
sustainability

Article

Green Synthesis of Ag-Au Bimetallic Nanocomposites Using
Waste Tea Leaves Extract for Degradation Congo Red
and 4-Nitrophenol

Chun-Won Kang * and Haradhan Kolya *

����������
�������

Citation: Kang, C.-W.; Kolya, H.

Green Synthesis of Ag-Au Bimetallic

Nanocomposites Using Waste Tea

Leaves Extract for Degradation

Congo Red and 4-Nitrophenol.

Sustainability 2021, 13, 3318.

https://doi.org/10.3390/su13063318

Academic Editor: Andreas

N. Angelakis

Received: 25 February 2021

Accepted: 15 March 2021

Published: 17 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Housing Environmental Design and Research Institute of Human Ecology, College of Human
Ecology, Jeonbuk National University, Jeonju 54896, Korea
* Correspondence: kcwon@jbnu.ac.kr (C.-W.K.); haradhankoley@gmail.com (H.K.)

Abstract: A sustainable supply of pure water is a great challenge in most developing and third-
world countries. Nanomaterial-based technology offers technological development for wastewater
purification. Nanocatalysis hydrogenation of nitroarene and dye molecules is a hot model in many
research fields. Herein, we report eco-friendly and facile technology to synthesize Ag-Au bimetallic
nanocomposites. The synthesized nanocomposites are characterized by ultraviolet–visible spec-
troscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron
microscopy and high-resolution transmission electron microscopy. The synthesized nanocomposite
can efficiently degrade Congo red and 4-nitrophenol in water and in the presence of sodium borohy-
dride. The results show that it degrades Congo red and 4-nitrophenol entirely within 6 and 7 min,
respectively. These results could be useful for the green synthesis of Ag-Au bimetallic nanocomposites
and help to remove organic dye molecules and nitroaromatics from wastewater.
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1. Introduction

Aromatic compounds that contain a benzene ring, one or more hydroxyl group(s),
one or more nitro group(s) and one or more azo bond(s) are toxic to the environment [1].
Nitrophenol compounds have broad industrial applications in dye, herbicide, pesticides,
drugs and explosives [2]. One of the toxic, polluting agents is 4-nitrophenol, which causes
headaches, drowsiness, stomach pain, chest pain and vomiting and damages organisms [3].
Furthermore, the dye compound contains a benzene ring and azo bonds and is used in
textile industries, dyeing cotton, rubber, paper, paint and many other products [4]. The ma-
jority of dye molecules are harmful to human health and marine organisms, even at low
concentrations [5]. Allergic dermatitis, skin allergy and dysfunction of the sex organs,
kidney, brain, liver, etc., are caused by toxic dye molecules [6–8]. Moreover, wastewater
containing colored substances prevents the penetration of oxygen and sunlight, which are
needed for the survival of aquatic forms [9]. Congo red (1-naphthalene sulfonic acid,
3,3-(4,4-biphenylenebis(azo) bis(4-aminodisodium) salt) is a toxic anionic azo dye [4]. The com-
plex molecular structures of Congo red dye inhibit degradation [10]. Thus, industrial wastew-
ater containing 4-nitrophenol and dye molecules must be treated before discharge into a
river or seawater. In the treatment of wastewater effluents, different techniques have been
applied that are inexpensive, effective and eco-friendly for the detoxification of synthetic
dyes and 4-nitrophenol [11–17]. Among the various treatment technologies, catalytic hydro-
genation in the presence of sodium borohydride has been intensively investigated [18,19].
This model of catalytic hydrogenation reaction has been used widely due to the simplic-
ity, cost-effectiveness and lower toxicity of NaBH4 and because it is easily monitored by
UV–Vis spectroscopy [16,20]. Moreover, the conversion of 4-nitrophenol to 4-aminophenol
has great profit-making potential because 4-aminophenol is used as an important interme-
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diate for the synthesis of the antipyretic drug paracetamol [21]. The azo bonds in azo dye
molecules can be cleaved easily using catalytic hydrogenation, and the dye molecules trans-
form into less toxic and eco-friendly products. Different researchers have applied various
catalytic systems for rapid hydrogenation of 4-nitrophenol and azo dye molecules in the
last decade [20]. However, many of the surfactants and reactants used in these processes
are toxic to human beings and the environment [20,22]. Thus, we should use green methods
for the synthesis and application of metal nanoparticles [23]. Researchers have applied
different flower extracts, leaf extracts and fruits to synthesize gold and silver nanopar-
ticles in recent years [16,19,24–27]. The green synthesis of gold and silver nanoparticles
using the most commonly available tea leaves extract is reported [28,29]. Tea leaves are
among the most popular food and beverage ingredients with the highest flavonoid content,
resulting in high antioxidant activity. The phytochemicals and amino acids found in tea
leaves are responsible for reducing silver and gold ions [30,31]. Besides, the synthesis of
bimetallic nanostructures and their catalytic activity are hot topics nowadays [27]. In recent
years, Tripathy et al. reported on the synthesis of Ag-Au bimetallic nanocomposites using
a biodegradable synthetic graft copolymer, hydroxyethyl starch-g-poly (acrylamide-co-
acrylic acid), as well as the study of their catalytic activities [32]. Bimetallic catalysts exhibit
unique catalytic activities relative to their parent metals, which provide the ability to create
new catalysts with better activity and selectivity [32,33]. The catalytic activity of metal
nanoparticles relies significantly on their preparation methods, which control their size,
shape and morphologies [32]. Green synthesis of bimetallic nanocomposites using green
molecules would be more feasible and environmentally sustainable. Therefore, the syn-
thesis of Ag-Au bimetallic nanocomposites using waste tea leaf extract is of interest in
this paper. Furthermore, the synthesis of Ag-Au bimetallic nanoparticles/nanocomposites
using waste tea leaf extract has not yet been reported.

Herein, we report an easy and facile synthesis approach of Ag-Au bimetallic nanocom-
posites using waste tea leaves extract to perform catalytic hydrogenation reaction of
4-nitrophenol (4-NP) and Congo red (CR) dye molecules in water.

2. Materials and Methods
2.1. Materials

Chloroauric acid tetrahydrate (HAuCl4·4H2O), silver nitrate (AgNO3), sodium borohydride
(NaBH4), 4-nitrophenol and Congo red dye were purchased from Sigma-Aldrich Chemicals
Company, Seoul, Korea. Waste tea leaves were collected from India. Double-distilled water was
used in all the experiments.

2.2. Preparation of Waste Leaves Extract

The collected tea leaves were washed with distilled water to remove dust particles if
present. Then, 1.0 g of washed tea leaves was taken into a 250-mL beaker with 100 mL of
distilled water. The beaker was put on a hotplate with a magnetic stirrer at 80 ◦C for 10 min.
Then, the beaker was kept at room temperature to settle down its contents. Following
this, the tea color solution was filtered using Whatman 42 filter paper. The filtrate was
collected in a sterile 100-mL conical flask and was ready for immediate use or kept at 4 ◦C
for later use.

2.3. Synthesis of Ag-Au Nanocomposites

The typical synthesis process for Ag-Au bimetallic nanocomposites (Ag-Au NCPs) was
as follows: First, 40 mL of 10−3 (M) silver nitrate and 50 mL of 10−3 (M) chloroauric acid
tetrahydrate were mixed in a 250-mL beaker. Then, 3.0 mL of 50% diluted tea extract from
the stock solution was added into the beaker by drops at room temperature. The immediate
color change of the solution was observed and its intensity increased significantly over time
and finally changed to reddish brown, as shown in Figure 1. The entire reaction process
was carried out in the absence of sunlight to avoid any parent solution decomposition or
nanocomposites. Silver nanocomposites (Ag NCPs) and gold nanocomposites (Au NPCPs)
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were prepared separately under the same experimental conditions to compare the color
difference with Ag-Au NCPs. The schematic representation of the synthesis process and
catalytic activities of Ag-Au NCPs is shown in Figure 1.
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Figure 1. Schematic representation of the synthesis process and catalytic activity of Ag-Au nanocom-
posites (NCPs).

2.4. Reduction of 4-Nitrophenol and Congo Red Azo Dye

The reduction of 4-NP to 4-AP was carried out in a UV quartz cuvette with a length of
1 cm and a volume of 2.5 mL. The cuvette took 1.5 mL of 10−4 (M) 4-NP water solution,
and 20 µL NaBH4 methanol solution (prepared with 2 mg 4-NP and 5 mL of distilled
methanol) was added. After that, 20 µL of Ag-Au NCPs hydrosol was mixed into the mix-
ture and the catalytic activity was studied by kinetic analysis using UV–Vis spectroscopy.
The spectrum was measured at an interval of 1 min at a wavelength of 600–200 nm.
Furthermore, the degradation of 1.5 mL of 10−4 (M) Congo red solution was followed by a
similar procedure and the spectrum was taken at a wavelength of 800–200 nm at an interval
of 1 min.

2.5. Material Characterization

For optical, morphological and structural analyses, the synthesized nanocomposites were
characterized by different characterization techniques. Colloidal samples were used for optical
properties’ investigations by UV-Vis spectroscopy (Shimadzu 1800, Shimadzu, Tokyo, Japan)
and absorbance spectra were measured in a 1-cm quartz cuvette with a wavelength of
800–200 nm. A Perkin Elmer (Spectrum Two, Beaconsfield, UK) spectrometer was used
to measure FT-IR spectra using KBr pellets in wavelengths from 4000 to 400 cm−1 to in-
vestigate changes in chemical functionality. Ag NCPs, Au NCPs and Ag-Au NCPs were
first centrifuged, and then, the solid residue was dried in a vacuum oven at 60 ◦C. For the
structural investigation, an X-ray diffractometer (Miniflex, Rigaku, Japan) was used to
obtain the spectrum of bimetallic nanocomposites using Cu Kα radiation at a scan rate of
1◦ min−1 in the range of 5–80◦. The thick film of Ag-Au NCPs was produced by drying
the colloidal sample onto a clean glass substrate for XRD measurements. Field emission
scanning electron microscopy (FESEM, Gemini 500, Carl Zeiss) and high-resolution trans-
mission electron microscopy (HR-TEM, JEM-2200 FS, JEOL Ltd., Japan) at 200 kV were used
for morphological investigation. Again, the drop-casting technique was used to obtain
sufficient material for SEM analysis on glass substrates and HR-TEM analysis, using a lacey
F/C 300 mesh Cu grid.
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3. Results and Discussion

A color change was observed with the formation of Ag-Au NCPs from yellowish to
reddish brown. The distinct color change of the colloidal solution of the Ag-Au NCPs
compared to the Ag NCPs and Au NCPs indicates the formation of the Ag-Au NCPs.
The UV–Vis spectra of nanocomposites’ hydrosols are shown in Figure 2.
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Figure 2. UV–Vis spectra of Ag NCPs, Au NCPs and Ag-Au NCPs’ hydrosol.

The absorbance peak at 412 nm of the Ag NCPs and the peak at 530 nm of the Au
NCPs suggest the formation of silver and gold nanocomposites. The well-defined peak
at 433 nm is due to Ag-Au bimetallic nanocomposites, which is different from the peak
positions of Ag and Au NCPs. By simple mixing of the Ag NCPs and Au NCPs, the SPR
band at 433 nm was not obtained. Therefore, this result indicates that the absorbance band
at 433 nm is due to the SPR band of Ag-Au bimetallic nanocomposites.

FT-IR spectra of waste tea samples and synthesized metal nanocomposites are shown
in Figure 3 and the peak details are shown in Table 1.
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Table 1. The FT-IR peak details of tea and monometallic and bimetallic nanocomposites.

Sl No
IR Peak at (cm−1) Assignment

Tea Ag NCPs Au NCPs Ag-Au NCPs

1. 3380 3459 3442 3428 –OH stretching
2. 2926 2928 2918 2928 –CH2 asymmetric stretching
3. 1637 1637 1637 1637 C=O stretching vibration
4. 1454 1543 1543 1543 -CH2 bending, ring stretch, C=C, C-O
5. 1238 1385 1396 1385 -C(O)-O stretching vibration and –OH in plane vibrations
6. 1149 1116 1116 1116 -C-O stretching of 2◦ alcohols
7. 1043 . . . . . . . . . . . . -C-O-C, anhydride, stretching

FT-IR spectrum of the tea sample shows a distinct difference from that of Ag-Au NCPs,
Ag NCPs and Au NCPs.

The peak values of different functionalities are shifted to various frequencies. The peak
at 1454 cm−1 is shifted to 1543 cm−1, the peak at 1238 cm−1 to 1385 cm−1 and the peak at
1149 cm−1 to 1116 cm−1 with increasing intensity due to the formation of nanocomposites
with amide and −OH functionalities. Some more peaks also appeared that suggest the
formation and stabilization of monometallic and bimetallic nanocomposites by waste tea
leaves extract.

Figure 4 shows the wide-angle XRD patterns of Ag-Au nanocomposites. The diffrac-
togram revealed the existence of distinct characteristic Ag-Au bimetallic peaks and cellulose
peaks. The intense peak of Ag-Au NCPs is obvious at 2θ angles 38.2◦, 44.2◦, 64.4◦ and
77.1◦, most of which confirm the findings of previous works [34–36]. Others amorphous
and crystalline peaks suggest cellulose crystallinity of tea leaves [37]. This result supports
the formation of Ag-Au bimetallic nanocomposites by waste tea leaves extract.
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Figure 4. XRD pattern of Ag-Au bimetallic nanocomposites by tea leaves extract.

FESEM and HR-TEM were used to recognize the surface morphology and size of
Ag-Au NCPs, and EDS analysis was carried out to know the atomic percentage of Ag
and Au in the bimetallic nanocomposites as shown in Figure 5. FESEM and HR-TEM
micrographs (Figure 5a,b,d) show the spherical shape of Ag-Au nanoparticles in capping
with shades in prickly pear (Opuntia).
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Figure 5. Micrographs of surface morphological studies: (a) FESEM, (b) TEM at 200 nm, (c) TEM at 100 nm, (d) high-resolution
transmission electron microscopy (HR-TEM) at 20 nm, red arrow highlights lattice fringes (e) electron image of selected area
electron diffraction (SAED), (f) SAED pattern and (g) EDS spectrum and atomic percentage of elements of Ag-Au NCPs
with tea leaves extract.

The shades on the nanocomposites’ surface indicate the secondary materials, which are
the phytochemicals of tea leaf extract [28,38]. It should be noted that these phytochemicals
(mostly carboxylic acids) can efficiently reduce silver and gold to nanoparticles and act as a
suitable capping agent, thus preventing them from aggregating [28,38]. The selected area
electron diffraction (SAED) pattern (Figure 5f) displays that the Ag-Au nanocomposites are
crystalline, and the crystalline ring represents the different lattice arrangement (Figure 5e).
The EDS spectrum represents the Ag and Au’s presence in Ag-Au NCPs at 2–3 and
8–12 keV, respectively. Bimetallic nanocomposites contain a higher amount of Ag than the
Au content. The higher content of Ag in bimetallic nanocomposites was explained by the
fact that Ag(I) ions attract more carboxylate groups than AuCl4− ions due to the smaller
size of Ag(I) ions over larger AuCl4− ions [32].

The degradation in the presence of Ag-Au NCPs and NaBH4 of the Congo red dye
molecules is shown in Figure 6a. Usually, the presence of azo bonds in the dye molecules is
not reduced by NaBH4, but there is a reduction in metal nanoparticles’ presence. The UV–Vis
spectra of the Congo red dye’s degradation display the appearance of two absorbance
bands at 490 and 342 nm due to the n→π* and π→π* electron transitions associated with
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azo bonds (-N=N-). It is apparent from the figure that the intensity of both absorption
peaks significantly decreases over time, and the color of the Congo red solution becomes
colorless after 6 min.
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with NaBH4 and Ag-Au NCPs (red arrows highlights changes in peak intensity).

The UV–Vis spectra of the reduction of 4-NP to 4-AP by Ag-Au NCPs in the pres-
ence of NaBH4 are shown in Figure 6b. The sharp absorbance peak at 401 nm grad-
ually decreases over time due to the reduction of 4-NP. The new absorbance peak at
292 nm rises simultaneously due to the formation of 4-AP, and the reaction is completed
in 7 min. Rapid degradation of Congo red dye molecules and 4-NP occurs due to the
greater surface area and irregular facets of the Ag-Au bimetallic NCPs. The mechanism
of the azo bond cleavage and the reduction of 4-NP by Ag-Au NCPs in the presence of
NaBH4 have been explained in detail in our previous articles [16,32] as well as in Figure 7.
Besides, the reusability of bimetallic Ag-Au nanocomposites in the hydrogenation reaction
of Congo red and 4-nitrophenol was studied based on previous studies [32]. The catalyst
obtained in this study was used in the hydrogenation reactions, and after four cycles, it still
displayed significant activity. These results indicate that the green synthesis of Ag-Au
bimetallic nanocomposites provides greater stability and catalytic activity.
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Figure 7. The probable mechanism of degradation of (a) azo bonds in Congo red and (b) nitro group
in 4-nitrophenol in the presence of Ag-Au NCPs and NaBH4.
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4. Conclusions

Ag-Au bimetallic nanocomposites’ green synthesis was carried out by a facile method
using waste tea leaves extract in the water medium. The phytochemicals of the tea
leaves extract act as a reducing and stabilizing agent. Ag-Au nanocomposites’ forma-
tion was described based on extensive characterization results such as UV–Vis, FT-IR, XRD,
FESEM, HR-TEM and EDS. The synthesized Ag-Au NCPs were used to study their per-
formance as a bimetallic nanocatalyst in the degradation of Congo red dye molecules and
4-nitrophenol in the presence of NaBH4. The complete reduction in azo bonds and nitro
groups occurred within 6 and 7 min, respectively. The easy synthesis method and high
catalytic activity of bimetallic Ag-Au nanocomposites could be useful for the removal of
dyes and nitroaromatics from industrial effluent/wastewater purification.
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