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Abstract: There is abundant evidence that greenhouse gas (GHG) emissions of cereal products,
expressed per ton of grain output, have been trending downward over the past 20 years. This has
largely been achieved through agricultural intensification that has concurrently increased area-based
GHG emissions. The challenge is for agriculture to increase grain yields to meet the food demands
of a growing world population while also contributing to climate stabilization goals by reducing
net GHG emissions. This study assessed yield-based and area-based emissions and efficiencies for
the winter wheat–summer maize (WWSM) rotation system over the period 1996 to 2016 using long-
term, longitudinal, farm survey data and detailed soil emission data in Huantai county, Shandong
Province, which is an archetype for cereal production across the North China Plain (NCP). In this
region, yields have been increasing over time. However, nitrogen fertilizer inputs have decreased
substantially with greater adoption of soil nutrient testing. In addition, there has been widespread
adoption of residue incorporation into soils. As such, since 2002, the product carbon footprints
of wheat and maize have reduced by 25% and 30%, respectively. Meanwhile, area-based carbon
footprints for the rotation system have reduced by around 15% over the same period. These findings
demonstrate the importance of detailed assessment of soil N2O emissions and rates of soil organic
carbon sequestration. They also show the potential for net reductions in GHG emissions in cropping
without loss of grain yields.

Keywords: agricultural soils; GHG emission; life cycle assessment; product carbon footprint; carbon
efficiency; agricultural intensification; fertilizer management

1. Introduction

Agriculture is simultaneously facing the challenges of increasing yields while also
reducing environmental impacts [1–5]. In this regard, the management of fertilizer inputs
is important as high yielding crops depend on adequate nutrition, however there are
considerable environmental costs associated with fertilizer production and use, such
as greenhouse gas (GHG) emissions [2,3,6]. Around 25% of global GHG emissions are
attributed to land use change, crop production, and fertilizer manufacture and use [2,7]. In
China, it has been identified that there is potential for a 30% to 50% increase in grain yields
without increasing fertilizer inputs, if cropping systems are improved [4,8–10]. In addition,
well-managed agricultural soils have GHG sequestration capability [11]. Lal [12] suggested
that carbon sequestration in agricultural systems has the potential to offset between 5%
and 15% of global fossil-fuel emissions. As such, agriculture has a strategic role to play in
GHG emissions management as well as food security.

Environmental indicators such as the carbon footprint (CF) and carbon efficiency (CE)
are often used to evaluate the sustainability of agricultural production systems [5,13,14].
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The CF evaluates the balance of GHG emissions and sequestrations from a product or
system across its life cycle [15]. In the case of crop production, this includes the GHG
emissions associated with the production of farming inputs, such as fertilizer. A variety
of CE metrics have been proposed, typically expressing yield or value created relative to
emissions [16].

Wheat is an important crop globally, and CFs have now been reported for production
in many regions [16–20]. Meisterling et al. [21] and Knudsen et al. [22] compared the CF of
conventional and organic wheat production. Röös et al. [23], Espinoza-Orias et al. [24], and
Meul et al. [25] identified the CFs of products derived from wheat, including pasta, bread,
and animal feed. Other studies have evaluated alternative farming practices [26–28]. Global
estimates and comparisons between countries have also been undertaken [29–31]. In China,
there have also been many assessments of the CF of crop production systems [5,32–38].
As for carbon efficiency, Lal [16], Maheswarappa et al. [39], and Aweke et al. [40] used
this indicator to evaluate the sustainability of agricultural ecosystems in USA, India, and
Ethiopia, respectively. Taking Punjab and Ohio as examples, Dubey and Lal [14] made a
comparison of the agricultural production systems of India and America. In China, Shi
et al. [41], Long [42], Cheng et al. [13], Tian et al. [43], and Yin et al. [44] used CE to evaluate
the production efficiency of farmland.

The case study evidence based on CF and CE is large. Direct comparisons between
studies are not straightforward due to different modeling choices [26,29,34,44–49]. Never-
theless, taken together, the evidence suggests that over the past few decades the yield-scaled
carbon emissions of cereal production have been reducing while the area-scaled carbon
emissions are still increasing [50–52], and this trajectory is likely to continue into the future.
Reductions in GHG emissions are valuable. However, this does not address GHG emission
in aggregate, which need to also be reduced if climate stabilization is to be achieved.

Continued intensification of farming systems is unlikely to address this problem. New
farming system models are needed that enable high grain yields to be achieved while also
achieving a reduction in net GHG emissions per unit of cropland area. In this study, taking
Huantai county, north China, as an example of a classic high-yielding crop production
region, we make a detailed CF and CE analysis based on experimental and survey data
over the period 1996 to 2016. The aim of this study is to analyze the status and trend of
cereal production and to identify pathways to increasing yield while also reducing area-
based emissions. We seek to contribute insights relevant to the development of sustainable
farming systems that can contribute to both food security and climate stabilization goals.

2. Material and Method
2.1. Study Area

Huantai county (36◦51′50”–37◦06′00” N, 117◦50′00”–118◦10′40” E, Figure 1) is located
in the center of the Shandong Province, which is a part of the North China Plain (NCP).
This region covers an area of 509 km2 and includes around 0.5 million people, of which
0.43 million live in rural communities. It is a typical continental monsoonal climate, with
a mean altitude of 6.5–29.5 m, and the average annual temperature and precipitation are
12.5 ◦C and 580 mm, respectively. The main soil types include Hapludalfs, Aquents, and
Vertisols [53,54]. This region is within the primary cereal-producing area of China, and
more than 80% of agricultural land use between 1980 and 2016 has adopted a winter wheat
(Triticum aestivum L.)–summer maize (Zea mays L.) (WWSM) rotation system. The yield in
1990 was >15 Mg/ha of grains across the entire region. Thus, this county became the first
grain county in northern China, and cereal production has been intensified in this region
since 1990. To some extent, Huantai county is representative of the larger NCP.
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2.2. Data Collection

The data used in this study came from local agricultural surveys and experiments.
In 1997, 2003, 2007, 2013, and 2017, teams from China Agricultural University undertook
studies of agricultural production in Huantai county. These investigations were carried
out in the same three towns (Tanshan, Chengzhuang, and Guoli), using an identical ques-
tionnaire. For each town, two villages were randomly chosen and 20 farming households
were investigated from each village as a stratified random sample. As a prerequisite, towns
and villages were only selected if most of the farmlands employed the WWSM rotation
system. Selections were also made to achieve a cross section of higher and lower levels
of productivity. With the passage of time, around 50% of agricultural lands in the region
have been gradually consolidating, and the scale per farm was 6.23 ha, with fewer peasant
farmers. As such, in 2013 and 2017, the goal of surveying 20 households was replaced with
a goal of surveying households responsible for at least 80% of cropping in each village.
Table 1 presents a summary of farming inputs and outputs over the period 1996 to 2016.
In addition, at the county level, data concerning fertilizer inputs and grain outputs were
obtained from the Huantai statistical yearbooks compiled by the local government.

In 2007, China Agricultural University and Huantai county also jointly constructed
an ecological and sustainable development experiment station. A series of experiments
were deployed in the station, and the longest experiment has exceeded 10 years [55]. Data
related to soil emissions and carbon sequestration were obtained from these long-term
experiments [11,54,56,57].
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Table 1. Inputs and outputs per hectare of the winter wheat–summer maize (WWSM) rotation system in Huantai county,
Shandong Province, China from 1996 to 2016.

Item
1996 2002 2006 2012 2016

Wheat Maize Wheat Maize Wheat Maize Wheat Maize Wheat Maize

Seed (kg) 166.1 50.1 140.8 46.2 111.5 40 121 24.2 121 27.8
N (kg) 322.1 286.9 349.2 369.8 260.7 292.7 214.7 254.3 222 231.9

P2O5 (kg) 131.2 37.5 264.1 173.2 179.6 164.5 167.7 132.2 108 86.3
K2O (kg) 33.9 30.2 29.8 49 76.9 130.9 46.8 53.7 70.5 71.3

Irrigation (m3) 3821 1597 3352 2362 3960 2640 3257 2059 3375 1875
Electricity (kWh) 1146 479 1006 709 1188 792 977 618 972 596

Diesel (kg) 128.1 131.8 137.6 204.2 157.9 274 167.4 285.1 175.5 304.5
Herbicide (kg) 0.4 1.0 0.5 1.3 0.6 1.5 1.0 1.9 0.3 1.0
Pesticide (kg) 0.8 0.5 1.1 0.9 1.2 1.2 5.1 3.8 0.9 0.8

Grain (kg) 6510 7630 6850 7840 7052 8086 7330 7520 7425 9767

2.3. Functional Unit and System Boundary

For this study of product carbon footprints (PCF) and area carbon footprints (ACF),
the units of analysis were one kg of grain and one ha of cropland, respectively. A life cycle
assessment approach was adopted [58,59], with the system boundary from cradle to farm
gate in order to conveniently compare with similar studies. The considered emissions
were CO2, CH4, and N2O. Results were expressed as CO2 equivalent emissions (CO2eq),
using the GWP100 (Global Warming Potential aggregated over 100 years) climate metric.
The GWP values for CO2, CH4, and N2O were 1, 25, and 298, respectively, based on The
Intergovernmental Panel on Climate Change (IPCC) [60]. According to the suggestion of
Adewale et al. [45], the boundary of agricultural CFs considered the following factors: land-
use change, machinery and electricity use, fuel consumption, pesticides and other chemical
inputs consumption, material inputs, fertilization, soil GHG emission, and soil organic
carbon (SOC) sequestration, etc. All these factors can be divided into two parts, namely
pre-farm and on-farm subsystems [17]. In this study, the former include the production
and transportation of electricity, fuel, fertilizers, chemicals, machinery, and irrigational
facility, and the latter include machinery operation, soil emission, SOC sequestration, etc.

2.4. Carbon Footprint Calculation Method
2.4.1. Pre-Farm Subsystem

GHG emission factors were chosen that most accurately reflect the local production
systems and sources of farming inputs used (Table 2). For the pre-farm subsystem, CFs
were calculated according to Equation (1).

CFinput = ∑ Qi × EFi (1)

where, CFinput is the total amount of carbon footprint due to the production, transportation,
and application of agricultural inputs (kg CO2eq/ha/season), Qi is the quantity of an ith
individual agricultural input used in wheat and maize production season (kg/ha/season),
and EFi is the emission factor of each input (kg CO2eq/kg).

Table 2. Life cycle greenhouse gas (GHG) emission factors.

Item Emission Factor Unit References

CH4 25 kg CO2eq/kg [60]
N2O 298 kg CO2eq/kg [60]
Seed 1.18 kg CO2eq/kg [58]

N 8.3 kg CO2eq/kg N [32]
P2O5 1.5 kg CO2eq/kg P2O5 [32]
K2O 0.98 kg CO2eq/kg K2O [32]

Electricity 0.92 kg CO2eq/kWh [58]
Diesel 3.32 kg CO2eq/kg [58]

Irrigation facilities 220 (110) kg CO2eq/ha [42]
Machine 6.74 kg CO2eq/kg [58]

Herbicide 18 kg CO2eq/kg [58]
Pesticide 18 kg CO2eq/kg [58]

Note: The value in parenthesis refers to the maize production season.
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2.4.2. On-Farm Subsystems

As for on-farm subsystems, the CF of diesel consumption by machine operation
was calculated by Equation (1). Soil N2O emissions were calculated according to Zhang
et al. [57] using Equations (2) and (3):

Wheat : CFN2O =
(
0.0052× Ninput + 0.6435

)
× 298 (2)

Maize : CFN2O =
(
0.0101× Ninput + 0.6003

)
× 298 (3)

where, CFN2O is the cumulative amounts of N2O emission by the soil caused by N fertilizer
application in the wheat and maize production seasons (kg CO2eq/ha/season); Ninput is the
N fertilizer application of wheat and maize production; 298 is the coefficient for converting
N2O to CO2eq; and 0.0052, 0.0101, 0.6435, 0.6003 are the related emission coefficients.

Zhao et al. [11] and Zhao [56] quantified CH4 absorption by agricultural soils in
Huantai county with the mean amount at 1.5 kg C/ha/yr. Thus, the CF was calculated
according to Equation (4).

CFCH4 =
1
2

(
1.5× 16

12
× 25

)
(4)

where, CFCH4 is the cumulative amount of absorbed CH4 (kg CO2eq/ha/season), 16
12 and

25 are the coefficients for converting C to CH4 and CH4 to CO2eq respectively.
Liao et al. [54] demonstrated that agricultural intensification in Huantai county re-

sulted in soil organic carbon (SOC) sequestration based on studies from 1980 to 2011. Thus,
the sequestration of annual soil C was calculated according to Equations (5) and (6).

SCS = SOC× BD×H× 10 (5)

∆SCS =
1
2

(
SCS2011 − SCS1980

30
× 44

12

)
(6)

where, SCS is the soil organic carbon sequestration (ton/ha), SOC is the soil organic carbon
concentration (7.8 g/kg in 1980 and 11 g/kg in 2011; [54]), BD is the soil bulk density
(1.4 g cm3 in 1980 and 1.5 g cm3 in 2011; [54]), H is the thickness of the soil layer (m), and
10 is the coefficient for converting kg/m2 into ton/ha. ∆SCS is the annual change in SOC
storage in a 0–20 cm profile from 1980 to 2011 (kg CO2eq/ha/season), SCS1980 and SCS2011
are the SOC storage values of the 0–20 cm profile in 1980 and 2011, respectively; 30 is the
number of years of the survey period; and 44

12 is the coefficient for converting C into CO2.
The soil CO2 net flux is estimated to contribute <1% to the global warming potential

(GWP) of agriculture on a global scale, which was not considered in this study [3,58].
The area carbon footprint (ACF) and product carbon footprint (PCF) of WWSM

rotation system were calculated using Equations (7) and (8).

ACF = CFinput + CFN2O + CFCH4 + ∆SCS (7)

PCF =
CFinput + CFN2O+CFCH4 + ∆SCS

Y
(8)

where, ACF and PCF are the net carbon footprint of wheat and maize production per unit
hectare (kg CO2eq/ha/season) and grain production (kg CO2eq/season/kg of grain), Y is
the grain yield of winter wheat or summer maize (kg/ha/season).

2.5. Carbon Efficiency Calculation Method

Product efficiency (Ep), ecological efficiency (Ec), and economic efficiency (Ee) were
calculated using Equations (9)–(12), based on the methods reported by Lal [16] and
Shi et al. [41]:

Ep =
ACF

Y
(9)
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Wheat : Ec =
{[Y× (1 + 1.1)]× 1.15)} × 0.45× 44

12
ACF

(10)

Maize : Ec =
{[Y× (1 + 1.2)]× 1.15)} × 0.45× 44

12
ACF

(11)

Ee =
Y× P
ACF

(12)

where, Ep is the production efficiency per unit carbon input (kg grain/kg CO2eq), with
higher values indicating higher efficiency; Ec and Ee refer to ecological efficiency and
economic efficiency, namely the ratio of carbon output (including carbon absorbed by grain,
straw, and root) to input (kg CO2/kg CO2eq), with a value >1 indicating the output is
higher than the input; and the ratio of economic output to carbon input (Yuan/kg CO2eq).
P is the sale price of wheat or maize grain in different years. Furthermore, 1.1 and 1.2 are
the ratios of straw to grain for wheat and maize production; 1.15 is the ratio of the total
biomass (involving grain, straw, and root) to the shoot (including grain and straw), and
0.45 and 44

12 are the coefficient of C in biomass and the coefficient for converting C into CO2,
respectively.

3. Results
3.1. Input–Output of Cereal Product System and GHG Emissions

Over the last two decades (1996–2016), N fertilization, electricity use, diesel use, and
machinery production have made the largest contributions to the GHG emissions associated
with the WWSM cropping system practiced in Huantai county, amounting to 85–88% and
91–94% of the total emissions of wheat and maize production, respectively (Table 3).
The largest contribution was from N fertilizer. However, its proportional contribution
has been decreasing (Figure 2). For wheat production, N fertilizer CF increased from
2674 kg CO2eq/ha in 1996 to 2898 kg CO2eq/ha in 2002, and then gradually decreased
and, in 2016, the N CF was 1843 kg CO2eq/ha. The proportion of GHG emissions related
to N inputs decreased from 48% in 2002 to 36% in 2016. Machinery (including manufacture,
transportation, use, and maintenance) was the second factor, and its proportion increased
from 15% in 1996 to 23% in 2016. Electricity use for irrigation was the third factor, and its
contribution ranged from 15% to 20% over the past 20 years. The contribution from diesel
fuel consumption increased over time, from 7.5% in 1996 to 11.4% in 2016 (Table 3 and
Figure 3).

For maize production, the proportion of GHG emissions related to N inputs also
decreased over time from 54% in 1996 to 33% in 2016. In contrast, the contribution from
machinery and diesel consumption increased over time, from 19.8% to 34.4% in the case
of machinery and from 9.9% to 17.2% in the case of diesel fuel. The contribution from
electricity was relatively steady. It is evident that maize production is more dependent on
machinery and diesel fuel compared to wheat production (Table 3 and Figure 3).

In the on-farm subsystem, soil is both a GHG source and sink due to N fertilizer
input and SOC accumulation (Table 3). The value of CH4 absorbed by the soil was only
around 25 kg CO2eq/ha/season and is a relatively less important process. However, N2O
emissions play an important role in the GHG balance of cropping systems. In the process
of wheat production, the quantity of soil emissions ranged from 525 to 733 kg CO2eq/ha,
and that of soil sequestration was 734 kg CO2eq/ha (Table 3), resulting in net sequestration.
In maize production, soil emissions ranged from 877 to 1292 kg CO2eq/ha, exceeding soil
sequestration. However, with maize production, the gap between soil emissions and soil
sequestration became smaller over time, from 558 kg CO2eq/ha in 2002 to 143 kg CO2eq/ha
in 2016. Based on this trajectory, it is possible that soil sequestrations could offset soil
emissions in the future.
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Table 3. Carbon footprint (CF) per hectare (kg CO2eq/ha) and per kilogram grain (kg CO2eq/kg) of WWSM rotation
system of Huantai county, Shandong Province, China from 1996 to 2016.

Item 1996 2002 2006 2012 2016

Wheat Maize Wheat Maize Wheat Maize Wheat Maize Wheat Maize

Seed 196 59 166 55 132 47 143 29 143 33
N 2673 2381 2898 3069 2164 2429 1782 2111 1843 1925

P2O5 197 56 396 260 269 247 252 198 162 130
K2O 33 30 29 48 75 128 46 53 69 70

Electricity 1055 441 925 652 1093 729 899 568 894 549
Diesel 425 438 457 678 524 910 556 947 583 1011

Pesticide 21 28 28 40 33 49 108 103 22 32
Irrigation facility 220 110 220 110 220 110 220 110 220 110

Machine 851 875 914 1356 1049 1819 1112 1893 1165 2022
Soil emission 691 1042 733 1292 596 1060 525 944 536 877

CH4 sequestration −25 −25 −25 −25 −25 −25 −25 −25 −25 −25
Soil sequestration −734 −734 −734 −734 −734 −734 −734 −734 −734 −734
Grain output (kg) 6510 7630 6850 7840 7052 8086 7330 7520 7425 9767

ACF −Soil 5671 4418 6034 6268 5559 6469 5117 6011 5100 5880
ACF +Soil 5603 4701 6008 6801 5395 6769 4882 6196 4877 5998
PCF −Soil 0.87 0.58 0.88 0.80 0.79 0.80 0.70 0.80 0.69 0.60
PCF +Soil 0.86 0.62 0.88 0.87 0.77 0.84 0.67 0.82 0.66 0.61

Note: ACF and PCF refer to area carbon footprint and product carbon footprint, and −Soil and +Soil refer to excluding and including soil
emission and sequestration, respectively.
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Figure 3. The contribution of material inputs to the carbon footprint of the WWSM rotation system in Huantai county from
1996 to 2016.

As for grain output, the yield of wheat production increased by 14%, from 6510 kg/ha
in 1996 to 7425 kg/ha in 2016, and the corresponding yield increase for maize was 28%,
from 7630 to 9767 kg/ha, namely 0.7% and 1.4% increase each year for wheat and maize
production. Except for some atypical years (such as maize production in 2012), the trend
for WWSM rotation system has been for increasing yields over the last 20 years (Table 3,
Figure 2).

3.2. Carbon Footprint Analysis

Including soil emission and sequestration, the area carbon footprints (ACF +Soil)
of wheat production was 5603 kg CO2eq/ha in 1996, rising to 6008 kg CO2eq/ha in
2002, and then gradually falling to 5395, 4882, and 4877 kg CO2eq/ha in 2006, 2012,
and 2016, respectively (Table 3 and Figure 4a). If soil emissions and sequestrations were
excluded (ACF−Soil), the values of ACF were very similar. This is due to soil sequestration
largely offsetting soil emissions (Table 3). For wheat, the product carbon footprints (PCFs)
including soil factors (PCF +Soil), ranged from 0.66 to 0.88 kg CO2eq per kg grain. If
soil factors were excluded, the values ranged from 0.69 to 0.88 kg CO2eq per kg grain.
The trends were similar for PCFs as for ACFs, with a peak in 2002 followed by consistent
decreases thereafter.

For maize production, the ACF including soil emissions and sequestrations (ACF
+Soil) was 4701 kg CO2eq/ha in 1996. A peak occurred in 2002, after which the ACF
gradually declined to values of 6769, 6196, and 5998 kg CO2eq/ha in 2006, 2012, and 2016,
respectively (Table 3, Figure 4b). The value in 2016 remained above the value in 1996. If
soil factors were excluded (ACF −Soil), a similar trend was observed. In contrast to wheat
production, the values of ACF −Soil for maize were lower than that of ACF +Soil, due
to the value of soil emission being higher than soil sequestration. However, the gap was
becoming smaller over time. For the PCF of maize, the values of PCF +Soil were 0.63, 0.87,
0.84, 0.82, and 0.61 kg CO2eq/kg grain over the period 1996 to 2016 (Figure 4b).
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Figure 4. Area carbon footprint (ACF) and product carbon footprint (PCF) of wheat (a) and maize (b) rotation sys-
tem in Huantai county from 1996 to 2016. Note: −Soil and +Soil refer to excluding and including soil emission and
sequestration, respectively.

3.3. Carbon Efficiency Analysis

In the process of wheat–maize production, the CE indicators (product, ecological,
and economic efficiency) initially decreased and then steadily increased over the last two
decades (Table 4, Figure 5). For example, product efficiency (Ep, kg grain/kg CO2eq) of
wheat production, decreased from 1.16 in 1996 to 1.14 kg in 2002 and then increased to 1.31,
1.50, and 1.51 in 2006, 2012, and 2016, respectively. For maize production, the corresponding
values were 1.62, 1.15, 1.19, 1.21, and 1.63 kg grain/kg CO2eq, respectively. Taking 2002 as
a baseline, by 2016, Ep rose by 32.5% and 41.7% for wheat and maize, respectively.
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Table 4. Production efficiency (Ep), ecological efficiency (Ec), and economic efficiency (Ee) of winter wheat–summer maize
rotation system of Huantai county, Shandong Province, China (1996 to 2016).

1996 2002 2006 2012 2016

Wheat Maize Wheat Maize Wheat Maize Wheat Maize Wheat Maize

Ep (kg grain/CO2eq) 1.16 1.62 1.14 1.15 1.31 1.19 1.50 1.21 1.51 1.63
Ec (kg CO2/CO2eq) 4.63 6.78 4.55 4.82 5.21 4.99 5.99 5.07 6.07 6.80

Ee (Yuan/CO2eq) 1.88 1.85 1.16 1.06 1.88 1.51 3.42 2.49 3.35 3.09
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Figure 5. Product (Ep), ecological (Ec), and economic efficiency (Ee) of wheat–maize rotation system in Huantai county
from 1996 to 2016.

The ecological efficiency (Ec) of wheat and maize production performed better than
product efficiency, and the values were in the range of 4.55–6.07 and 4.82–6.80 kg CO2/kg
CO2eq, respectively. This means C output was higher than C input, and for most of the
production period the efficiency of maize was higher than that of wheat due to its higher
yield of grain and biomass. In 2016, the improvement from 2002 was 33% for wheat and
41% for maize. For economic efficiency (Ee), the corresponding improvement from 2002 to
2016 was 189% and 192% (Table 4, Figure 5).

The product and ecological efficiencies were lowest in 2002 and the most important
reason was the N fertilizer input, which reached its peak at this time (Figure 2). Over the
following period (2002–2016), N inputs gradually decreased while yield simultaneously
slowly increased (Figure 2). Thus, the two indicators were gradually improved. However,
the effect of decreased N inputs was offset to an extent by an increase in machine use and
diesel consumption over time (Figure 5). As for economic efficiency, not only did the N
input peak in 2002, the sale price of grain was also in a trough [61]. Therefore, this indicator
was also at the lowest point in 2002. Over the period of 2002–2016, not only did N inputs
decrease and yield increase, another important factor was an improving grain price, that
resulted, at least in part, from government provided agricultural subsidies to maintain the
stabilization of the grain market price [59]. Thus, the magnitude of increase of economic
efficiency was higher than that of product and ecological efficiency (Figure 5).
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4. Discussion
4.1. Comparison and Analysis of Carbon Footprint

Carbon footprints of agricultural ecosystems have been widely studied over the past
two decades (Table 5). What emerges from the literature is that although product carbon
footprints have generally been trending downward, this has often been achieved through
agricultural intensifications that have led to higher area-based GHG emissions. For exam-
ple, Cheng et al. [13] used national statistical data in China for the period 1993–2007 to
estimate the CFs of crop production, and the results showed that for the periods 1993–1997,
1998–2002, and 2003–2007, the carbon emissions per ha cultivated were 2530, 2824, and
3154 kg CO2eq, whereas the CFs per kg product were 0.47, 0.40, and 0.39 kg CO2eq. The
former was increasing while the latter was decreasing over this period. Huang et al. [50]
quantified the carbon footprints of rice, wheat, and maize production in China over the
period of 1978–2012. The results showed that area-scaled CFs of the three crops’ produc-
tion systems increased from 1286, 937, and 895 kg CO2eq/ha in 1987 to 2682, 2978, and
2294 kg CO2eq/ha in 2012, respectively. Meanwhile, the yield-scaled CFs of rice, wheat,
and maize decreased. Similar findings have been reported by Wang et al. [48] and by Xu
and Lan [62].

From a global perspective, Bennetzen et al. [52] found that since 1970 the PCF of crops
had decreased by 39%. Further, they forecast an addition 25% decrease in PCF to 2050.
However, despite these impressive improvements in the GHG emission intensity of crop
products, the GHG emissions per unit cropland has risen by 15% since 1970 and will likely
increase a further 7% by 2050. What this means is that aggregated GHG emissions from
cropland are increasing, which is not consistent with global efforts to stabilize the climate.
As such, the evidence emerging in this study from Huantai county is important because it
demonstrates that concurrent reductions in PCF and ACF are possible. In Huantai county,
the total cultivated area is constrained by demand for urban and industrial land. Therefore,
with agricultural inputs having reached a threshold [10,58], there now exists the possibility
of reductions in total emissions from the cropping sector.



Sustainability 2021, 13, 1223 12 of 17

Table 5. Comparison of product carbon footprint (PCF) and area carbon footprint (ACF) results.

Study Area System Boundary
PCF (kg CO2eq/kg) ACF (kg CO2eq/ha)

Major Source of CF References
Wheat Maize Wheat Maize

China Cradle to gate +SE +SQ 0.66 0.62 4902 6022 This study
(year in 2016)

China Cradle to gate +SQ 0.67 0.62 3707 4436 [4]
China Cradle to gate +SE +SQ 0.5 0.4 2800 2707 FM (42–44%), N2O (32–37%) [62]
China Cradle to gate +SE −SQ 0.30–0.46 0.26–0.37 FMU (~90%) [33]
China Cradle to gate +SE −SQ 0.51 0.44 2914 2866 NM + N2O (78%) [13]

Eastern China Cradle to gate −SQ 0.66 0.33 3000 2300 NMU (75–79%), DU (14–15%) [35]
China Cradle to gate +SE +SQ 0.45 0.32 FM (65%), N2O (26%), DU (9%) [62]

North China Cradle to gate +SQ (−SQ) 0.23–0.24 (−SOC)
−0.02–0.3 (+SOC)

0.43 (−SOC);
0.13–0.37 (+SOC) FMU (45–49%), EC (35–43%) [38]

China Cradle to gate −SQ 0.35–0.62 0.2–0.4 940–2980 900–2290 FMU (68–76%), EC (17–23%) [50]
North China Cradle to gate +SQ 0.32 0.45 NMU (49%), EC (45%) [32]

China Cradle to gate −SQ 0.27 0.23 [48]
America Cradle to gate +SE −SQ 0.28 FM (24%), N2O (50%), DU (19%) [21]

UK Cradle to gate −SE −SQ 2807 NMU (83%) [26]
Australia Cradle to port +SE −SQ 0.3 FM (30%), N2O (9%), T (12%) [17]
Australia Cradle to port +SE −SQ 0.4 N2O (60%) [18]

New Zealand Cradle to gate −SE −SQ 0.1 CO2 1032 CO2 FM (52%), DU (20%) [20]
Sweden Cradle to gate −SQ 0.38 [30]

EU and USA Cradle to port −SQ 0.58 0.67 [30]
UK Cradle to gate −SQ 0.8 NMU (70%) [28]

Sweden Cradle to gate +SE +SQ 0.31 FM (21%) and N2O (70%) [23]
France Cradle to gate −SQ 0.45, 0.4 [25]

UK and Spain 0.52 (UK), 0.58
(SP) [24]

North Iran Cradle to gate +SE −SQ 0.33 0.17 1171 1441 DU (25–46%), N2O (15–38%), EU (40%) [19]
Denmark Cradle to gate +SE +SQ 0.39 FM (35%), N2O (47%), DU (19%) [22]

South Africa Cropland emission −SQ 0.11 0.14 [27]
Canady Cradle to gate +SE −SQ 0.38 0.33 FMU (81%) [63]

Italy Cradle to gate +SE −SQ 0.45 0.45 FMU (66–73%) [64]
Slovenia Cradle to gate −SQ 0.11–0.15 0.23–0.25 FM (42–76%) [65]

Globe 0.58 0.49 2165 2954 [31]
Globe 0.52 0.47 [29]

Note: EU and SP refer to the European Union and Spain. SE and SQ refer to soil emission and soil organic carbon sequestration. FM, FMU, NMU, DU, EC, T, and N2O refer to fertilizer manufacture, fertilizer
production and use, N fertilizer manufacture and use, diesel use, electricity consumption, transportation, and cropland N2O emission.
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4.2. Comparison and Analysis of Carbon Efficiency

In this study, product, biomass, and economic efficiency are used to evaluate the
carbon efficiency of cropping systems over time. Economic efficiency was found to have
high volatility highly due to the influence of market price. However, the results showed
that, since 2002, all the three indicators have been steadily increasing. There exists a variety
of comparable studies both in China and other regions [5,8,38,41,42,66,67], and the results
obtained for Huantai county are within the range of values reported elsewhere in China;
but in America, Canada, and Europe, the efficiencies have been 2–5 times higher than that
in China including Huantai and other regions (Table 6). Certainly, it is difficult to directly
compare results across different studies due to differences in system boundary definition
and inconsistencies in emission coefficients used. That said, compared to other regions,
the product efficiency of cropping in China appears lower, suggesting there exists greater
potential for efficiency increases.

Table 6. Carbon efficiency of cropping production in China and other regions.

Study Area Cropping System Product Efficiency
(kg grain/kg CO2eq)

Ecological Efficiency
(kg biomass/kg

CO2eq)

Economic
Efficiency

(Yuan/kg CO2eq)
Reference

China Wheat 1.51 6.07 3.35 This study
(year in 2016)

Maize 1.63 6.80 3.09
China Wheat 2 8.94 3.52 [41]

Maize 4.06 13.68 5.48

China Wheat–Maize
Rotation 0.53 3.11 1.67 [44]

China Wheat–Maize
Rotation 0.29 0.94 0.6 [42]

China Crop product 1.95–2.48 [8]
China Wheat 0.99 2.56 [51]

Maize 1.26 2.94
China Wheat 1.52 [35]

Maize 3.03
China Wheat 1.39–1.53 7.6–8.6 [38]

Maize 4.13–4.39 19.3–19.7
China Wheat 1.96–2.5 [5]

Maize 2.7–3.1
America Wheat 2.86–4 [66]

Maize 4–8.3
Canada Wheat 3.7–4 [67]

India Wheat 8.3 [68]
Slovenia Wheat 6.7–9.1 [65]

Maize 4.3–4.5

4.3. Key Factor Analysis

In Huantai county, the WWSM rotation system has been characterized by increasing
yields over time. There have also been changes in material inputs, namely decreases
in N fertilizer inputs and increases in machinery use and diesel consumption. These
changes in farming inputs can be linked to two major local government interventions, one
being the promotion of straw incorporation, the other related to soil testing and precision
fertilizer management. Since 1980, farmers in Huantai county have gradually adopted the
practice of incorporating crop residues into farmland. By 2008, it is estimated that 90%
of straw including wheat and maize was incorporated into cropland in this region. This
appeared about 10 years earlier than in other regions of China [57,59]. Liao et al. [53,54]
made a series of studies about cropping systems in Huantai county and identified that
over the past 30 years (from 1982 to 2011), soil organic carbon content of topsoil (0–20 cm)
increased by 41%, and its density by 57% as well. Additionally, since 2011, fertilizer use
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has been managed more closely as soil testing was introduced and has become widely
accepted [8,57,69]. Zhang et al. [57] found that from 1980 to 2014, the value of reactive N
losses decreased 21.5%, and at the same time, the annual N recovery increased from 39.8%
to 54.1%. Zhang et al. [57] and Liang et al. [59] made an N balance analysis from 1996 to
2012, and the results showed that indirect N inputs, especially straw return, played an
important role to keep the N balance and made some contributions to the increases of soil
organic carbon.

N application is a critical factor for increasing the yield of cropping systems. Tilman
et al. [2] forecasted that, in order to double crop production, the N fertilizer consumption
will need to increase by 140%, namely from 104 Mt/year globally in 2010 to 250 Mt/year
in 2050. Mueller et al. [6] identified that only a 9% increase in N fertilizer consumption
would make a 30% increase in production of the major cereals. Cui et al. [3] reviewed
a series of experiments in China and indicated that with a 38% increase in N fertilizer
application, the yield and GHG emissions per area will increase by 70% and 37%, while the
GHG intensity per unit product would decrease 19%. In contrast, modeling undertaken
by Chen et al. [4,8] demonstrated the potential to increase crop yields by 30% to 50% in
China without additional N inputs, challenging the dominant paradigm concerning crop
yields and N inputs. What is important about the multi-decadal case study evidence from
Huantai county is that it validates the earlier modeling of Chen et al. [8]. Reducing N
fertilizer applications while simultaneously increasing indirect N inputs through straw
return and biological fixation is an effective approach to improve crop yields in farmland
ecosystems in the future.

4.4. Limitation and Uncertainly Analysis

This study, based on the data from longitudinal farm surveys and local farming
system experiments, used the life cycle assessment method to make a detailed analysis
of the CF and CE of cereal production for Huantai county. The system boundary was
from cradle to farm gate, including all of the major agricultural inputs, on-farm activities,
and soil processes relating to GHG emissions and carbon sequestration. It has already
been mentioned that comparisons between CF and CE studies are difficult due to the
myriad of modeling choices that are possible. We note that the GHG emission factor used
in this study for N fertilizer production is higher than what has been reported in other
studies [5,41,62]. However, this is unlikely to materially impact study conclusions. There
are large uncertainties associated with the assessment of changes in SOC. However, we
used the best available data from long-term field trials located in the region. That said,
there is uncertainty about whether SOC can be increased into the future at the same rate as
has been recorded in the past.

5. Conclusions

Agricultural production is central to global food security, and an increasing world
population creates a requirement for increasing crop yields. However, climate stabilization
goals necessitate absolute reductions in agricultural GHG emissions. Most of the evi-
dence concerning cereal production suggests that important reductions in product carbon
footprints have been realized. However, these have been realized through agricultural
intensifications that have increased area-based GHG emissions, thereby not contributing to
the goal of reducing absolute emissions. This long-term analysis of the WWSM rotation
system in Huantai county, based on longitudinal farm surveys and local farming system
experiments, has demonstrated the potential of reducing both product-based and area-
based GHG emissions. The critical factors were reduced N fertilizer use informed by soil
nutrient testing, along with high levels of residue incorporation. As Huantai country is
broadly representative of high-yielding, intensive cropping across the North China Plain, it
would seem possible to extend such farming practices on a large scale.
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