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Abstract: In recent years, several secondary plant metabolites have been identified that possess
antimethanogenic properties. Tannin-rich forages have the potential to reduce methane emissions in
ruminants while also increasing their nutrient use efficiency and promoting overall animal health.
However, results have been highly inconclusive to date, with their antimethanogenic potential and
effects on both animal performance and nutrition being highly variable even within a plant species.
This variability is attributed to the structural characteristics of the tannins, many of which have
been linked to an increased antimethanogenic potential. However, these characteristics are seldom
considered in ruminant nutrition studies—often because the analytical techniques are inadequate
to identify tannin structure and the focus is mostly on total tannin concentrations. Hence, in
this article, we (i) review previous research that illustrate the variability of the antimethanogenic
potential of forages; (ii) identify the source of inconsistencies behind these results; and (iii) discuss
how these could be optimized to generate comparable and repeatable results. By adhering to this
roadmap, we propose that there are clear links between plant metabolome and physiology and
their antimethanogenic potential that can be established with the ultimate goal of improving the
sustainable intensification of livestock.

Keywords: proanthocyanidins; condensed tannins; secondary plant metabolites; methane; ruminants;
climate change

1. Introduction

Intensification and global expansion of livestock production systems have led to
significant increased emissions of agricultural carbon dioxide (CO2), nitrous oxide (N2O),
and methane (CH4), with agriculture contributing to almost 15 % of the total anthropogenic
greenhouse gas (GHG) emissions [1,2]. A major part of these emissions is in the form
of CH4 (44%), while the rest is divided between N2O (29%) and CO2 (27%) (proportions
expressed in terms of CO2-equivalent (CO2-e)). From 1990 to 2012, global CH4 emissions
have increased by 11% from 1869 million tonnes to 2080 million tonnes CO2-e. Methane
has a shorter atmospheric lifespan (12 years) compared to N2O (114 years) and CO2
(up to thousands of years), and developing mitigation strategies for CH4 abatement will
help reach the global GHG-reduction targets and temperature stabilization goals [2,3]. In
addition to this potential for temperature stabilization, a reduction in CH4 emissions could
further allow a reduction in existing atmospheric CH4, as the remaining CH4 emissions
are naturally removed from the atmosphere within a short timespan [4–6]. Methane is
released as a product of microbial degradation of feed macromolecules in the digestive
tract of ruminants [7]. Ruminal methane emissions are the result of an inefficient pathway
in ruminant digestion of feed and reducing these emissions would also be efficacious
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in preventing metabolizable energy losses; these comprise between 2 and 15% of the
digestible energy intake depending on the forage quality [8–10]. Hence, the development
and adoption of strategies and approaches to reduce CH4 emissions from livestock systems
would have both environmental benefits and lead to improved feed utilization and animal
productivity. Since CH4 production cannot be eliminated entirely without the ruminant
losing its ability to digest fibre, the focus should be on increasing nutrient use efficiency in
ruminant livestock [11].

One strategy with promising potential is the use of tannin-rich forages (TRFs). Tan-
nins are polyphenolic plant secondary metabolites, which can precipitate or crosslink the
proteins, thus making them less prone to proteolysis [12,13]. While several TRFs have
been investigated for their antimethanogenic potential in numerous in vivo and in vitro
trials, the results have so far been highly inconsistent. One such TRF is sainfoin (Onobrychis
viciifolia). A study by Chung [14] indicated no difference between methane emissions from
sainfoin and alfalfa hay in terms of dry matter intake (DMI), but identified 25% emission
reductions from sainfoin based on the organic matter digested. In contrast, Huyen [15]
showed that sainfoin silage diets decreased CH4 emissions (per unit DMI) by 5.8% com-
pared to grass and maize silage. On the other hand, other studies reported increments in
CH4 emissions when diets of sainfoin hay [16] and sainfoin silage [17] were fed. Similar
discrepancies can be found in their effect on reducing bloat [18,19] and shifting nitrogen
(N) excretion from urine to faeces [14,15,20,21]. These inconsistencies are still difficult
to explain, although they may be partly explained by the lack of precise structural char-
acterizations of tannins. Some studies have shown the intraspecies variation of tannin
concentration and structures in sainfoin, indicating the complexity of tannin composition
in forages [22,23], as well as the impact of the structures on antimethanogenic proper-
ties [24,25]. The co-presence of other secondary plant metabolites such as flavanols and
saponins can also exert potential mutualistic or antagonistic effects [10,26]. Variations
can also arise as a result of the growth conditions of the tested plants, which differed
greatly across the reported experiments, and these can affect their secondary metabolite
synthesis [27–30].

In this review, we (a) identify the potential of TRFs, specifically those containing con-
densed tannins (CTs, syn. proanthocyanidins), to affect rumen productivity and methano-
genesis; (b) illustrate how the structural diversity within CTs is likely to contribute to
explaining the inconsistencies observed; and (c) provide a roadmap to assess the bioactive
potential of CT in livestock production systems. We aim to integrate the research on TRFs’
potential to reduce methane emissions by understanding tannin synthesis, their mode of
action in the animal and thereby, to indicate suitable analyses to improve their interpretabil-
ity. If applied in practice, following this roadmap will increase the potential to extrapolate
findings of antimethanogenic potential of forages.

2. Understanding Tannins and Their Functional Attributes

Previously, the sole function of tannins was regarded to be a part of a plant’s defence
mechanism against herbivory [13,31–33]. This trait conferred antiherbivory effects through
(a) the ability of CT to precipitate proteins, thus rendering them unavailable for animal
nutrition, and (b) they can have oxidative activities, which create oxidative stress in the
herbivore gut [34].

In terms of their role in herbivore diets, plant tannins have surpassed their reputation
of being purely antinutritional compounds and several of their beneficial functions have
been identified. Tannins have been shown to possess the potential to reduce the impact of
drought by acting as antioxidants and detoxifying reactive oxygen species produced as
a result of drought stress [28,35]. Additionally, tannins and other polyphenols have been
found to reduce the carbon and N mineralization rates in soil, by inhibiting the activity of
soil microorganisms and enzymes [29,36]. At an individual plant level, this can result in
long-term nutrient availability due to slower litter decomposition [29], while at the plant
community level, this will enable better adaption of microorganisms to adapt to TRFs, thus
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generating a general “home field advantage” for one species [36], as well as increasing
soil carbon stocks [37–40]. With the discovery of the additional functions of tannins, TRFs
have emerged as a promising solution to help reduce CH4 emissions in ruminants, while
concomitantly providing a series of additional environmental or animal health benefits. A
selection of relevant properties will subsequently be discussed in more detail.

2.1. What Are Tannins?

Tannins are the end products of energy demanding and extensive biosynthetic path-
ways, indicating that they play an important role in plant metabolism. They can be
broadly divided into two groups—hydrolysable tannins (HTs) and CTs—depending on
their structure [31,41]. Hydrolysable tannins contain central polyol esterified with gallic
acid molecules [12,42]. They can be further divided into three groups: simple gallic acid
derivatives, gallotannins (GTs), and ellagitannins (ETs). The two first classes contain only
galloyl groups attached to the central core (glucose/polyol): simple gallic acid derivatives
having only monogalloyls groups, but GTs having digalloyl or even trigalloyl groups in
series attached to the polyol. In ETs, two of the galloyls are C-C linked to make the charac-
teristic hexahydroxydiphenoyl (HHDP) group that can be modified even further [12,42,43].
Condensed tannins are the second most abundant polyphenols after lignins, and consist of
two or more flavan-3-ol monomeric units. The most common flavan-3-ol subunits of CTs
are characterized based on the number of hydroxyl groups on the A and B rings, and the
relative stereochemistry between the B and C rings (Figure 1).
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Figure 1. Structure of condensed tannin subunits [44].

Catechin and epicatechin have two hydroxyl groups present adjacent to each other on
the B ring of flavon-3-ol subunits, and are categorized as procyanidin (PCs) units when
found in CT structures. Gallocatechin and epigallocatechin have three hydroxyl groups
adjacent to each other on the B ring and are categorized as prodelphinidin (PDs) units in
CTs [33,45–47]. Additionally, both PCs and PDs can differ in their relative orientation of the
C-2/C-3 carbon substituents of the C-ring, where catechin and gallocatechin have a trans-
configuration, whereas epicatechin and epigallocatechin have a cis-configuration [48,49].
These subunits are connected through interflavan linkages, the most common of which
are B type linkages. In B type linkages, the bonds between the subunits are formed either
between the C-4 carbon of the C ring and the C-8 carbon of the subsequent flavan-3-ol
subunit (4→ 8) or between the C-4 carbon and the C-6 carbon (4→ 6) [50,51]. When the
covalent bond is formed between two flavon-3-ol subunits via a C-2 oxygen atom and a C-7
carbon in addition to the 4→ 8 B linkage, the linkage is known as A type (Figure 2) [49].
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The proportions of PC and PD subunits, and also the type of linkages within CTs,
vary substantially both across and within plant species [53,54]. These variations combined
with the varying degrees of polymerization can lead to a multitude of combinations in
structures and hence, a wide range of bioactive properties of CTs [55]

2.2. Functional Attributes of Tannins

The bioactive properties of tannins are either a result of their protein precipitation
capacity (PPC), or their anti- or pro-oxidant behaviour. The effect of tannins on biological
systems is found to be dependent on pH, with protein precipitation capacity being generally
efficient in slightly to moderately acidic environments, whereas the oxidative activity is
expressed in alkaline environments or by oxidative plant enzymes, such as polyphenol
oxidases [56].

The fate of ingested tannins in herbivores is dependent on the physiological conditions
of their gut. Tannins when consumed by herbivores with high gut pH, such as in caterpillars,
undergo auto oxidation to produce semiquinone radicals and quinones. These oxidation
products can bind to the nutrients in the gut lumen of the caterpillar and cause damage
to the surrounding gut tissues [57]. In contrast, the effect of tannins on mammalian
herbivores is dependent mainly on its PPC, as the mammalian gut has acidic to neutral
gut conditions which provide an ideal environment for tannin–protein interactions [34].
When supplied in moderate quantities, the protein binding ability of tannins can improve
nutrient utilisation in ruminants; however, in insects, both CTs and HTs had no impact
on protein utilization [58,59]. Additionally, the efficacy of these effects is dependent on
the structure of tannins. Ellagitannin-rich plants were found to be more potent in terms of
their oxidative behaviour compared to plants rich in galloyl glucoses or CTs [57], and CTs
are found to precipitate proteins more actively than ETs [33].

The anthelmintic and antimethanogenic bioactivity of CTs in ruminants is linked to
their precipitation capacity [60,61] and their antioxidative behaviour [34,49,62]. Condensed
tannins are known to form insoluble complexes with proteins by binding to the protein’s
surface and forming a coat and this leads to its precipitation [63,64]. These complexes
are generally based on non-covalent interactions such as hydrophobic interactions and
hydrogen bonding [65]. However, there have been reports on ionic interactions and
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covalent bonds with amino acids or sulphur on proteins [66]. Additionally, under low pH
and oxidative conditions, tannins can form covalent bonds with proteins [38,65,67,68].

Independent of the bond type, within CTs, a higher PD percentage has been associated
with a higher PPC, which is likely a result of the additional hydroxyl groups at carbon 5 of
the B ring [49,69,70]. In addition to the PD/PC ratio, the cis/trans ratio, polymer size, and co-
presence of galloyl groups have been identified as having effects on the PPC [71]. However,
these results have been inconsistent, which is likely a result of multiple structural features
being responsible for the tannins’ astringency concomitantly and potentially imparting
contrasting effects [59,72,73]. The polyphenolic polarity, as defined by the octanol-water
partition coefficient (KOW), can also influence the PPC of tannins [68]. Tannins with
high KOW values (e.g., acacia (Acacia mearnsii) leaves, KOW = 13.92) are fat soluble and
bind non-specifically to the proteins. They have the tendency to be adsorbed by animal
tissues and exert toxic effects. Tannins with low KOW values such as chestnut (Castanea
sativa) extracts (KOW = 1) bind more efficiently with proteins and lead to better nutrient
utilization in animals [59]. However, the nature of these interactions is also dependent on
the proteins. For example, the PCs were found to have a stronger affinity for larger proteins
with open structures such as BSA (66 kD) compared to lysozyme (14.4 kD), which has a
compact structure and is smaller in size [50,59,66,68]. Additionally, the isoelectric point
(pI) of proteins has generally been identified to affect the tannins’ protein precipitation
behaviour [38], and proteins aggregate faster when the pH is close to their pI [68]. The
reaction conditions also play a significant role in the strength of tannin–protein complexes.
The variability in dietary composition with differences in protein chemistry (for example:
proline content), amino acids, and CT composition, makes it exceptionally difficult to
predict the response of CT–protein interactions. Finally, it should be mentioned that there
appears to be at least a partial specificity, with plant tannins showing a higher precipitation
of plant proteins, compared to animal protein. Accordingly, in a study by Zeller [51],
tannins from birdsfoot trefoil (Lotus corniculatus) were better at precipitating proteins from
lucerne (Medicago sativa), compared to BSA. Hence, the protein source should also be
accounted for in the estimation of the PPC [74].

The link between PPC, oxidative properties, and the observed bioactivity of tannins is,
however, still not clear because of the inadequate tests in many reported studies. Therefore,
complementing their protein precipitation assays with the analysis of their anti-/pro-
oxidative behaviour can provide a better overview and improve understanding of CT–
animal interactions.

2.3. Potential of Incorporating Tannin Rich Forages in Ruminant Nutrition

As explained previously, tannins have long been considered to be non-specific anti-
nutritive factors and potentially toxic, as they protect dietary protein from degradation, and
because of their pro-oxidant properties [65]. These characteristics are undoubtedly true, as
tannins have, indeed, been found to form strong, yet pH-dependent and reversable bonds
to proline rich proteins and affect protein digestibility [75]. Some browsing herbivores have
developed the ability to produce proline-rich salivary mucoproteins as an evolutionary
adaption to overcome the deleterious effects of tannins [66]. Herbivore palatability of
TRFs is determined on the basis of astringency resulting from the interactions between CTs
and the herbivore’s salivary proteins. Tanniferous forages are often considered to be less
palatable and therefore, less acceptable. At a CT concentration above 5% of the herbage
dry matter (DM), intake and palatability of TRFs may be depressed and feed intake is
reduced. However, reported results shows this is highly variable [49]. Despite its high
CT concentration, sulla (Hedysarum coronarium) has been found to be highly acceptable by
sheep [76]. Similarly, the acceptability (and assumed palatability) of sainfoin was found
to be comparable to conventional temperate forages such as alfalfa and ryegrass/clover
mixtures [77]. Sainfoin has also been reported to be more palatable than birdsfoot trefoil
despite its higher tannin concentration [77,78].
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2.3.1. Impact of Tannins on Enteric Fermentation

Feed constituents such as carbohydrates, proteins, and other organic polymers are
degraded to their monomer components in the presence of rumen microbes under anaerobic
conditions [7,79,80]. Tannin-rich forages have been reported to cause alterations in rumen
microflora, increase nutrient utilization efficiency, improve animal health, and consequently,
influence their environmental effect [15,46,81,82]. The presence of tannins in the feed has
been found to slow down the degradation of the dietary proteins by forming tannin–
protein complexes in the rumen [83]. These complexes are then transported from the
rumen (pH = 6–7) to the small intestine (pH > 7), where they are partially dissociated
under alkaline conditions. Through this process, the excess protein is initially protected
from inefficient degradation in the rumen, so it reaches the small intestine as rumen
bypass protein. As a result, there is an increased amino acids absorption throughout the
entire digestive tract for tannin-containing feeds compared with non-tannin-containing
feeds [32,59,84]. The decrease in excess protein degradation in the rumen also results in a
decrease in methanogenesis and consequently, lower CH4 emissions. Concomitantly, the
non-ammonia N transported to the small intestine leads to a higher production of milk,
meat, and wool. This deviation further decreases the urinary N and slightly increases
faecal N [10,59,78,85,86]. The decrease in urinary N can lead to lower indirect N losses to
the environment from the urine patches, as these spatially concentrated excretions have a
high risk of volatilization, nitrification, and denitrification (Figure 3) [15,87].
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In temperate forage systems, the forage-protein concentrations in are generally higher
than in tropical forages. Hence, the N use efficiency in temperate forages is often low, and
in some instances, as low as around 10–20% [78,88]. Accordingly, reductions in available
protein can be achieved without adversely affecting milk yields by increasing the N use
efficiency, thereby concomitantly reducing the nitrogen emissions to the environment.
However, the effects of tannins in the gastrointestinal tract of ruminants are complex. For
example, CTs in birdsfoot trefoil have a strong effect on the proteolytic bacteria in the
rumen of sheep. As a result, plant protein degradation in the rumen is decreased and
non-ammonia N flow to the small intestine is increased, resulting in higher utilizable crude
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protein (uCP) in the small intestine [89,90]. However, even within the Lotus genus, big
trefoil (Lotus pedunculatus) and birdsfoot trefoil have different modes of action in their effect
on nitrogen flows. A direct comparison of these species shows that CTs from big trefoil
were more effective in the degradation of Rubisco compared to those of birdsfoot trefoil.
Similarly, CTs from big trefoil were able to inhibit the degradation of protein in the rumen
by forming strong tannin–protein complexes, whereas birdsfoot trefoil tannins reduced
degradation of proteins by directly inhibiting the proteases [91]. Additionally, big trefoil
was found to have a stronger potential to reduce CH4 emissions than birdsfoot trefoil [59].

As a result of this complexity, in vivo experimentation has not yet been able to suc-
cessfully show both a reduction in CH4 emissions and incremental improvement in N use
efficiency simultaneously from tannin-containing forages. To illustrate the existing research
gaps, it is important to understand how tannins influence rumen microbiota, as well as
the interactions between hydrogen producers (bacteria, protozoa, fungi) and consumers
(methanogens) [92].

2.3.2. Mode of Action to Lower Methane Emissions

Several mechanisms have been hypothesized by which tannins might decrease CH4
emissions in ruminants. Efficient nutrient utilization is considered to be one of the most
likely explanations, and this might increase animal productivity and reduce CH4 produc-
tion per unit of animal product. The inclusion of tannins in feed has been found to improve
nutrient utilization in the ruminants, thereby reducing metabolic energy losses that would
otherwise occur through CH4 emissions [79,93,94].

Another factor which could be linked to CT’s potential in reducing CH4 emissions
is its affinity to form complexes with lignocellulose and preventing fibre degradation,
thereby leading to lower microbial fermentation [95]. Microbial fermentation leads to the
formation of volatile fatty acids (VFA) such as acetate, propionate, and butyrate, with CO2
and H2. These metabolic byproducts are either absorbed by the rumen wall and used
as a source of energy for animals or used as substrates by microorganisms [7,79,94,96].
Tannins have been known to reduce the CH4 emissions of ruminants either by directly
inhibiting the ruminal methanogenic population [92,97], or by hindering the methanogen-
protozoa symbiosis [49]. Approximately 37% of the CH4 from the ruminants is produced
by protozoa-associated methanogens. In the methanogen-protozoa symbiosis, hydrogen
(H2) required by methanogens to produce CH4 is provided by rumen protozoal population
via transfer of H2 produced in their hydrogenosomes. The subsequent utilization of H2
by methanogens benefits the protozoal population as H2 hinders their metabolism [10,98].
As the accumulation of H2 in the rumen can impede fermentation, methanogens play
an important role in feed digestibility by utilizing the rumen borne H2. Hence, before
adapting feeding strategies to achieve defaunation of the rumen, it is important to provide
alternative H2 sinks to maintain the animal’s productivity and improve the utilization of
metabolizable energy from the feed [99,100].

Here, tannins might be part of the solution as well, as some studies have hypothesized
that tannins influence the VFA profile in rumen. They promote the shift towards the
production of more propionate compared to acetate, which acts as a hydrogen sink. The
reduced availability of H2, which is the main substrate for CH4 production, results in a
reduction in methanogenesis [86,100,101]. The shift in acetate and propionate production
could be attributed to changes in the composition of microbial communities and their
activity [95]. However, the mechanism by which tannins influence methanogenesis and
shift the VFA profile is still not well understood.

3. Current Findings on the Antimethanogenic Potential of TRFs

Recent studies have shown that the effect of tannins on ruminant nutrition is highly
dependent on the tannin type, structural characteristics, dosage supplied, rumen morphol-
ogy, and rumen physiology [102,103]. Numerous plant species containing tannins have
been studied to determine their efficacy in ruminant nutrition, either as forages or feed
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additives. These species include acacia, quebracho (Schinopsis balansae), chestnut, valonea
(Quercus Aegilops), leucaena (Leucaena leucocephala), desmodium (Desmodium ovalifolium),
sainfoin, birdsfoot trefoil, big trefoil, Chinese bushclover (Lespedeza cuneata), Japanese
clover (Lespedeza striata), white clover (Trifolium repens), and sulla [59,86,101].

Antimethanogenic potential was found to vary across the species. Promising tem-
perate forage species include sainfoin, birdsfoot trefoil, big trefoil, and sulla, and among
tropical forages are leucaena, desmodium, and Chinese bushclover [24,62,104,105]. A study
of Friesian dairy cows found that cows that grazed on birdsfoot trefoil produced not only
17.5% less CH4 emissions (per unit DMI) but also 32% less CH4 emissions/kg milk solids
when compared with cows grazing on perennial ryegrass (Lolium perenne) [106]. Similarly,
leucaena, a tropical leguminous shrub, has been found to reduce CH4 emissions in sheep
and heifers without affecting DMI or organic matter intake in the animals [107,108]. In
another study, when supplied with 80% leucaena in the diet compared with a basal diet of
Pennisetum purpureum, CH4 emissions were reduced by 61% in heifers without negatively
affecting DMI and VFA production [109]. The overall performance of the lambs (approx. 6
months age) was improved when CTs were included in their basal diet (wheat straw, oat
hay, and concentrate mixture). Condensed tannins in the diet were supplied as leaf meal
mixture of Ficus infectoria and Psidium guajava (70:30). The diet with 2% CTs was able to
suppress CH4 emissions by approx. 26%. Additionally, improved N metabolism, wool
yield, and growth performance of lambs was reported. Inclusion of CTs in the feed did not
affect the intake or apparent palatability of the feed [110].

Similarly, in a study conducted on adult sheep, hazel (Corylus avellana) leaves when
supplemented at 50% of the total diet were able to reduce CH4 emissions by 35% (per unit
OM intake) compared to the control (ryegrass hay and lucerne pellets). Concomitantly, a
substantial decrease in urinary N proportion of total N intake was observed without any
negative effects on forage intake, apparent palatability, or body weight of the sheep [111].
However, despite the promising findings indicated by these studies, the antimethanogenic
potential of the forages is not clearly linked to the tannin concentration, as evidenced by
the high variability in results from different studies (Table 1). As summarized in Table 1,
the variation in CH4 abatement by forages also depends on the phenological stage at which
they are harvested and by the method of forage preservation. In addition to the changes
in forage chemical composition, phenological stage also affects the CT composition and
structural features. The bioactivity of sainfoin CTs was found to decrease with maturity,
as shown by the increase in phenological stage. This could be attributed to the lower
proportion of extractable CTs (ECTs) resulting from increase in CT polymerization with
maturity [112]. Similarly, when TRFs are ensiled, the process can rupture plant cells,
allowing the CTs to release and bind to other molecules. This decreases the proportion
of free CTs (ECTs) and hence, there is reduced bioactivity of CTs in conserved forages
compared to fresh forages in terms of their ability to reduce CH4 emissions [21].

Furthermore, the mode of action by which these forages reduce CH4 emissions remains
largely unclear. Tannins from chestnut, quebracho [113], and leucaena [114,115] have been
found to reduce CH4 by reducing different methanogenic populations in the rumen. There
was a significant effect of high molecular weight (MW) CT fractions from Leucaena on
richness and species diversity of rumen methanogenic and bacterial population in rumen.
The study showed that CTs with high MW had a pronounced inhibitory effect on proteolytic
bacteria, Prevotella spp., and Methanobrevibacter population [97,116].
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Table 1. A short overview of methane production potential of tropical and temperate forages.

Plant
Species Age Fraction Preservation ECT *

(%)
Animal

(Rumen Fluid)
Methane

(g/kg DM)
Study

(Duration) Reference

Acacia.
angustissima

var hirta
(STX)

Mature Leaves Fresh 4.9 Steers 0.6 In vitro (48 h) [90,117]

Acacia
angustissima

var. hirta
(STP5)

Mature Leaves Fresh 4.4 Steers 0.8 In vitro (48 h) [90,117]

Desmanthus
illinoensis
(Michx.)
MacMill

Mature Leaves Fresh 5.1 Steers 24.9 In vitro (48 h) [90,117]

Desmodium
paniculatum

var.
paniculatum

Mature Leaves Fresh 10.3 Steers 7.9 In vitro (48 h) [90,117]

Lespedeza
cuneata Mature Leaves Fresh 4.7 Steers 15.1 In vitro (48 h) [90,117]

Lespedeza
stuevei Mature Leaves Fresh 9.9 Steers 4.9 In vitro (48 h) [90,117]

Leucaena
retusa Mature Leaves Fresh 2.4 Steers 40.7 In vitro (48 h) [90,117]

Mimosa
strigillosa Mature Leaves Fresh 9.9 Steers 7.6 In vitro (48 h) [90,117]

Neptunia lutea Mature Leaves Fresh 7.0 Steers 19.7 In vitro (48 h) [90,117]

Onobrychis
viciifolia acc
LRC 3519

Early stage Herbage Fresh 2.5 Cross bred heifers 28.2 In vivo (24 h) [14]

Onobrychis
viciifolia acc
LRC 3519

Late stage Herbage Fresh 0.7 Cross bred heifers 24 In vivo (24 h) [14]

Onobrychis
viciifolia acc
LRC 3519

Mature Herbage Hay 0.6 Cross bred heifers 22.5 In vivo (24 h) [14]

Medicago
sativa Early stage Herbage Fresh 0 Cross bred heifers 26.6 In vivo (24 h) [14]

Onobrychis
viciifolia cv.

Perly
Mature Herbage Silage 3.7 Brown Swiss

cows 18.75 In vitro (24 h) [17]

Onobrychis
viciifolia cv.
Shoshone 1

Early
Flowering Herbage Hay 3.9 Holstein dairy

cows 12.9 In vitro (24 h) [118]

Lotus
corniculatus
cv. Norcen 1

Early
Flowering Herbage Hay 0.4 Holstein dairy

cows 11.7 In vitro (24 h) [118]

Lotus
corniculatus

cv. Ober-
haunstadter

1

Early
Flowering Herbage Hay 0.7 Holstein dairy

cows 11.8 In vitro (24 h) [118]

Lotus
corniculatus

cv. Bull
Mature Herbage Silage 2.2 Brown Swiss

cows 17.64 In vivo (24 h) [17]

Lotus
corniculatus
cv. Polom

Mature Herbage Silage 0.8 Brown Swiss
cows 18.75 In vivo (24 h) [17]

Lotus
corniculatus Vegetative Herbage Silage 2.5 Friesian dairy

cows 26.9 In vivo (24 h) [119]

Lolium
perenne Mature Herbage Fresh 0 Friesian dairy

cows 24.15 In vivo (24 h) [106]

Lotus
corniculatus Mature Herbage Fresh 0.2 Friesian dairy

cows 19.9 In vivo (24 h) [106]

Lotus
pedunculatus Mature Herbage Fresh 8 Sheep 14.5 In vivo (24 h) [119]

Hedysarum
coronarium Mature Herbage Fresh 2.8 Friesian and

Jersey dairy cows 19.5 In vivo (24 h) [120]

1 Refers to feed supplied in total mixed ration, * Extractable condensed tannins.
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Similarly, birdsfoot trefoil and sainfoin were found to inhibit the proteolytic bacterial
population [49]. A study analysing the effect of different tannin sources on CH4 emissions
found that CT-rich (acacia and quebracho tannins) and HT-rich (chestnut and valonea
tannins) affect rumen fermentation differently. At concentrations above 5% DM, in addition
to a significant decrease in CH4 emissions, there was also a negative effect on total VFA
production. CT-rich extracts reduced the acetate/propionate ratio significantly at a con-
centration higher than 5%. However, the ratio was not affected by HT extracts, indicating
that they had a stronger impact on methanogen population in comparison with substrate
fermentation. Only valonea extracts (5% w/w) were able to reduce CH4 emissions without
any negative impact on fermentation and VFA profile. This indicates that classification
based solely on tannin concentration or the type of tannins (HTs and CTs) present in the
feed is not sufficient to determine their potential to reduce CH4 emissions [86]. Similarly, a
study was performed on CT-rich forages from Texas to determine the effect of different
functional features (PPC and antioxidative activity) on CH4 emissions. No effect of PPC
was found on CH4 abatement, whereas the correlation between antioxidative property of
tannins and decrease in CH4 emissions was significant. In contrast to previous studies, the
decrease in acetate/propionate in this study was not correlated with a decrease in CH4
emissions [90]. The results from these studies further reinforce the need for CT structural
characterization in addition to concentration, in order to make an accurate assessment of
their impact on ruminant nutrition.

4. Existing Research Gaps and Future Directions

As discussed in the previous sections, several studies have tried to explore the proper-
ties that affect tannin astringency. However, the variations in the results obtained, and their
lack of reproducibility, hinder their field-scale applicability. Furthermore, their structural
complexity and the varied forage chemical composition among different species present
difficulties for understanding the implications that CTs have for ruminant nutrition and
particularly their antimethanogenic potential. Although several studies have identified
a large variability in both the concentration and structure of CTs across species and their
cultivars [22,32,74], few studies have analysed the implications of this variability on the ob-
served bioactivity. In the following sections, we present a brief overview about the factors
responsible for current situation, with an apparent incongruity regarding the influence of
tannins on ruminant nutrition. We also discuss the frequently used analytical techniques
for qualitative and quantitative analysis of tannins and the underlying problems associated
with them. Our aim here is to illustrate the importance of optimized tannin analyses and
inclusion of tannin structural features in animal studies to overcome inconsistent animal
responses. By avoiding these factors, which cause substantial variation in the reported
studies, we can focus more precisely on CT–animal interactions.

4.1. Experimental and Analytical Incongruities

Tannin concentration and composition in plant has been reported to be substantially
influenced by changes in environmental conditions, as well as by plant species and its
phenological stage [40]. The preparation and handling of tannin extracts can also cause
alterations in quantification of tannins [121]. In order to ensure accurate determination of
tannin concentration and composition in a plant tissue, handling and storage protocols
should be followed, as CT concentration is highly influenced by the environmental factors.
Quantitative analyses are essential for determining CT bioavailability in the samples and
spectrophotometric assays are routinely utilized due to their rapid and low-cost analysis.
Due to their structural complexity, the number of derivatisation and analytical techniques
are few and they have certain limitations. Substantial information about the activity of CTs
can be obtained by analysing specific structural traits of tannins as it is difficult to isolate
individual large polymeric CT units compared to dimers or trimers [122]. The complexity
of CT structures means that they are frequently analysed by a method where multiple
techniques with different functions are integrated together.
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4.1.1. Growth Conditions of Experimental Plants

Tannin concentrations in plants can be up to 20% of their total dry weight [38]. Al-
though, CTs are found in different parts of the plant and they are predominantly con-
centrated in young leaves and flowers [105,123]. The concentration of tannins in tropical
plants is, on average, higher than in temperate plants, yet there is substantial variation
across seasons and environmental factors [62]. Drought, nutrient availability, and other
conditions during plant growth have also been shown to affect CT concentration and
composition. Although the effect of these abiotic stresses on the CT composition has not
been well researched [27,28,124], they have been shown to produce incremental effects
in CT concentrations [84,125]. Accordingly, it was observed that the concentration of
CTs in sulla was higher in the summer than in spring [54]. Similarly, Quercus rubica had
higher tannin concentration and less polymerized tannins when grown in dry conditions
compared with wet conditions [62]. Thus, it is important to account for and report the
precise experimental conditions because of their potential to affect the observed tannin
concentration, composition, and bioactivity [126].

4.1.2. Sample Preservation and Storage

After harvest, sample preservation plays an important role in the quantification of
CTs, as their extraction and quantification are heavily influenced by biotic factors. For
precise tannin concentration and composition analysis, samples should be freeze-dried,
rather than air or oven dried. In a direct comparison, hay-drying of samples from purple
prairie clover (Dalea purpurea Vent.) resulted in a slight decrease in ECTs from 70.2 to
64.1 g kg DM−1, while the protein-bound CTs increased from 9.0 to 12.4 g kg DM−1. With
ensiled samples, the differences were even more pronounced, and in these samples, ECTs
decreased to 27.4 g kg DM−1, while protein-bound CTs increased their concentration to
44.3 g kg DM−1 [127]. Thus, while the total CT concentration did not differ, without freeze
drying at least a part of the CTs, it can change from the available form to the protein-bound
form, which is often not accounted for in the studies analysing bioactivity of tannins.
Similarly, when comparing different drying methods for the concentration of HTs in white
birch (Betula pubescens), oven drying reduced the ET concentration significantly from 10.9
to 8.4 g kg DM−1, while simultaneously increasing the concentration of insoluble ET from
0.8 to 2.4 g kg DM−1. In this study, neither storing the samples at −20 ◦C for 3 months
prior to drying nor vacuum or air drying resulted in a decrease in ellagitannins or total
HTs despite a minor but non-significant decrease in air dried samples [121]. This indicates
that the adverse effect from air and oven drying increases with the air temperature, yet the
short-term effect at room temperature appears to be negligible. The effect of temperature
during post drying storage is less clear, and storage at 25 ◦C for three weeks reduced
tannins in walnuts by 20–40% (dependent on the subsequent extraction technique), with
large parts of the reduction having occurred in the first week [128]. However, with regard
to the HTs from birch, a one-year storage period at room temperature (22 ◦C) yielded lower
tannin concentrations compared to samples that were stored in a freezer, with 17.4 and
19.1 g kg DM−1, respectively. This value was still higher than the HT concentration in the
samples stored in a refrigerator at 4 ◦C, which yielded 15.7 g kg DM−1 [121]. Contrasting
results were obtained by Kardel [129], where samples stored in a refrigerator for one year
had on average 3.5% higher CT concentrations than samples stored at room temperature.
In this study, also storing the samples in an oven at 60 ◦C for 5 days had no measurable
impact on CT concentrations.

4.1.3. Tannin Extraction

While the vast majority of studies use aqueous acetone to extract tannins of any kind,
with either 70 or 80% acetone, there is no clear indication about the superiority of any
extraction method yet. Some studies have also used methanol or hot water extraction
as well. Accordingly, the extraction yields with hot water were 6% higher on average,
compared to a water/methanol (1:1) extraction solvent, and 13% higher compared to
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an acetone/water/formic acid (70:29.5:0.5) solvent [129]. This study only determined
the tannin concentration and did not evaluate potential changes in the structure due to
the high temperatures. Contrary to these findings, Salminen [121] found that aqueous
acetone extraction yielded on average 41% more extractable HT, compared to aqueous
methanol extraction, although the study did not test hot water extraction. Pure acetone,
however, yielded the lowest HT concentrations, with a reduction of almost 75% compared
to acetone/water (70:30). The extraction yield of the 70% acetone was increased even
further by 29%, if ascorbic acid was added to the acetone water mixture, presumably
because it prevented oxidation of the HTs [121]. This is in accordance with the findings of
Chavan [130] and Hagerman [131] for CTs, where 70% acetone also provided the highest
extraction yields compared to all methanol mixtures and acetone mixtures with higher
acetone concentrations. Acidification of aqueous acetone extraction solvent with 1mL of
concentrated HCl further increased the extraction yields by around 10%.

Some recent studies have, however, indicated in general much lower performance
from maceration-based techniques compared to techniques such as ultrasonic baths,
microwave-assisted extraction (MAE), and Soxhlet extraction. Aspé [132] identified much
larger cell wall destruction from these last three techniques, which resulted in generally
much higher extraction yields compared to maceration techniques, where only minor cell
wall damage has occurred. According to Chupin, et al. [133], MAE effectiveness depends
on the particle size and increases with small particles. However, they generally did not
identify an effect of MAE on the structure of the tannins.

In addition to the solvent, the extraction conditions can also affect the efficiency of
extraction. Extraction at 4 ◦C in darkness led to around 14–17% higher recovery of CTs
compared to extraction at room temperature, also in dark conditions [134].

4.1.4. Major Analytical Techniques I: Spectrophotometric Assays

Spectrophotometric assays are routinely used in studies due to their rapid and low-
cost analysis. Vanillin and HCl-butanol assays are conventionally employed to quantify
CTs. Both these assays have been widely used in the majority of studies due to their acces-
sibility and low cost for quantifying CTs. In principle, results from the HCl-butanol assay
are more reproducible than the vanillin assay. Vanillin assay with methanol has been found
to lack specificity as in addition to CTs, it complexes with flavan-3-ols and dihydrochal-
cones [84,135]. In the HCl-butanol assay, CTs are depolymerized oxidatively to form bright
coloured anthocyanidins in the presence of mineral acids [135]. The HCl- butanol assay
in some instances lacks specificity and leads to over- or underestimation of results as the
colour is dependent on the interflavonoid linkages and 5-OH groups [126]. For accurate
quantification by the HCl-butanol assay, freeze-dried samples should be preferred as under
heat treatment, tannins can bind to other macromolecules which could undergo oxidation.
Macromolecules containing phenolic groups can be oxidised to form quinones which
can lead to condensation reactions between tannins and other macromolecules, thereby
preventing the release of anthocyanidins from the modified tannins [84]. Furthermore,
the addition of iron increases the specificity of this assay [135]. The addition of acetone to
the assay also leads to the complete dissociation of CTs from the plant material and this
inclusion has further refined this method [136]. A wide range of studies use tannic acid,
catechin, or leucocyanidin as standards for these assays. This is also one of the sources for
which there is a huge variation in the results, as seen in Table 2 [84,129].
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Table 2. Variability of condensed tannins concentration in frequently studied species across different studies.

Species Condensed Tannins (% DM) Coefficient of Variation (%) References

Acacia angustissima 7.4–8.9 9.3 [117,137]
Acacia nilotica 0.46–8 67.4 [137–140]
Acacia senegal 0.07–7.8 138.9 [137,139]
Acacia tortilis 4.7–5.4 9.8 [137,139]

Lespedeza cuneata 0.83–5.1 36.2 [117]
Leucaena leucocephala 0.52–18 112.7 [109]
Mimosa caesalpinifolia 1.8–12.4 105.5 [117,141]

Hedysarium coronarium 0.4–3.8 68.1 [76,142,143]
Onobrychis viciifolia 2.4–14.1 113.1 [14,18,78,144]
Lotus corniculatus 1.4–7.6 45.3 [78,106,145–148]
Lotus pedunculatus 0.25–0.8 50.9 [119,147,149]

Onobrychis viciifolia (Silage) 2.6–3.7 17.4 [17,21]
Lotus corniculatus (Silage) 2.2–3.4 22.3 [17,119]

4.1.5. Major Analytical Techniques II: Liquid Chromatography Coupled with
Mass Spectrometry

High-Performance Liquid Chromatography (HPLC) has been proven to be a compe-
tent and rapid method for the analysis of polyphenols apart from the highly polymerized
oligomers [48,150]. Reverse phase LC (RPLC) is a commonly used chromatographical
technique to analyse CTs, ranging from monomers to tetramers and in some cases, their
isomers distinctly [151]. With increased CT polymerization, the intelligibility of the chro-
matogram in RPLC decreases due to the presence of unresolved peaks. The combination
of fluorescence detection with RPLC leads to increases in selectivity and sensitivity of
the method [152]. A UV-DAD detector is most frequently complemented with LC for
the determination of CTs. It also helps in the direct classification of polyphenols into
different subgroups such as flavonoids, ellagitannins, gallic acid derivatives, and caffeic
acid derivatives, etc. [153]. Recently, to increase the specificity and resolution of the LC
analysis, separation techniques have been coupled with ESI-MS or matrix-assisted laser
desorption/ionization time-of-flight (MALDI-TOF) MS [154]. These are used extensively
for the analysis of CTs in plant and food material such as cocoa, grapes, wine, and birch
species, etc. [155,156]. Soft ionization methods such as ESI or MALDI are used to ionize
non-volatile analytes such as biopolymers and detect highly polymerized CTs. MALDI-MS
has identified procyanidins of degree of polymerization (DP) of 15 in unripe apples, for
seed coats of soyabeans until DP of 30 [157]. Similarly, the combination of Hydrophilic
Interaction Chromatography (HILIC) x RPLC with fluorescence detection and electrospray
full scan mass spectrometry (ESI-MS) resulted in high resolution analysis. This method was
able to detect procyanidins with DP value of 16 and gallolylation degree of 8 in the grape
seed extracts [158]. These methods are constantly evolving and are now able to provide
rapid quantitative and qualitative results. One such method is the Engstrom method
which utilizes ultra-high performance liquid chromatography (UPLC) separation coupled
with DAD and negative ion ESI-MS to generate a polyphenolic profile directly from plant
extracts. In addition to the quantification of different polyphenolic groups, it provides an
insight into the composition of flavonols, CTs, HTs, and structural features of condensed
tannins [159,160]. These methods provide a great deal of information on tannin structural
diversity, but due to high operational costs, their use is not yet widespread.

4.2. Influence of CT Structural Features on Ruminant Nutrition Is Still Ambiguous

The additive influence of CT structural features on the antimethanogenic potential of
CT forages remains largely unexplored. Although research on CT structure and functional
features has progressed immensely [64,158,160], only a small number of studies have as-
sessed their impact on CH4 abatement. These studies have shown that CT composition,
and the concentration of CTs present in forages, are both significant determinants of their
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antimethanogenic potential [24,90,95,161]. One of the major reasons is that CTs exist as
highly polymerized structures, so large polymers cannot be easily purified as individual
compounds and are studied in terms of certain structural features such as molecular weight,
polymer size, and prodelphinidin proportion [33]. High structural variability across and
within the species adds to the difficulty for assessing their structure–activity relationship.
This has been shown in studies on sainfoin cultivars where antimethanogenic potential was
found to be highly variable. Hatew [24] studied the intraspecies variability by analysing
46 different accessions of sainfoin with CT concentrations ranging from 0.6 to 2.8% of DM
for their antimethanogenic potential. Emissions were analysed based on CT structural
properties, i.e., mDP (12 to 84), percentage of trans isomers (12 to 34%), and PD (52.7 to
94.8%) in CT. These properties have been associated with the astringency of CTs. It was
observed that PD percentage was a primary CT structural characteristic responsible for
reducing CH4 emissions in this in vitro study [24]. Weight-average Mw of CTs was shown
to have little impact on reduction in CH4 production (R2 = 0.0009) from North American
native forage plants [117]. Nevertheless, it is important to note that the variation in CH4
reduction potential of different species also arises from plant morphology, CT interaction
with feed components, and the presence of other plant secondary metabolites [162,163].
The impact of CT structural features was found to be more pronounced in the studies
conducted on CT extracts from plants. The additive effect of other secondary metabolites
and forage quality parameters could be voided by the addition of purified CT extracts
in the feed. Studies have shown that inclusion of CT extracts (40 mg/g DM) from leu-
caena (hybrid-Bahru) and mangosteen (Garcinia mangostana L) peel could reduce CH4
emissions by 45 and 35 percent, respectively. In both studies, Panicum maximum substrate
was used as control. The inhibitory effect of mangosteen peel extracts (Mw = 2081) was
milder than leucaena (Mw = 2737) owing to its lower MW but it was associated with fewer
negative effects on in vitro DM degradability and lower protein binding affinity [164,165].
When the antimethanogenic potential of leucaena extracts with differing average molec-
ular weights was tested, extracts with the highest MW were able engender CH4 to the
maximum [161,166]. Table 3 summarizes the data from two different in vitro studies where
at the same concentration, the effect of the molecular weight was more pronounced and it
had a strong negative correlation with CH4 emissions.

Table 3. Influence of molecular weight on methane emissions from two in vitro studies using Kedah-Kelantan cattle
rumen fluid.

Extracts CT 1

(%)
MW

2

(Da)
Total Gas

(mL g−1 DM)
Methane

(mL g−1 DM) Reference

Leucaena leucocephala hybrid-Rendang 3 1265.8 57 8.07 [161]
Leucaena leucocephala hybrid-Rendang 3 1028.6 61.6 9.2 [161]
Leucaena leucocephala hybrid-Rendang 3 652.2 67 9.35 [161]
Leucaena leucocephala hybrid-Rendang 3 562.2 67.3 10.27 [161]
Leucaena leucocephala hybrid-Rendang 3 469.6 69.7 11.06 [161]

Leucaena leucocephala hybrid-Bahru 3 1348 49.8 4.6 [166]
Leucaena leucocephala hybrid-Bahru 3 857 51.8 5.6 [166]
Leucaena leucocephala hybrid-Bahru 3 730 56 7.8 [166]
Leucaena leucocephala hybrid-Bahru 3 726 55.5 9.7 [166]
Leucaena leucocephala hybrid-Bahru 3 494 57.5 9.5 [166]

Correlation between molecular weight and methane production −0.72
1 CT: Condensed tannins, 2 MW: Molecular weight of condensed tannins.

Some studies have also analysed the impact of multiple structural features simul-
taneously from CT extracts. Extracts from multiple sainfoin cultivars and diverse CT
sources were analysed for CT structural features such as PD percentage, cis flavan-3-ols
percentage, and average polymer size (mean degree of polymerization). PD percentage and
average polymer size were found play an important role in determining antimethanogenic
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potential of CTs, in addition to the actual CT concentration [25,95]. This shows that high
reproducibility of the results can be attained by incorporating the structural features of CTs
in ruminant nutrition studies.

4.3. A Roadmap to Close the Missing Links and Possible Future Directions

As discussed above, there is an apparent incongruity between measured tannin
concentrations and their bioactive effects. This may be explained by a combination of
four factors: (a) the variability of tannins and their composition is large both within and
amongst species, and it is affected, at least partially, by the environment; (b) most studies
have used too few plants and have been conducted under non-controlled environmental
conditions or not comparable conditions, to capture the variability of the tannins; (c) many
studies have used inadequate or unsuitable analytical techniques (often due to lack of
alternatives or resources), which do not capture the structural characteristics; and (d)
the studies that investigated the antimethanogenic potential of CTs while accounting for
structural attributes are still limited.

To overcome these inconsistencies, in future studies, every aspect that might affect
the results, from the growing conditions to growth stage of the plant at harvest, and from
sampling to extraction should be carefully considered in future studies. In the absence
of laboratory infrastructure for the structural characterisation of CTs, assays to determine
their astringency could be employed. Protein precipitation and radial diffusion assays are
frequently used to measure the protein binding ability of tannins [167–169]. Furthermore,
assays that determine their antioxidative and oxidative (at high pH) behaviour could also
be utilized. They have been associated with the negative impact of tannins on the rumen
microbial population [90] and their antiherbivore effect [33], respectively. Additional
treatments with polyethylene and polyvinylpolypyrrolidone in vitro studies could be
employed to elucidate the tannin effect on CH4 emissions, as they bind specifically to
tannins. These studies could be instrumental in distinguishing between the effect of
tannins and forage chemical composition on CH4 emissions. In vitro fermentation/CH4
production techniques could be useful for screening these forages and determining their
adequate supplementation. Using CT extracts of tanniferous forages in in vitro studies
can illustrate the structure-activity relationship of CTs with methane emissions more
distinctly. Condensed tannin supplementation has been found to impact the diversity and
composition of the rumen microbial community [170]. Understanding the dynamics of
microbial populations in rumen, and how CT-containing forages influence their abundance
and diversity, can provide significant insights into their mode of action. Employing novel
techniques such as metagenome and metatranscriptome analysis of the rumen microbiome
under CT treatment can help in identifying the microbial population and the functional
shifts in rumen microbiome which lead to CH4 abatement [171]. As we gather more
information about the relationship between the structure of CTs and their bioactivity,
there are prospects for breeding plants with desired concentrations and composition of
CTs [105,172]. Molecular approaches have already made it possible for white clover to
reach moderate levels of CT in its leaves [173] and efforts are also being made in directions
to improve the persistence of TRFs, as may be seen for birdsfoot trefoil [174]. Several
questions still remain unanswered, and these are critical for ensuring a comprehensive
understanding of the fate of CTs in biological systems.

• How do different environmental conditions influence the structural features of CTs?
• To what extent are the structural features responsible for the functional attributes of

tannins (PPC and oxidative property) and whether these assays could be utilized as
an indicator of their antimethanogenic activity?

• How does the presence of other secondary plant metabolites affect the influence of
tannins on CH4 emissions?

• How does tannin supplementation affect mineral and vitamin bioavailability in rumi-
nants? Which properties are primarily responsible for these interactions?
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• How do forage conservation methods (ensiling vs. hay drying vs. fresh material)
influence the palatability/acceptability and DMI by livestock, and anthelmintic and
antimethanogenic potential of TRFs?

• To what extent are the anthelmintic effects of tannins sustained during long-term
trials? Is it possible for gastrointestinal parasites to develop resistance to tannins?

• How do the PPC and oxidative capacity of tannins influence their antimethanogenic
potential? What is the magnitude of their effect on antimethanogenic potential?

• How do different tannin sources influence rumen microbiome diversity and abun-
dance and whether these effects are short or long term?

• How do CTs interact with feed constituents and how do structural characteristics play
a role in this?

5. Conclusions

In recent years, there have been remarkable new insights into CT structural diver-
sity and functions with more sensitive analytical methods. However, CT bioactivity is a
complex process which results from a multitude of variations occurring simultaneously
in plants as well as in their effects in animals. The variability in the results from different
studies focuses our attention on the need for developing and adapting a course of action for
the investigation of potential of CTs to reduce CH4 emissions. The comparison of CT finger-
prints of different species could help us understand not only the factors which define their
antimethanogenic potential but also provide a vital framework to assess their interactions
with plant constituents and rumen microflora, benefitting overall ruminant health.
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