-oil ratio was 60%. Then, 0.5 wt.% of potassium hydroxide
(KOH) was dissolved into methanol. This methanol and KOH mixed solution were added
in the preheated oil at a temperature of 60 ◦C and the reaction continued for different time
parameters of 60, 90 and 120 min. During the transesterification process by the conventional
method, the oil was stirred constantly at a speed of 1000 rpm using an overhead stirrer
for the conventional method. Meanwhile, for the second method, the ultrasonic bath was
conducted at the maximum frequency of 40 kHz with a stirrer speed of 1000 rpm and the
temperature was constant at 60 ◦C. After the reaction of each parameter was completed,
methyl ester was poured into each separating funnel in order to separate the glycerol
from methyl ester (biodiesel) for approximately 7 h. Two layers were observed from the
separating funnel. The bottom layer consisted of excess methanol, where impurities and
glycerol can be removed at this stage. Then, the methyl ester was put into the rotary
evaporator and set the temperature to 60 ◦C for 15 min to evaporate extra methanol. It
was subsequently washed with warm water at 45–50 ◦C several times. Then, the product
was poured once again into the rotary evaporator with the temperature set at 60–65 ◦C for
30 min to remove water completely from biodiesel and then filtered with filter paper.

2.5. Characterization Fuel Properties

The types of equipment used to analyse the chemical properties and physical proper-
ties of crude oil and biodiesel are shown in Table 1. The properties were tested according
to the ASTM 6751 and EN 14214 standard and every variable was tested three times [53].

Table 1. List of equipment and standard method used for the properties test.

Property Equipment Standard Method Accuracy

Kinematic viscosity NVB classic (Normalab, France) ASTM D445 ±0.01 mm2/s
Density DM40 LiquidPhysics™ density meter (Mettler Toledo, Switzerland) ASTM D127 ±0.1 kg/m3

Copper strip corrosion Seta copper corrosion bath 11300-0 (StanhopeSeta, UK) ASTM D130 -
Flash point NPM 440 Pensky-martens flash point tester (Nor, alab, France) ASTM D93 ±0.1 ◦C

Water content 837 KF coulometer (Metrohm, Switzerland) EN ISO 12937 ±0.001%
Low heating value 6100 Compensated calorimeter (Parr, USA) ASTM D240 ±0.001 MJ/kg

Cloud and pour point NTE 450 Cloud and pour point tester (Normalab, France) ASTM D2500 ±0.1 ◦C
Acid value Automation titration rondo 20 (Mettler Toledo, Switzerland) ASTMD664 ± 0.001 mg KOH/g

Sulfur content Multi EA 5000 (Analytical jena, Germany) ASTM D6667 ±0.00 ppm
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3. Results and Discussion
3.1. Properties of Crude Reutealis trisperma Oil

The physicochemical properties and fatty acid composition of crude Reutealis trisperma
such as the acid value, density at 15 ◦C, viscosity at 40 ◦C and flash point were analysed
and compared with other non-edible oils as presented in Table 2. The test results showed
that the acid value and viscosity measured were the highest, which were 44.681 mg KOH/g
and 76.927 mm2/s, respectively. The density and flash point obtained were 937 kg/m3 and
226.5 ◦C, respectively. The fatty acid composition of crude Reutealis trisperma oil (CRTO)
showed that the primary components were palmitic acid, oleic acid, and linoleic acid which
comprised 13.1%, 16.1%, and 18.7%, respectively. For Crude Ceiba petandra oil (CCPO),
Crude Sterculia feotida oil (CSFO) and Crude Calophyllum inophyllum oil (CCIO), the
dominant compositions were linoleic acid, palmitic acid, and oleic acid, which comprised
39.7%, 17.7%, and 46.1%, respectively. Crude Reutealis trisperma oil contains about 19.5%
saturated fatty acids and 35.3% of unsaturated fatty acids.

Table 2. The properties and fatty acid composition of crude Reutealis trisperma oil compared with
other non-edible oils.

Properties CRTO a CCPO [53] CSFO [53] CCIO [54]

Acid value (mg KOH/g) 44.681 16.80 0.36 44.0
Kinematic viscosity at 40 ◦C (mm2/s) 76.927 34.45 926.4 71.98

Flash point (◦C) 236.5 170.5 158.0 221.0
Density at 15 ◦C (kg/m3) 937.0 905.2 49.7 896.0

Fatty acid composition wt.% wt.% wt.% wt.%
C12:0 (lauric acid) 0.1 0.1 0.1 0.1

C14:0 (myristic acid) 0.2 0.1 0.2 0.1
C16:0 (palmitic acid) 13.1 19.2 17.7 14.7

C16:1 (palmitoleic acid) 0.2 0.3 0.2 0.3
C18:0 (stearic acid) 5.8 2.6 4.7 13.2
C18:1 (oleic acid) 16.1 17.4 6.0 46.1

C18:2 (linoleic acid) 18.7 39.7 9.1 24.7
C18:3 (linolenic acid) 0.1 1.5 0.7 0.2
C20:0 (arachidic acid) 0.2 0.56 2.3 0.8
C20:1 (Paullinic acid) 0.2 - - -

C24:0 (Lignoceric acid) 0.1 - - -
a Analysis result.

3.2. Fourier Transform Infrared Spectrum of the Reutealis trisperma Biodiesel

Fourier transform infrared spectrum (FTIR) is one technique to overcome the problem
of the quantification and identification in some material substances such as fuel, chemistry,
and the environmental chemical composition [55,56]. FTIR is one of the analytical tech-
niques commonly used because of the cost, speed, and quality screening considerations.
This method is the technique of molecular “fingerprinting”. The FTIR analysis of the
Reutealis trisperma biodiesel is presented in Figure 5. As can bee seen in Table 3, the
FTIR results of the Reutealis trisperma biodiesel such as Wavenumber, Group attribution,
Absorption intensity, and Vibration type of the absorption peaks have been detected. The
results showed that the biodiesel from Reutealis trisperma is comprised of long-chain fatty
acid esters. The spectrum of the biodiesel product in transesterification is similar to chemi-
cal precursors (refined oil), C=O is stretching is 1741 cm−1 and the peak is located in the
region 1800–1700 cm−1. This is a spectrum of typical ester, and it is usually encountered in
FAME and oil-refined products [57,58]. In the range area of 1700–700 cm−1, biodiesel from
Reutealis trisperma showed a peak at 1244 cm−1 corresponding to the bending vibration
−CH3 which is known as a “fingerprint”, which is a major region of the spectrum [59].
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Table 3. The Fourier transform infrared spectrum of the Reutealis trisperma biodiesel.

Wavenumber (cm−1) Group Attribution Vibration Type Absorption Intensity

3010 =C–H Asymmetric stretching vibration Weak
2924 =C–H Asymmetric stretching vibration Strong
2854 CH2 Symmetric stretching vibration Strong
1741 C=O Stretching Strong
1459 CH2 Shear-type vibration Weak
1244 CH3 Bending vibration Weak
1169 C–O–C Anti-symmetric stretching vibration Middling
992 C–O–C Anti-symmetric stretching vibration Weak
724 CH2 Plane rocking vibration Weak

3.3. Physicochemical Properties of Reutealis trisperma Biodiesel Compare to Other Biodiesels

The physicochemical properties of Reutealis trisperma biodiesel with the optimum
results in the shortest time for the esterification process and transesterification process
by using the ultrasonic bath stirrer method are summarized in Table 4. The properties
of Reutealis trisperma biodiesel produced from the esterification process of 60 min at a
temperature of 55 ◦C using parameters (H2SO4 concentration: 2% (v/v), methanol-to-
oil ratio: 60%, agitation speed: 1000 rpm) and transesterification process of 90 min at
temperature 60 ◦C using parameters (KOH catalyst concentration: 0.5 wt.%, methanol-to-
oil ratio: 60%, agitation speed: 1000 rpm) are shown.

Table 4. Physicochemical properties of Reutealis trisperma biodiesel and others biodiesels.

Property Unit ASTM D6751
Limit EN 14214 Limit RTME a RTME [50] SFME [60] CIME [61] CPME [53]

Kinematic viscosity at 40 ◦C mm2/s 1.9–6.0 3.5–5.0 6.48 6.71 3.96 3.45 4.61
Density at 15 ◦C kg/m3 880 860–900 892 887 879.1 877.6 876.9

Flash point oC Min. 130 Min. 120 206.5 148 160.5 165.5 156.5
Pour point oC −15 to 16 - −2 −15 -3.0 2.0 2.8

Cloud point oC −3 to 12 - −1 −13 -3.0 2.0 3.0
Lower heating value MJ/kg – 35 min. 40.098 9208 b 40.427 41.442 40.493

Acid value mg KOH/g 0.5 max. 0.5 max. 0.26 0.41 0.14 0.34 0.38
Copper corrosion strip – 3 max − 1 b - - 1a 1

Water content vol.% 0.05 max. 500a max. - - - 0.015 0.045
Sulfur content (S 15 grade) ppm 15 max. - 14.85 - - 6.23 13.97

FAME content % m/m - 96.5 max - 97.18 - 98.7 98.6

a Analysis result. b Bomb calorimeter (cal/g).
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The physicochemical properties of Reutealis trisperma methyl ester (RTME) are com-
pared to other biodiesels, which are listed in Table 4. It is found that most of the properties
of RTME biodiesel fulfilled the ASTM D6751 and EN 14214 standard except for kinematic
viscosity. The kinematic viscosity of RTME was 6.48 mm2/s, which is relatively higher than
other biodiesels, but slightly lower than previous work. According to Holilah et al. [50],
the viscosity for RTME, Sterculia foetida methyl ester (SFME), Calophyllum inophyllum
methyl ester (CIME), and Ceiba pentandra methyl ester (CPME) was obtained as 6.71, 3.96,
3.45, and 4.61 mm2/s, respectively.

Furthermore, the density limit was 880 kg/m3 at 15 ◦C for ASTM D6751 and 860–900 kg/m3

at 15 ◦C for EN 14214 biodiesel standards. The density results were 892, 879.1, 877.6, and
876.9 kg/m3 for RTME, SFME, CIME, and CPME, respectively. The obtained flash point
results were higher compared to other biodiesels, which are 206.5, 160.5, 165.5, and 156.5
◦
C for RTME, SFME, CIME, and CPME, respectively. Furthermore, the lower heating

values were 40.098, 40.427, 41.442, and 40.493 MJ/kg for RTME, SFME, CIME, and CPME,
respectively, which fall within ASTM and EN biodiesel standards. The obtained acid values
were 0.26, 0.14, 0.34, and 0.38 mg KOH/g for RTME, SFME, CIME, and CPME, respectively,
which are in line with ASTM D6751 and EN 14214 biodiesel standards which should be
lower than 0.5%.

3.4. Effect of Esterification Process to Acid Value vs. Time

The high percentages of FFA (free fatty acid) content and water in vegetable oil may
affect the conversion process to biodiesel due to the saponification reaction that produces
soap with the base catalysts. Holilah et al. [50] reported that the FFA content is about 2.4%
in Reutealis trisperma oil. Nevertheless, this kind of oil can be esterified using conventional
methods and an acid catalyst requires a longer reaction time, which is uneconomic. It has
been shown that Holilah et al. used 3 wt.% acid catalyst (H2SO4) for 2 h in the esterification
process [50].

The trend of acid value versus time from esterified Reutealis trisperma oil using the
conventional and ultrasonic bath stirrer method is presented in Figure 6. As illustrated
in Figure 6, the ultrasonic bath stirrer method had the lowest acid value after 1 h of the
esterification process. The observed acid value was 0.476 mg KOH/g. Increasing the time
of the esterification process for the ultrasonic bath stirrer method by more than 1 h will
increase the acid value. Meanwhile, for the conventional method, the lowest acid value was
found after 3 h of the esterification process. The obtained acid value was 0.367 mg KOH/g.
From the experimental result, it can be seen that the lowest acid value with a shorter time
is found using the ultrasonic bath stirrer method after a 1-hour process. However, the
conventional method spends up to 3 h for the esterification process to produce the lowest
acid value. Esterification by using an ultrasonic bath stirrer promotes more vibration and
collision between molecules, reducing the time of reaction. As shown in Figure 6, the acid
value increases after the esterification process is prolonged beyond the required time. A
similar trend was observed from Devaraj Naik and Udayakumar’s research; prolonging
the reaction time after the optimum value will decrease the acid conversion (which means
increasing the acid value) due to the available longer duration favoring the reversible
reaction [62]. Another study reported increasing reaction time has no significant increase
in yield after the system reaches the optimum result [63].
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Figure 6. Effect of esterification process on acid value.

3.5. Effect of Transesterification Process on Acid Value vs. Time

Maghami et al. [64] investigated the effect of acidity on the biodiesel yield using 1
wt.% KOH as the catalyst for waste fish oil (WFO) with a variation of temperatures (40, 50,
60 ◦C), and the result found that with reduction of oil acidity, the biodiesel yield of reaction
increased [64]. In this study, the experiments have been conducted with 0.5 wt.% potassium
hydroxide (KOH) as an alkaline catalyst at temperatures of 60 ◦C and the time varied as
(60, 90, and 120 min) with a comparison of the conventional and ultrasonic methods. The
trend of acid value versus time from Reutealis trisperma biodiesel is presented in Figure 7.
As can be seen in Figure 7, the ultrasonic bath stirrer method has the shortest time and the
lowest acid value after 90 min of the transesterification process, and the obtained acid value
was 0.268 mg KOH/g. Meanwhile, for the ultrasonic method, the increase in time of the
transesterification process up to 120 min will increase the acid value. Extending the reaction
time beyond the optimum result will not promote more methyl ester. Simultaneously, it will
deteriote the FAME quality that resulted in higher acid value due to the loss of methanol
during the extension of reaction time [65]. However, in the conventional method, it needs
up to 120 min to approach acid value in the ultrasonic method; the observed acid value
was 0.273 mg KOH/g after 120 min of the transesterification process. Therefore, the
ultrasound method fastens the transesterification process compared with the conventional
way. Ultrasound promotes ultrasonic waves during the conversion process that create tiny
drops of each liquid in the opposite phase that enhanced mass transfer between phases
and accelerated the reaction [66].

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 16  

 
Figure 7. Effect of transesterification process on acid value. 

3.6. Effect of Transesterification Process to Viscosity Vs Time 
Holilah et al. [50] investigated the Reutealis trisperma oil for biodiesel production 

using the conventional method through the esterification and transesterification process 
with a constant stirring speed. He found that the kinematic viscosity of Reutealis trisperma 
biodiesel was 6.71 mm2/s and believed the presence of triglycerides produced as a 
by-product from the unreacted Reutealis trisperma oil affects the kinematic viscosity of the 
biodiesel. However, in this work, the effects of the transesterification process using the 
conventional method and ultrasonic bath stirrer methods on the viscosity versus time for 
Reutealis trisperma biodiesel were not very significant. From Figure 8, it can be seen that 
after the transesterification process for 120 min with the conventional method, the lowest 
viscosity was 6.2863 mm2/s. Meanwhile, for the ultrasonic bath stirrer method, the lowest 
viscosity after 120 min of the transesterification process was 6.3716 mm2/s. The 
experiment found that the viscosity of Reutealis trisperma biodiesel was slightly above the 
limit of the ASTM D6751 and EN 14214 standard, however, it is still acceptable. However, 
the author expected that further researcher will find an economical experimental method 
to solve this problem. Mishra et al. claimed that biodiesel’s viscosity is based on its 
composition, molecular weight, number of carbon atoms, and double bonds [67]. 
Therefore, the differences in viscosity found in this study are depended on the FAME 
quality of the biodiesel produced. 

 
Figure 8. Effect of the transesterification process to viscosity. 

  

0.20

0.25

0.30

0.35

0.40

0.45

50 60 70 80 90 100 110 120 130

A
ci

d 
va

lu
e 

(m
gK

O
H

/g
)

Time (min)

Conventional

Ultrasound

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

50 60 70 80 90 100 110 120 130

V
is

co
si

ty
 a

t 4
00

C
(m

m
2/

s)

Time (min)

Conventional

Ultrasound

Figure 7. Effect of transesterification process on acid value.



Sustainability 2021, 13, 3350 11 of 15

3.6. Effect of Transesterification Process to Viscosity vs. Time

Holilah et al. [50] investigated the Reutealis trisperma oil for biodiesel production
using the conventional method through the esterification and transesterification process
with a constant stirring speed. He found that the kinematic viscosity of Reutealis trisperma
biodiesel was 6.71 mm2/s and believed the presence of triglycerides produced as a by-
product from the unreacted Reutealis trisperma oil affects the kinematic viscosity of the
biodiesel. However, in this work, the effects of the transesterification process using the
conventional method and ultrasonic bath stirrer methods on the viscosity versus time
for Reutealis trisperma biodiesel were not very significant. From Figure 8, it can be seen
that after the transesterification process for 120 min with the conventional method, the
lowest viscosity was 6.2863 mm2/s. Meanwhile, for the ultrasonic bath stirrer method,
the lowest viscosity after 120 min of the transesterification process was 6.3716 mm2/s.
The experiment found that the viscosity of Reutealis trisperma biodiesel was slightly
above the limit of the ASTM D6751 and EN 14214 standard, however, it is still acceptable.
However, the author expected that further researcher will find an economical experimental
method to solve this problem. Mishra et al. claimed that biodiesel’s viscosity is based on its
composition, molecular weight, number of carbon atoms, and double bonds [67]. Therefore,
the differences in viscosity found in this study are depended on the FAME quality of the
biodiesel produced.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 16  

 
Figure 7. Effect of transesterification process on acid value. 

3.6. Effect of Transesterification Process to Viscosity Vs Time 
Holilah et al. [50] investigated the Reutealis trisperma oil for biodiesel production 

using the conventional method through the esterification and transesterification process 
with a constant stirring speed. He found that the kinematic viscosity of Reutealis trisperma 
biodiesel was 6.71 mm2/s and believed the presence of triglycerides produced as a 
by-product from the unreacted Reutealis trisperma oil affects the kinematic viscosity of the 
biodiesel. However, in this work, the effects of the transesterification process using the 
conventional method and ultrasonic bath stirrer methods on the viscosity versus time for 
Reutealis trisperma biodiesel were not very significant. From Figure 8, it can be seen that 
after the transesterification process for 120 min with the conventional method, the lowest 
viscosity was 6.2863 mm2/s. Meanwhile, for the ultrasonic bath stirrer method, the lowest 
viscosity after 120 min of the transesterification process was 6.3716 mm2/s. The 
experiment found that the viscosity of Reutealis trisperma biodiesel was slightly above the 
limit of the ASTM D6751 and EN 14214 standard, however, it is still acceptable. However, 
the author expected that further researcher will find an economical experimental method 
to solve this problem. Mishra et al. claimed that biodiesel’s viscosity is based on its 
composition, molecular weight, number of carbon atoms, and double bonds [67]. 
Therefore, the differences in viscosity found in this study are depended on the FAME 
quality of the biodiesel produced. 

 
Figure 8. Effect of the transesterification process to viscosity. 

  

0.20

0.25

0.30

0.35

0.40

0.45

50 60 70 80 90 100 110 120 130

A
ci

d 
va

lu
e 

(m
gK

O
H

/g
)

Time (min)

Conventional

Ultrasound

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

50 60 70 80 90 100 110 120 130

V
is

co
si

ty
 a

t 4
00

C
(m

m
2/

s)

Time (min)

Conventional

Ultrasound

Figure 8. Effect of the transesterification process to viscosity.

3.7. Effect of the Transesterification Process to Yield vs. Time

Ultrasonic methods reduced the processing time with the higher yield as compared
to conventional methods, based on the fact that ultrasound will increase the interaction
among the phases due to the ultrasonic jet which consequently increased the reaction [41].
Figure 9 shows the yield of the Reutealis trisperma oil transesterification process as a
function of time. As shown in the figure, the ultrasonic bath stirrer method of 90 min
was the optimum value, with the optimum yield of 95.29%. At the beginning of the
transesterification process, the biodiesel yield is proportional to the reaction time due to the
high mass transfer between the reactant and the oil that promotes the transesterification
process. Further increasing the transesterification process for over 90 min could reduce
biodiesel yield as the biodiesel conversion is saturated. For the conventional method, the
biodiesel yield is rising after 90 min of the transesterification process. These results proved
that ultrasound converts oil to biodiesel in a way faster than the conventional method. This
result corresponds with the study done by Sundaramahalingam et al. that used ultrasound
to produce Annona squamosa biodiesel. Their results have shown that their sonication
time to make biodiesel is 113 min, and the maximum FAME result was 98.4% [68].
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4. Conclusions

The results of this study show that crude Reutealis trisperma oil will be a potential
feedstock to be used as a biodiesel source in the future. Investigation results on the effect
acid value, kinematic viscosity, and yield versus time of reaction on biodiesel production
using the conventional method and ultrasonic bath stirrer method through the esterifi-
cation process and transesterification process have been presented and discussed deeply.
The result shows that the optimum quality of biodiesel with the shortest time obtained
the yield up to 95.29%, with acid value 0.268 mg KOH/g, and kinematic viscosity 6.48
mm2/s by using the ultrasonic bath stirrer method for a total time of esterification and
transesterification process of 150 min. On the other hand, the conventional method takes
nearly 5 h for the esterification and transesterification process to achieve similar results.
The properties of Reutealis trisperma biodiesel were tested and most of the properties were
in agreement with the ASTM D6751 and EN 14214 standard except for kinematic viscosity.
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