
sustainability

Review

Prediction Interval Estimation Methods for Artificial Neural
Network (ANN)-Based Modeling of the Hydro-Climatic
Processes, a Review

Vahid Nourani 1,2,*, Nardin Jabbarian Paknezhad 1 and Hitoshi Tanaka 3

����������
�������

Citation: Nourani, V.; Paknezhad,

N.J.; Tanaka, H. Prediction Interval

Estimation Methods for Artificial

Neural Network (ANN)-Based

Modeling of the Hydro-Climatic

Processes, a Review. Sustainability

2021, 13, 1633. https://doi.org/

10.3390/su13041633

Academic Editor: Saeed

Chehreh Chelgani

Received: 9 January 2021

Accepted: 1 February 2021

Published: 3 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz,
Tabriz 51368, Iran; n.jabbarian@tabrizu.ac.ir

2 Faculty of Civil and Environmental Engineering, Near East University, N. Cyprus, via Mersin 10,
Nicosia 99138, Turkey

3 Department of Civil Engineering, Tohoku University, 6-6-06 Aoba, Sendai 980-8579, Japan;
hitoshi.tanaka.b7@tohoku.ac.jp

* Correspondence: vnourani@yahoo.com or nourani@tabrizu.ac.ir; Tel.: +98-914-403-0332

Abstract: Despite the wide applications of artificial neural networks (ANNs) in modeling hydro-
climatic processes, quantification of the ANNs’ performance is a significant matter. Sustainable
management of water resources requires information about the amount of uncertainty involved
in the modeling results, which is a guide for proper decision making. Therefore, in recent years,
uncertainty analysis of ANN modeling has attracted noticeable attention. Prediction intervals (PIs)
are one of the prevalent tools for uncertainty quantification. This review paper has focused on
the different techniques of PI development in the field of hydrology and climatology modeling.
The implementation of each method was discussed, and their pros and cons were investigated. In
addition, some suggestions are provided for future studies. This review paper was prepared via
PRISMA (preferred reporting items for systematic reviews and meta-analyses) methodology.
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1. Introduction

Sustainable water resources management includes designing and managing various
aspects such as ecology, environment and hydrology integrity in the present and future [1].
Sustainable management requires adequate information about the state of water resources.
Thus, appropriate modeling to investigate the situation in present and future times is
necessary. On the other hand, reliability of the modeling is an important issue that di-
rectly influences the management and decision-making of the problems. Therefore, the
uncertainty involved in modeling should be carefully considered so as to achieve more
realistic decisions.

Recently, the artificial neural network (ANN) as a prevalent modeling method has
been used for identification of the complicated non-linear relationship of inputs and output
(e.g., see, [2–8]). The relationship between the hydrological phenomena is a complicated
issue and hot topic in hydrological studies, due to spatial and temporal changes of factors
that influence the process. Therefore, many hydrological models with various degrees
of complexity have been used for the simulation of such a stochastic process [9]. In
spite of the numerous applications of the ANN, it has been indicated in many previous
studies that ANN models are inherently stochastic, as identical results would be difficult
to be reproduced on different occasions [10]. Classic applications of ANN include some
imperfections; e.g., the weights of the ANN are randomly assigned, which leads to a
long training time; ANN behavior is unexpected and there is not a specified way for
determination of the best structure. These features are a deficiency of ANNs, which can
have a negative effect on the reliability of the modeling.
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Generally, point prediction of the ANN has been considered in most of the studies,
but the reliability of the point prediction decreases when the level of uncertainty is high.
In the point prediction method, only a point is directly predicted, which is the unknown
true targeted value, so its application is questionable. The point prediction is not able to
give information about the uncertainty of the modeling, and it is not able to describe the
prediction accuracy [11]. Furthermore, via the point prediction, only a prediction error can
be obtained, and the probability for correct predictions remains unknown, which can make
decision making more difficult. Most of the models associated with the water management
and modeling are in the form of point prediction, so various sources of uncertainties have
not been investigated, which may affect the modeling outcome. Uncertainty includes
model uncertainty, input uncertainty and parameter uncertainty. Prediction uncertainty
sources can be errors in measuring, lack of knowledge of constants, sparse and noisy
input data, and model approximation errors (e.g., due to imperfections in the model
formulation) [12,13], or the target values are affected by some probabilistic events [14].
The importance of determining the total model uncertainty is the same as model output
and it has efficient impact on decision making. Without investigating the resources of the
uncertainty, the assessment of the ANN modeling quality is impossible.

Prediction interval (PI) is a powerful measure of uncertainties associated with predic-
tion to inform decision makers [15]. PIs lead to the proper arrangement of the future trends
and plans, appropriate risk management and an increment of the benefits of modeling. PI
presents a bound that captures the observed values by measuring the indication of accuracy
called the confidence level ((1-a)%) [16–18]. As PIs contain more sources of uncertainties
compared to similar tools such as the confidence interval (CI), they are superior and more
practical in order to help decision makers distinguish the best and the worst of the modeling
scenarios. Wider PIs present more uncertainty, so more awareness is needed in decisions,
and narrower PIs show more confidence in decisions. There are some methods to quantify
uncertainty, such as ensemble of the ANN, sensitivity analysis and the self-organizing
map. Moreover, some techniques are applied to compute the PIs, such as delta, Bayesian,
Monte Carlo, bootstrap and lower upper bound estimation (LUBE). The delta method
basic concept is about analyzing the ANNs regression models and application of Taylor’s
series [19,20]. The procedure of this technique is based on the homogeneity of the noise
and its normal distribution. As most of the natural phenomena are heterogeneous, this
method’s reliability may be questionable. The Bayesian method is based on the consid-
eration of a pre-defined probability distribution of the ANN’s parameters, instead of a
single value, so the output will also have distributions conditional on the observed training
set [21]. The Bayesian technique includes great computations; moreover, to construct the
PIs, calculating the Hessian matrix is needed. The Monte Carlo method constructs the
PIs based on allocation of the ranges and probability distribution of each variable. These
classic methods contain some assumptions about the data distribution [22]. The bootstrap
method is a simple and frequently used technique to calculate the PIs [23,24]. This method
is based on resampling and training different ANNs. It does not need any assumption
about the data distribution but consists of high computational costs for large datasets.
Implementation of this method is easy, and it is independent of massive calculation. The
main disadvantage of this method is its computational cost for large datasets. The LUBE
technique [25] is a non-parametric method, independent of information about the data or
error distributions. Kasiviswanathan and Sudheer [22] have reviewed some techniques
to quantify the uncertainty of the ANN models in hydrology. Thirty-six research articles
associated with uncertainty analysis of the ANN-based stream flow and flood prediction
from the years 2002 to 2015 were reviewed, and it is concluded that in order to distinguish
the best procedure to encompass different sources of uncertainty, more investigations are
needed. The applied methodologies in papers from well-known international journals
about uncertainty analysis in hydrology from the year 2002 to quantify uncertainty are
tabulated in Table 1.
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Table 1. Papers from well-known international journals about uncertainty analysis in hydrology.

Method Author Name of the Journal

Ensemble ANN

Cannon and Whitfield [26] Journal of Hydrology

Jeong and Kim [27] Hydrological Processes

Fleming, Bourdin, Campbell, Stull and Gardner [28] Water Resources Research

Kan, Yao, Li, Li, Yu, Liu, Ding, He and Liang [29] Stochastic Environment Research and Risk Assessment

Kim and Seo [30] Journal of Hydro-environment Research

Sensitivity analysis Kim and Kim [31] The Journal of the American Water Resources Association

Self-organizing map Yang and Chen [32] Hydrological Processes

Bootstrap

Srivastav, Sudheer and Chaubey [33] Water Resources Research

Boucher, Perreault and Anctil [34] Hydrology and Earth System Sciences

Sharma and Tiwari [35] Journal of Hydrology

Kant, Suman, Giri, Tiwari, Chatterjee, Nayak and
Kumar [36] Neural Computing and Applications

Bayesian

Zhang, Liang, Srinivasan and Van Liew [37] Water Resources Research

Khan and Coulibaly [38] Journal of Hydrometeorology

Zhang, Liang, Yu and Zong [39] Journal of Hydrology

Zhang and Zhao [40] Journal of Hydrology

Humphrey, Gibbs, Dandy and Maier [41] Journal of Hydrology

Markov Chain Monte Carlo Shen, Zeng, Liang, Li, Tan, Li and Li [42] Water Resources Research

GLUBE Tongal and Booij [43] Stochastic Environmental Research and Risk Assessment

The application of PIs to quantify uncertainty has increased and attracted significant
attention in the last decade. Therefore, it is worthy to evaluate different PIs develop-
ment methods in order to identify the best performance of the methods and assess each
method suitability.

The lack of review papers investigating PIs development methods in the field of
hydrology caused the preparation of the current review paper. The number of published
papers regarding PIs construction methods is depicted in Figure 1. The major objective of
this review paper is to categorize and enumerate the PIs construction methods and their
applications in hydro-climatic studies. Moreover, some suggestions for future works in
order to develop and improve the PIs applications are presented. The reviewed sources are
mostly included by the Scopus abstract and citation database (www.scopus.com (accessed
on 26 January 2021)). Elsevier’s Scopus is the most frequently used research engine, and
it is updated earlier than the Web of Science on which the papers may be updated lately.
In addition, as authors can load any paper onto Google Scholar, some information may
not be reliable. The search terms were (“ANN”; “uncertainty”) and (“ANN”; “Prediction
interval”), respectively, for the uncertainty analysis and PIs. The search operator was
“and”. Then, the appropriate papers in the fields of hydrology and climatology were
selected by abstract reviewing. Moreover, only journal articles published in English were
considered, as most of the papers in Scopus research engine are in English. The initial
number of obtained papers about the uncertainty assessment of hydrological and hydro-
climatological studies was 36 papers; 18 papers from well-known international journals
from the year 2002 are tabulated in Table 1. In addition, 69 papers associated with PIs
construction of the ANNs were investigated, then 17 papers were selected according to an
abstract review and relation to hydrology and climatology. Papers from the years 2002 to
2020 were presented as selected papers.

www.scopus.com
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Figure 1. Number of published papers regarding prediction intervals (PIs) construction (indexed in Scopus) with respect to
year of publication.

Some methodologies concerning standards of literature reviews and the way of report-
ing and structuring of them are RAMESES (realist and meta-narrative evidence syntheses:
evolving standards), PRISMA (preferred reporting items for systematic reviews and meta-
analyses) and PSALSAR (research protocol, appraisal, synthesis and analysis, reporting
results). RAMSES could be an appropriate choice for systematic narrative reviews. PRISMA
was developed for systematic literature reviews and meta-analyses [44]. PRISMA consists
of a 27-item evaluation checklist and a specific flowchart to follow [45]. Moreover, PRISMA
protocols (PRISMA-P) checklist and the Explanation and Elaboration [46] document could
lead to the improvement of a more complete and reliable review report [47]. The PSALSAR
method consists of six basic steps [48], while the common systematic literature review
methods include four steps, which are search, appraisal, synthesis and analysis (SALSA).
The PSALSAR method contains research protocol and reporting results at the first and last
steps. This review paper attempts to follow most of the checklist’s items of the PRISMA
method, since this method is used as a basis for reporting systematic reviews for most
research types. Some examples of systematic literature reviews are [49,50]. The systematic
research was conducted on September 1, 2020, and it was updated on December 20, 2020
and also on January, 20, 2021 for preparing a revision. The list of reviewed papers is
tabulated in Table 2.

In the following, Section 2 presents the base concepts of PIs and measurement criteria
of PIs, Section 3 describes the different PIs construction methods, Section 4 compares
different pros and cons of the methods and finally Section 5 recommends some suggestions
for future studies.
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Table 2. Number of the papers that applied PI to quantify the uncertainty of the artificial neural networks (ANN).

Keywords Number of
Cites Author PI Construction

Method
Number of

Papers

ANN; Bayesian; Bootstrap; PI;
Uncertainty 27 Kasiviswanathan and Sudheer [51] Bayesian 1

Uncertainty analysis; PIs;Lake level;
ANN; ANFIS; Bootstrapping 129 Talebizadeh and Moridnejad [52]

Bootstrap 7

ANN; Bootstrap technique;
Hydrological processes; Non-linear

function; Taylor series
72 Kasiviswanathan and Sudheer [53]

Uncertainty; Flood forecasting;
Bootstrap; ANNs; Ensemble 60 Kumar, Tiwari, Chatterjee and Mishra [54]

Water quality forecasting; Wavelet
neural network; Bootstrap;

Uncertainty; Data missing; Data
filling; Songhua River

33 Wang, Zheng, Zhao, Jiang, Wang, Guo and
Wang [55]

ANN; Bayesian; Bootstrap; PI;
Uncertainty 27 Kasiviswanathan and Sudheer [51]

ANNs; ensemble simulation; input
uncertainty; prediction uncertainty;

rainfall–runoff modeling
82 Kasiviswanathan, He, Sudheer and Tay [56]

General circulation
models;Downscaling; PIs; ANN 9 Nourani, Paknezhad, Sharghi and Khosravi [57]

111 Shrestha, Kayastha and Solomatine [58]

Monte Carlo 3

groundwater; artificial intelligence;
hydrologic model; groundwater

level prediction; machine
learning;artificial neural network

7 Seifi, Ehteram, Singh and Mosavi [59]

ANNs; Bayesian uncertainty; fuzzy
logic; kriging; uncertainty analysis 5 Tapoglou, Varouchakis, Trichakis and

Karatzas [60]

Ensemble Optimization; PI;Rainfall
runoff models 68 Kasiviswanathan, Cibin, Sudheer and

Chaubey [61]

LUBE 9

MOFIPS; PSO; Prediction interval;
LUBE; Neural networks; Streamflow

prediction
63 Taormina and Chau [62]

PI; Symmetry; ANN; Uncertainty;
Flood forecasting; Shuffled complex

evolution
16 Zhang, Zhou, Ye, Zeng and Chen [63]

ANN; Bayesian; Bootstrap; PI;
Uncertainty 27 Kasiviswanathan and Sudheer [51]

ANN; ensemble simulation; input
uncertainty; prediction uncertainty;

rainfall–runoff modeling
8 Kasiviswanathan, Sudheer and He [64]

General circulation models;
DownscalingPI; ANN 9 Nourani, Paknezhad, Sharghi and Khosravi [57]

Evaporation; Neural network;
Prediction interval; Uncertainty
quantifying; Wavelet de-noising;

Jitterd data

1 Nourani, Sayyah-Fard, Alami and Sharghi [65]

Uncertainty analysis; Hybrid double
feedforward neural network;

Sediment load estimation; Lower
upper bound estimation

27 Chen and Chau [66]

ANN; Crop simulation; Reservoir
operation; Optimization; Uncertainty 0 Kasiviswanathan, Sudheer, Soundharajan and

Adeloye [67]
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2. PIs Concepts

An interval includes the upper and lower limits that capture indeterminate future
value with a prescribed probability [68]. This limit and interval respectively are known as
prediction limit and PI (see Figure 2).
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PI and CI are different measures, and it is important to distinguish them. The CI
corresponds to the accuracy of the estimation of the true regression, while PI corresponds
to the accuracy of the estimation concerning the observed target value. Actually, PI is more
applicable than CI, since it is associated with the accuracy of observed target prediction,
whereas CI presents the accuracy of true regression estimation. In order to investigate the
differences between the two measures, the following description should be considered.
For the estimation of the unknown function f(xi; θ) presenting the true underlying model,
where θ is actual parameter set, for N data samples {(xi, ti)}N

i=1 we have:

ti= f(xi; θ)+ei (1)

where xi and ti are, respectively, input, observed target and model error. So, the objective
is to estimate the true model f(xi; θ). The approximate model f

(
xi; θ̂

)
is the mean of the

distribution of the targets, where the estimated parameters θ̂ are determined using machine
learning methods. To quantify the uncertainty, two aspects should be considered. One of
the aspects is that CI that indicates the accuracy of the estimation of the true model. CI is
measured by the distribution of the quantity f(xi; θ)− f

(
xi; θ̂

)
. The second aspect is that

PI indicates the accuracy of the prediction of the target. Therefore, Equation (2) can present
the relation between PI and CI as:

ti − f
(
xi; θ̂

)
=

[
f(xi; θ)− f

(
xi; θ̂

)]
+ ei (2)

It can be concluded from Equation (2) that PIs are wider than CIs, where PI contains
CI and covers more sources of uncertainty [54].

3. PIs Assessment Measures

The most commonly used measures for quantifying PIs construction are PI coverage
probability (PICP) and mean PI width (MPIW). The coverage measure corresponds to the
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encompassments of the obtained bounds. The wider PIs increase the PICP. The PICP is
calculated as [24]:

PICP =
1
N

N

∑
i=1

cici =

{
1, xi ∈ [L i, Ui]
0, xi /∈ [L i, Ui]

(3)

where N is the number of samples, and Li and Ui are the lower and upper bounds of the
ith PI, respectively. The second measure is used to evaluate the width of PIs. Normalized
MPIW (NMPIW) shows the normalized width as [24]:

NMPIW =
1

NR

N

∑
i=1

L(Xi)−U(Xi) (4)

where R is the range of the observed values. NMPIW, as a dimensionless criterion, indicates
the mean width of PIs. Each of these criteria separately cannot lead to a clear judgment due
to their inverse relationship. Therefore, the combinational coverage width-based criterion
(CWC) containing both criteria can be used to evaluate the estimated PIs as [24]:

CWC = NMPIW(1 + γ(PICP)e−η(PICP−µ)γ =

{
0, PICP ≥ µ
1, PICP < µ

(5)

η and µ are fixed parameters, which determine the PIs with the lower value of the PICP.
µ represents the confidence level of the PIs. η magnifies variation of the PICP and µ.
Different η values should be examined to determine the most appropriate η value via a
trial–error process. The coverage and width criteria are the most commonly used measures
to evaluate the PIs’ quality, however some other statistical measures are also applied to
evaluate the calculated PIs. For example, in order to evaluate the constructed PIs via the
Monte Carlo method, mean and standard deviation of the Nash–Sutcliffe model efficiency
for each run are calculated to measure the PIs’ coverage [58].

4. PIs Construction Methods

There are some methods to calculate the PIs. The Bayesian and Monte Carlo are the
traditional methods. The other most frequently used method is the bootstrap technique;
besides LUBE, it is one of the reliable methods. In addition, there are some other methods,
such as mean variance estimation [11] and first order uncertainty analysis (FOUA) [53], but
as they are not so prevalent, in the following sub sections the most common methods and
their applications in hydro-climatic studies are described.

4.1. Bayesian Method

The Bayesian method was introduced by MacKay [21]. Training of the classic ANN is
based on minimizing the error function, which leads to obtaining the optimum weights.
Whereas, the Bayesian method attempts to train the ANN for the posterior probability dis-
tribution of weights from assumed prior probability distribution using Bayes’ theorem. In
the Bayesian method, ANN training is performed based on the regularized cost function as:

E(ω)= ρEω+βED (6)

where ED is the sum of squared error and Eω is the sum of squares of the network weights.
ρ and β are used to determine training goals. The concept of this method is based on
consideration of the set of ANN parameters,ω as a random set of variables with presumed
distributions.

The Bayes’ rule is applied to update the density function of the weights as [14]:

P(ω|D, ρ,β, M ) =
P(D|ω,β, M ) P(ω|ρ, M )

P(D|ρ,β, M )
(7)
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where M and D are the NN model and the training dataset. P(D|ω,β, M ) and P(ω|ρ, M )
are the likelihood function of data occurrence and the prior density of parameters, respec-
tively. Representing our knowledge, P(D|ρ,β, M ) is a normalization factor enforcing that
the total probability is 1. Assuming that noises are normally distributed and P(D|ω,β, M )
and P(ω|ρ, M ) have normal distributions, it can be concluded that [14]:

P(D|ω,β, M ) =
1

ZD(β)
e−βED (8)

P(ω|ρ, M ) =
1

Zω(ρ)
e−ρEω (9)

where ZD(β)= (πβ )
n/2 and Zω(ρ)= (πρ )

ρ/2. n and p are the number of training sam-
ples and NN parameters, respectively. By substituting Equations (8) and (9) into (7),
Equation (10) is obtained as [14]:

P(ω|D, ρ,β, M ) =
1

ZF(β, ρ)
e−(ρEω+βED) (10)

The ANN is trained via maximization of the posterior probability P(ω|D, ρ,β, M ),
which is based on the minimizing Equation (6). By taking derivatives with respect to
the logarithm of (10) and setting it equals to zero, the optimal values for β and ρ are
obtained [14]:

βMP =
γ

ED(ω
M P)

(11)

ρMP =
n− γ

Eω(ωM P)
(12)

where γ = p− 2ρM Ptr
(

HMP
)−1

is the so-called effective number of ANN parameters, and

p is the total number of ANN model parameters. ωM P are the most probable values of the
ANN parameters. HMP (Equation (13)) is the Hessian matrix of E(ω) as [14]:

HM P= ρ∇2Eω+β∇2ED (13)

The approximation of the Hessian matrix is generally performed using the Levenberg–
Marquardt optimization algorithm. Application of this technique for the training process
results in ANNs having the variance as [14]:

σ2
i = σ2

D+σ
2
ωM P

1
β
+∇T

ωMP ŷi (H
MP

)−1
∇ωM P ŷi (14)

The uncertainties corresponding to the data and parameters, respectively, are quanti-
fied via the term in the right and left sides of Equation (15). Finally, PI can be calculated
considering the total variance of the ith future sample as [14]:

PI = ŷi±z1− a
2 (

1
β
+∇T

ωMP ŷi (H
MP

)−1
∇ωM P ŷi)

1
2 (15)

where z1− a
2 is the 1−(α/2) quantile of the normal distribution function with zero mean

and unit variance. Additionally, ∇T
ωMP ŷi is the gradient of the ANN output with respect

to its parameters’ set of ωMP. The Bayesian method for PI construction has a strong
mathematical foundation. This method requires calculation of the Hessian matrix, which
needs a significant amount of time, but it should be considered that the computational
load is lower in the process of constructing PIs because of only calculating the gradient of
Neural Network (NN) output.
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Some studies applied the Bayesian method in order to construct the PIs. Kasiviswanathan
and Sudheer [51] used the bootstrap and Bayesian techniques to assess the uncertainty of the
flood forecasting models of the ANN. The method application was based on the assumption
that the model structure is deterministic, therefore, only the parameter of uncertainty was
assessed in this study. It was concluded that model implementation is acceptable when the
ensemble mean is considered. It was concluded that the bootstrap method is simple and easy
in the case of the implementation as compared to the Bayesian method, but comparison of the
obtained results showed that the Bayesian method led to narrower PIs and lower variance in
parameter convergence.

4.2. Monte Carlo Method

The performance of the Monte Carlo method is based on alteration of the model
inputs, parameters or structure of their ensemble. The number of iterations depends on
the required level of reliability and is a problem-dependent task. More repetition leads to
more reliable results, but higher computational cost should also be examined. If the model
structure and the input data are assumed to be certain, Equation (16) can be presented
as [58]:

ŷt,i= M(x, θi); t = 1, 2, . . . , n; i = 1, 2, . . . , s (16)

where θi is the set of parameters sampled for the ith run of the Monte Carlo simulation, ŷt,i
is the model output of the ith time step for the ith run, n is the number of time steps and s
is the number of simulations. The statistical properties (such as moments and quantiles) of
the model output for each time step t are estimated from the realizations ŷt,i. In order to
quantile the uncertainty, the following equation can be expressed [58]:

P
(
ŷt < Q̂(p)

)
=

s

∑
i=1

wi|ŷ t,i < Q̂(p) (17)

where, ŷt is the model output at time step t, ŷt,i is the value of model output at time t
simulated by the model M(x, θi) in ith simulation, Q̂(p) is pth [0,1] quantile, wi is the
weight given to the model output in ith at simulation. Quantiles obtained in this way are
conditioned on the inputs to the model, the model structure and the weight vector wi. The
computation of the model’s PI with confidence level α (0 < α < 1) is achieved though
estimation of the 1−α

2 ∗ 100% and 1+α
2 ∗ 100% via the ŷt,i. The lower prediction limit PLL

and the upper prediction limit PLU are calculated as [58]:

Q̂(p)= PLL where p = (1− α)/2 (18)

Q̂(p)= PLU where p = (1 + α)/2 (19)

Then, the PI is derived considering the output of the calibrated (optimal) model (y) as:

PIL= y− PLL, PIU= PLL−y (20)

where PIL and PIU are the interval of the obtained results as lower and upper bounds,
respectively. It should define the purpose of the work and its significance.

Shrestha, Kayastha and Solomatine [58] applied the Monte Carlo method to assess
the parametric uncertainty of the analysis of hydrological models of rainfall runoff using
ANN. It was shown that the Monte Carlo method could be used to determine the other
sources of uncertainty, such as input, structure or their combination. Tapoglou, Varouchakis,
Trichakis and Karatzas [60] applied the Monte Carlo technique to investigate the uncertainty
associated with modeling of the hydraulic head in an aquifer via the ANN. The model was
performed 300 times by various training sets, and initial random values and the training
results constituted a sensitivity analysis of the ANN training to the kriging part of the
algorithm. This study concluded that error intervals for the train and test data of the ANN
and kriging PIs were narrow, considering the complexity of the study area. Application of
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the Bayesian kriging methodology was assessed, and it was concluded that the difference
between the predicted values and the results of simulation of the actual data was low.
This method led to consistent and reliable performance in different conditions. It was
assessed that this method is appropriate to simulate groundwater-level, chiefly in cases
with complicated behavior and unknown geological data.

Seifi, Ehteram, Singh and Mosavi [59] attempted to evaluate the uncertainty of ground-
water level modeling via the hybrid ANN modeling and some other black box models
and six meta-heuristic optimization methods, such as the grasshopper algorithm, cat
swarm, weed algorithm, genetic algorithm, krill algorithm and particle swarm optimiza-
tion, and it was mentioned that hybrid methods led to better performance and accuracy
than sole methods.

4.3. Bootstrap Method

In this technique, several ANNs (B ANNs) are trained with randomly selected sub-
sets [22] (see Figure 3). The randomly selected samples from total data are used for training
each of networks. This technique is based on ensembling some ANNs, which could lead
to lower estimation errors with regard to a single ANN. This method is independent of
any complicated calculation using the non-linear operator or function. A model as fANN
(x) is fitted to each of the generated bootstrap sub-sets, and the bootstrapping estimate is
calculated as the average and variance of each model as:

ŷboot(x) =
1
B

B

∑
b=1

fb
ANN(x) (21)

σ̂2
boot(x) =

1
B− 1

B

∑
b=1

(f b
ANN(x)− ŷboot(x))

2
(22)

1 
 

 
Figure 3. Schematic of the bootstrap method [14]. PB stands for training data sub-sets.

For constructing the PIs [l.u], values of the observed X = (x 1, x2, . . . , x3) with normal
distribution probability of P and according to Equations (21) and (22), P (l < X < u)
are as:

P(l < X < u)= P
(

l− ŷboot
σ̂boot

<
X− ŷboot
σ̂boot

<
u− ŷboot
σ̂boot

)
(23)
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where Z =
X− ŷboot
σ̂boot

, the standard score of X, is distributed as standard normal [69], hence:

l− ŷboot
σ̂boot

= −z ; (24)

or l = ŷboot−zσ̂boot ; u = ŷboot+zσ̂boot.
Table 3 presents the corresponding values of Z and PIs.

Table 3. Values of Z for different PIs [70].

PI z

75% 1.15
90% 1.64
95% 1.96
99% 2.58

Talebizadeh and Moridnejad [52] applied the bootstrap method to assess the uncer-
tainty arising from measurement error and also the uncertainty of the ANNs’ output
for forecasting the lake level fluctuations. It was stressed that PIs’ estimation provided
beneficial information for decision making and designing. Kasiviswanathan and Sud-
heer [53] combined the bootstrap and the FOUA method to investigate the parametric and
predictive uncertainty of the rainfall-runoff ANN-based modeling to forecast river flow.
It was concluded that the FOUA method could compute the sensitivity coefficients that
are the first order partial derivative of the model output and parameters of modeling. In
this method, the computational burden and time of simulation for uncertainty analysis
are reduced due to the usage of the statistical parameters such as mean and variance of
the ANN weight vectors and biases. The parameter variability was determined via the
bootstrap method. The obtained results for uncertainty analysis were quantified via the
coverage and width criteria. It was concluded that the results for training and verifying
data sets matched each other. Moreover, uncertainty associated with various domains of
flow (low, medium and high) was assessed to identify the effect of the magnitude of flow
on uncertainty; the results indicated that the uncertainty level changed with different flow
regimes, proportionally. The overall results, considering both width and coverage criteria,
show that the FOUA method led to a better quantification of the prediction uncertainty
compared to the bootstrap method. Wang, Zheng, Zhao, Jiang, Wang, Guo and Wang [55]
used the bootstrap method to calculate the PIs of water quality modeling via the wavelet-
ANN approach. The uncertainty of the model structure and data noise was investigated,
and it was shown that the application of the wavelet data pre-processing could lead to
more accurate results. Kumar, Tiwari, Chatterjee and Mishra [39] used the combination of
the bootstrap method and wavelet-ANN to quantify the uncertainty associated with the
reservoir inflow forecasting. Moreover, multiple linear regression model implementation
was compared to the bootstrap method and it was concluded that the performance of
the bootstrap method is more reliable. It was also mentioned that PIs’ estimation could
provide more useful information in operational inflow forecasting. Kasiviswanathan, He,
Sudheer and Tay [56] used the bootstrap technique for the quantification of the uncertainty
associated with modeling streamflow and flood management. The coverage and width
criteria were applied for quantification of the model’s performance uncertainty. Results
indicated that the bootstrap method is the proper method for streamflow forecasting and
flood management. Moreover, it was mentioned that there are some limitations associated
with forecasting high flow due to the lower samples and dependence of the ANN on the
number of samples. Thus, it was suggested that one use hybrid modeling and integrate the
data-driven models with physically-based/conceptual models and/or empirical relation-
ships between high flows and influencing factors for the enhancement of the accuracy of
the model for modeling high flow regimes.
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4.4. LUBE Method

The LUBE method is based on training an ANN with two outputs for developing the
PIs in one level (see Figure 4). Two outputs present the upper and lower bounds of the
PIs. The proposed ANN is trained based on minimizing the defined cost function. Cost
function contains both coverage and width criteria. This method is independent of special
information about the PI bound. Previous studies assumed that PIs developed via this
method are superior to the other PIs construction methods. In addition, its computational
expense is insignificant [24]. Unlike traditional methods, LUBE method performance is
independent of point prediction and it is a non-parametric technique. LUBE method
application does not depend on parametric distribution of data. It is fast and simple [71].

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 18 
 

4.4. LUBE Method 
The LUBE method is based on training an ANN with two outputs for developing the 

PIs in one level (see Figure 4). Two outputs present the upper and lower bounds of the PIs. 
The proposed ANN is trained based on minimizing the defined cost function. Cost function 
contains both coverage and width criteria. This method is independent of special infor-
mation about the PI bound. Previous studies assumed that PIs developed via this method 
are superior to the other PIs construction methods. In addition, its computational expense 
is insignificant [24]. Unlike traditional methods, LUBE method performance is independent 
of point prediction and it is a non-parametric technique. LUBE method application does not 
depend on parametric distribution of data. It is fast and simple [71]. 

 

Figure 4. The structure of the ANN in the lower upper bound estimation (LUBE) method. 

Kasiviswanathan, Cibin, Sudheer and Chaubey [61] attempted to develop the PIs of the 
ANN-based rainfall-runoff modeling by generation of the ensemble predictions (similar to 
the LUBE method). PIs were developed at two levels. At the first level, optimum ANN pa-
rameters were obtained via the genetic algorithm. In the second step, the ensemble of the 
models was created by optimization of the verity of the ANN parameters. PIs were calcu-
lated by minimizing the residual variance of the ensemble mean and maximization of the 
covering targets. Moreover, at the same time, the minimization of the PIs’ width was taken 
into account. It was stated that by consideration of the ensemble mean value as the output 
of the model, the peak flow could be predicted more precisely compared to the classic point 
prediction of the ANN. Taormina and Chau [62] examined the LUBE method for construc-
tion of the PIs at different confidence levels for the 6 hours ahead streamflow discharges 
forecasting. Particle swarm optimization was used to minimize the CWC cost function. It 
was shown that the obtained results depend on the used particle swarm optimization para-
digm. They claimed that the multi-objective framework led to more appropriate results than 
single-objective swarm optimization. It was also concluded that the applied algorithm to 
develop the model could have a remarkable effect on the PIs quality. Zhang, Zhou, Ye, Zeng 
and Chen [63] applied the LUBE method to construct the PIs of flood forecasting. This study 
proposed a PI symmetry index and objective function to evaluate the coverage, width and 
symmetry of PIs. To optimize the proposed objective function, the shuffled complex evolu-
tion algorithm was applied. The mean of the bounds was used to present deterministic fore-
casting. Kasiviswanathan and Sudheer [51] applied the PI method (similar to the LUBE 
method) for quantification of the ANN modeling uncertainty. The coverage and width cri-
teria were used to quantify the PIs. This paper compared other PI construction methods 
results, such as the Bayesian and bootstrap methods, and concluded that the PI method was 
more reliable. In addition, it was presented that the PI method could successfully capture 
the peak points. Kasiviswanathan, Sudheer and He [64] assessed the uncertainty associated 

Figure 4. The structure of the ANN in the lower upper bound estimation (LUBE) method.

Kasiviswanathan, Cibin, Sudheer and Chaubey [61] attempted to develop the PIs of
the ANN-based rainfall-runoff modeling by generation of the ensemble predictions (similar
to the LUBE method). PIs were developed at two levels. At the first level, optimum ANN
parameters were obtained via the genetic algorithm. In the second step, the ensemble of
the models was created by optimization of the verity of the ANN parameters. PIs were
calculated by minimizing the residual variance of the ensemble mean and maximization
of the covering targets. Moreover, at the same time, the minimization of the PIs’ width
was taken into account. It was stated that by consideration of the ensemble mean value
as the output of the model, the peak flow could be predicted more precisely compared
to the classic point prediction of the ANN. Taormina and Chau [62] examined the LUBE
method for construction of the PIs at different confidence levels for the 6 hours ahead
streamflow discharges forecasting. Particle swarm optimization was used to minimize
the CWC cost function. It was shown that the obtained results depend on the used
particle swarm optimization paradigm. They claimed that the multi-objective framework
led to more appropriate results than single-objective swarm optimization. It was also
concluded that the applied algorithm to develop the model could have a remarkable effect
on the PIs quality. Zhang, Zhou, Ye, Zeng and Chen [63] applied the LUBE method to
construct the PIs of flood forecasting. This study proposed a PI symmetry index and
objective function to evaluate the coverage, width and symmetry of PIs. To optimize the
proposed objective function, the shuffled complex evolution algorithm was applied. The
mean of the bounds was used to present deterministic forecasting. Kasiviswanathan and
Sudheer [51] applied the PI method (similar to the LUBE method) for quantification of the
ANN modeling uncertainty. The coverage and width criteria were used to quantify the
PIs. This paper compared other PI construction methods results, such as the Bayesian and
bootstrap methods, and concluded that the PI method was more reliable. In addition, it was
presented that the PI method could successfully capture the peak points. Kasiviswanathan,
Sudheer and He [64] assessed the uncertainty associated with input and parameters for
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the ANN-based rainfall-runoff modeling. A two-stage optimization method was applied
to estimate the PIs. Chen and Chau [66] used the LUBE method to construct the PIs of
sediment load modeling via the hybrid double feedforward NN. It was demonstrated that
PIs led to appropriate results in the 90% and 95% CLs. The proposed method could generate
reliable PIs. It was discussed that application of the hybrid double feedforward NN could
improve performance of the PIs construction in the classification of the low, medium and
high sediment loads, and coverage probability about 100% for low and medium sediment
loads, but its performance was weak for modeling high sediment loads. Moreover, it
was concluded that the LUBE method was efficient in quantifying the uncertainty of
data-driven models. Nourani, Paknezhad, Sharghi and Khosravi [57] used the LUBE
method to construct the PIs associated with the ANN-based downscaling of the general
circulation models. In this study, the LUBE method was applied by generating multiple
sets of weights to develop narrow PIs with high coverage probability. It was indicated
that the LUBE method could be successfully used to compute the PIs of ANN-based
downscaling with reliable performance. Nourani, Sayyah-Fard, Alami and Sharghi [65]
quantified the uncertainty of the ANN-based evaporation modeling via the LUBE method.
It was claimed that the LUBE method could construct PIs with an appropriate level of
reliability; however, data pre-processing methods could affect the uncertainty. This study
applied simulated annealing optimization algorithms to construct PIs with higher coverage
and lower width. It was mentioned that this method could overcome the problem of
trapping in local minima. Kasiviswanathan, Sudheer, Soundharajan and Adeloye [67]
applied upper lower bound and mean of forecasting to evaluate uncertainty in inflow
modeling via the ANN for optimizing the reservoir operation and decision making. An
integrated simulation–optimization was applied, which led to minimizing the error. In
Figure 5, the procedure of PIs construction is depicted.
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5. Comparison of the PIs Construction Methods

Various methods of PIs construction with different levels of complexity, computational
burden, difficulty in implementation, reliability and required times have been developed.
Undoubtedly, it is impossible to claim that a particular technique is superior to the others,
but each method has its own advantages. Therefore, in this section, the advantage and
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disadvantages of the prevalent methods are investigated. A brief comparison of each
method is tabulated in Table 4.

Table 4. The brief comparison of the proposed methods.

Method Run Time Number of
Required Networks

Computational
Burden Reliability Reference

Bayesian Conceptual
representation of the
Bayesian model for

inference of
parameters.

high One high high [21]

Monte Carlo
General overview of

the Monte Carlo
algorithm.

high More than 1 medium medium [58]

Bootstrap Schematic of the
bootstrap method, PB

stands for training data
sub-sets.

high More than 1 low medium [14]

LUBE
The structure of the
ANN in the LUBE

method

low One low high [24]

Khosravi, Nahavandi, Creighton and Atiya [14] compared the different methods of
PI construction for data from various domains. It was assumed that the delta method
obtains the highest quality of the PIs, but its repeatability (performance of the method
in worst cases) is not acceptable. Moreover, the constructed PIs via the delta technique
consist of fixed PI width. The Bayesian method is the most acceptable method in the case
of reproducibility (various iterations of the method lead to similar results). Moreover, the
stability of developed PIs is the other advantage of this method. The bootstrap method is
favorable in the case of variability (the response of PIs to the level of uncertainty associated
with data). However, the obtained PIs via the bootstrap method may lead to low quality
in comparison to the delta and Bayesian methods. The variance of the outputs may be
overestimated, which may cause wider PIs. In addition, it has been demonstrated that by
increasing the number of training iterations, the bootstrap method might not definitely
improve the results. It has also been indicated that each method has its pros and cons,
and implementation of different methods by consideration of various criteria may lead to
different outcomes. Kasiviswanathan and Sudheer [51] compared different PIs construction
methods and showed that parameters coverage and peak flow prediction are high for the
PI method and low for the bootstrap method. Fulfillment of statistical and probabilistic
assumptions is low for the bootstrap method, but it is high for the Bayesian method.



Sustainability 2021, 13, 1633 15 of 18

The difficulty of the implementation of the bootstrap, Bayesian and LUBE methods are,
respectively, medium, high and low.

6. Gaps and Suggestions for Future Studies

The following issues are suggested for future studies to fill the existing gaps in already
performed studies.

i. Most of the PIs construction methods applied coverage and width criteria and their
combination, but there is not any criterion in order to present information about
the probability and reliability of the lower and upper bounds of the constructed PIs.
Therefore, future studies may develop and present some criteria about this issue, for
example, proximity of the target to the upper or lower bounds.

ii. The reviewing of multiple studies showed that there is not any study that uses the
delta method for PIs construction. Although it may have high level of computational
cost, according to its reliable performance in other fields as expressed in Khosravi,
Nahavandi, Creighton and Atiya [14], it is proposed that one apply this method in
hydrological studies as well.

iii. The performance of the LUBE method, as the most robust method of PI construc-
tion, can be improved in different aspects in order to obtain more reliable PIs. The
implementation could be augmented by combining with the ANN structure selec-
tion techniques.

iv. Adaptation between point prediction and PIs has not been examined, yet significantly
presented. Therefore, it can be recommended that future works analyze the adaptation
and correlation between point prediction and PIs construction. Moreover, some
criteria can be defined to capture simultaneously.

v. It is recommended that one apply the presented methods to assess the uncertainty
associated with the improved version of the ANN, such as emotional ANN [72] and
to investigate the effects of hormonal parameters in the reliability of the models.

vi. The LUBE method performance is based on the cost functions. Some studies used
multi-objective optimization cost function in which the coverage and width criteria
were considered as cost function simultaneously. In contrast, some other studies used
coverage and width combination criteria as the cost function, in which some parame-
ters should be determined by trial and error. Therefore, future studies can compare
the implementation of multi-objective and single-objective optimization methods.
Moreover, future studies can propose the appropriate value of CWC parameters or
propose a method for better and faster determination of the parameters’ values.

vii. As there are few studies attempting to investigate other artificial intelligence methods
such as ANFIS, it is recommended that one construct the PIs of those methods too.

7. Conclusions

This study investigated multiple PIs construction methods applied in hydro-climatic
studies. It concluded that the bootstrap method has been used in the majority of the studies
as it is simple and can be applied easily. Moreover, the LUBE method has gained noticeable
attention recently in hydrological studies due to its superiority in implementation and
reliability compared to other methods. Nevertheless, there are few applications of the
Bayesian or delta method in the development of PIs in the hydrological issues.
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