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Abstract: With the rise of topological insulator samarium hexaboride (SmB6), rare-earth hexaboride
(RB6) nanowires are the focus of the second wave of a research boom. Recent research has focused
on new preparation methods, novel electronic properties, and extensive applications. Here, we
review the recent developments in RB6 nanowires in the past five years. Two main synthesis methods
(chemical vapor deposition and high-pressure solid-state) of RB6 nanowires are introduced and
compared. Moreover, their electronic transport, magnetic properties, and superconducting properties
are revealed. Furthermore, the applications of RB6 nanowires are presented, including as field
emitters, photodetectors, and in energy storage. Finally, we detail further research directions for
RB6 nanowires.

Keywords: rare-earth hexaboride; nanowire; field emission; chemical vapor deposition

1. Introduction

Rare-earth hexaborides (RB6) have received substantial attention thanks to their high
electrical conductivity, high melting points, and high chemical stability. Meanwhile, the
strong correlation effect of 4f–5d electrons of rare-earth elements also brings some new-
fangled physical properties of RB6 [1–3]. For example, yttrium hexaboride (YB6) is a
superconductor with a Tc of 7.2 K, which is the second highest transition temperature
among all borides [4]. Moreover, lanthanum hexaboride (LaB6), possessing low work
function of 2.7 eV, is a famous thermionic electron emission material with high current
density and stability [5]. Cerium hexaboride (CeB6) is an antiferromagnetic heavy-fermion
metal, but recently, it was found to demonstrate low-energy ferromagnetic fluctuation [6].
Furthermore, as a ferromagnetic semimetal, europium hexaboride (EuB6) recently exhib-
ited a colossal magnetoresistance effect [7]. In recent years, the emergent topological
insulator has increased interest in samarium hexaboride (SmB6), which possesses both
insulating bulk state and metallic surface state due to the inversion of the d and f bands.
Experimental evidence proves that SmB6 is the first strongly correlated 3D topological
Kondo insulator [8].

Due to the small size effect and quantum confinement effect, one-dimensional (1D)
nanomaterials have new properties compared with bulk crystals. With the rise of 1D nano-
materials, RB6 experienced the first wave of a research boom from 2005 to 2015, and many
RB6 nanowires were prepared by chemical vapor deposition (CVD) [9–20]. These RB6
nanowires achieved excellent field emission properties and mechanical properties [21–29].
From 2016, the second wave of research boom of RB6 began as SmB6 proved to be a topo-
logical insulator, and researchers began to explore the difference in topological properties
between nanowires and bulk single crystals [8].

In this review, we summarize the recent developments in RB6 nanowires. Two main
synthesis methods of RB6 nanowires are summarized. Furthermore, their electronic trans-
port and magnetic properties are summarized. Finally, the applications of RB6 nanowires
are presented, including as field emitters, photodetectors, and in energy storage.
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2. Growth of RB6 Nanowires

The structural models of rare-earth hexaborides are shown in Figure 1a. RB6 crystals
are CsCl-type structures with a space group of Pm-3m. Among 17 rare-earth elements, only
13 can form hexaborides with boron, which are YB6, LaB6, CeB6, PrB6, NdB6, SmB6, EuB6,
GdB6, TbB6, DyB6, HoB6, ErB6, and YbB6. On the left side of Figure 1a, one B6 octahedron
is surrounded by eight R atoms, and RB6 crystals generally have suitable conductivity. On
the right side of Figure 1a, one R atom is encircled by eight B6 octahedra, and B6 octahedra
are connected by covalent bonds, which give RB6 high melting points, high hardness, and
high chemical stability. From the study of electronic structure and bonding characteristics
of LaB6, lanthanum and adjacent boron atoms are not sufficiently bonded, indicating
that lanthanum atoms can migrate efficiently [30]. During the thermal field emission, the
lanthanum atoms can freely migrate in the boron frame to replace the lanthanum atoms
evaporated on the surface, thus showing excellent field emission performance [31]. Rare-
earth hexaborides share common properties, but the special electronic structure of each
material determines their characteristic properties. For instance, YbB6 was once proposed
to be a topological insulator, but new evidence for the electronic structure suggests that
its electronic states originate from the hybridization of the Yb d- and B p-orbits. This
indicates that YbB6 has a non-topological insulator electronic structure [32]. Although most
of the RB6 crystals are metals, SmB6 can open the band gap at low temperature due to
the hybridization of the 4f bands and 5d bands, and meanwhile, metallic surface states
are topologically protected [33]. To study and utilize the properties of RB6, high-quality
crystals, especially low-dimensional nanowires, need to be prepared. Concerning materials
preparation, only two methods are reported to obtain RB6 nanowires, chemical vapor
deposition (CVD) and high-pressure solid-state (HPSS), as depicted in Figure 1b. CVD is a
tradition method to grow RB6 nanowires using vapor–liquid–solid (VLS) or vapor–solid
(VS) mechanisms at a high temperature. HPSS using autoclave is a new method to grow
RB6 nanowires at a low temperature.
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2.1. CVD Growth

In the past 5 years, a series of RB6 nanowires were prepared by the CVD method,
namely, LaB6, CeB6, NdB6, SmB6, and ternary LaxPr1−xB6 nanowires, as shown in Figure 2.
Different methods use different source materials and substrates, as summarized below.

RCl3 + B + B2O3 + H2 → RB6 (R = La, Sm) (1)
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(Copyright 2016, The Royal Society of Chemistry), (d) LaxPr1−xB6 nanowires [37] (Copyright 2016,
Elsevier Science B.V.).

From 2017 to 2019, Gan et al. used a Ni-catalyzed low-pressure CVD method to prepare
high-quality LaB6 and SmB6 nanowires with a length of tens of microns, as depicted in
Figure 2a [34,38]. The source materials of this method are LaCl3 (SmCl3), H2, B, and B2O3,
and they are non-toxic. Halides are common rare-earth sources, easy to decompose and
reactive. The innovation of this method lies in the use of B and B2O3 as the boron source,
because boron powder alone is extremely difficult to change to a gaseous state and has
low reactivity. At a high temperature of 1000 ◦C, the mixture of B and B2O3 can produce
active B2O2 vapor, and then B2O2 reacts with LaCl3 (SmCl3) and H2 to grow LaB6 and
SmB6 nanowires on Ni-coated Si substrates. The LaB6 nanowires exhibit excellent field
emission properties and stability, both at room temperature and at high temperatures [34].
Compared with bulk single crystals, the transport properties prove that SmB6 nanowires
have less residual resistance due to their large surface area [38].

CeCl3·7H2O + B2H6 → CeB6 (2)

In another method, Fu et al. applied a low-pressure CVD route to grow CeB6
nanowires on Au-coated flexible carbon cloths using CeCl3·7H2O and B2H6 as source
materials, as depicted in Figure 2b [35]. In this method, the CeCl3·7H2O is safe, but the
B2H6 gas is deleterious to humans. The field emission properties of flexible CeB6 nanowire
arrays are outstanding, showing a low turn-on field and a high field emission enhancement
factor. Meanwhile, the field current density can remain stable under bending conditions.

SmCl3 + BCl3 +H2 → SmB6 (3)

Besides B2H6 gas, BCl3 gas is also a common source of gaseous boron. In 2016,
Zhou et al. used a CVD route to grow SmB6 nanowires on Au-coated Si substrates [39]. The
electron transport testing on four-probe single-nanowire devices showed that the SmB6
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nanowire has a saturated resistance under 10 K due to the presence of both insulating state
in bulk and conductive state on the surface.

R + BCl3 + H2 → RB6 (R = Nd, LaxPr1−x) (4)

In addition to the catalytic growth using metal particles (Au, Ni), there is also self-
catalytic growth using rare-earth metals themselves as catalysts. In 2016, Han et al. reported
the self-catalytic growth of NdB6 and ternary LaxPr1−xB6 nanowires by an ordinary-
pressure CVD method, as shown in Figure 2c,d [36,37]. Besides the NdB6 nanowires, they
also acquired NdB6 nanoawls and nanotubes. The growth of ternary LaxPr1−xB6 nanowires
reveals that this self-catalytic method is suitable for doping and preparation of RB6 alloys.

2.2. HPSS Growth

Along with the CVD route, the solid-state method is also a route to prepare RB6
crystals, including the high-pressure solid-state method [40–47], solution combustion
method [48,49], and molten salt method [50,51]. However, because the diffusion rate
of atoms in solid-state materials is extremely slow, it is difficult to obtain the nanowire
morphology. At the same time, the low reactivity of solid source materials is also a problem
restricting the development of 1D RB6 nanomaterials. To solve such problems, from 2016,
Zhao group utilized a rare-earth metal, self-catalytic, high-pressure solid-state method
(HPSS) route to prepare various RB6 nanowires, as shown in Figure 3a–f [52–57]. It is
noteworthy that, until now, this is the only report on the synthesis of YbB6 nanowires [56].
The general chemical reaction of the HPSS method is given below.

R + 6 H3BO3 + 10 Mg + I2 → RB6 + 9 MgO + MgI2 + 9 H2O
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In this equation, Mg is used for the reduction of H3BO3, and I2 acts as the catalyst
to boost the reaction of R and B atoms. From the literature, the Gibbs free energy (∆rG)
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and heat function (∆rH) of this equation are about −1900 kJ mol−1 and −2000 kJ mol−1,
respectively, demonstrating that the reaction is spontaneous and exothermic. Moreover,
the high pressure in the autoclave is generated by iodine (higher than 45 atm), which
is also a key to obtaining RB6 nanowires. Due to high exothermic and high pressure,
the trigger temperature of this HPSS method (200–260 ◦C) is generally much lower than
that of the CVD method (950–1100 ◦C). From the ex situ time-dependent morphology
study (5 min, 30 min, 360 min), we speculate that the growth of nanowires has three steps:
(i) diffusion and reaction of R and B atoms; (ii) nucleation of RB6 crystals; (iii) growth
of RB6 nanowires [53]. This HPSS route is a general method for the synthesis of rare-
earth hexaborides, which we believe can be extended to the synthesis of other metal
boride nanowires.

3. Properties and Applications of RB6 Nanowires
3.1. Electronic Transportation

As an emerging topological insulator, many experiments and theoretical studies
have been conducted on bulk SmB6 single crystals [8]. From 2016, researchers began
to investigate the novel electronic transport and magneto-transport properties of SmB6
nanowires [37,38,53,58–62]. In 2017, Kong et al. reported the spin-polarized surface state
transport of single SmB6 nanowires (Figure 4a–c) [58]. Under 5 K, the resistance appears
saturated and flat, indicating that the surface states control the transport behavior. The
appearance of topological surface states is caused by the reversal of d and f electrons. The
fitting of a temperature-dependent resistance curve reveals that SmB6 nanowire has a bulk
gap ~3.2 meV, which is opened by the hybridization of the 4f bands and 5d bands in SmB6
nanowires. As shown in Figure 4c, the magnetoresistance (MR) of SmB6 nanowires is
negative and the MR shows no sign of saturation at high magnetic field up to 14 T. The
negative MR indicates that this transport behavior is spin-dependent. Furthermore, the
nonlocal tests reveal that the surface state transport of SmB6 nanowires is spin-polarized.
In another interesting work, Zhou et al. reported the positive planar Hall effect (PHE) of
SmB6 nanowires (Figure 4d–f) [59]. They found that as the temperature decreases, the
amplitude increases sharply, but saturates at 5 K. This positive PHE is due to the surface
states of SmB6. In other studies, the researchers found the anomalous magnetoresistance
and the hysteresis of magnetoresistance in SmB6 nanowires [60–62].

In the RB6 family, like SmB6, YbB6 is proposed to be a mixed-valent (Yb2+/Yb3+) topo-
logical insulator and demonstrates new quantum phenomena [63–65]. In 2018, Han et al. re-
ported the semiconductor–insulator transition behavior in a YbB6 nanowire (Figure 5) [55].
As shown in Figure 5b, as the temperature decreases from 300 to 2 K, the resistivity of
the YbB6 nanowire device undergoes a dramatic 49-fold increase (ρ2 K/ρ300 K = 49). They
propose that the semiconductor–insulator transition is due to a small band gap opening
at a low temperature induced by the slightly boron-rich or boron-deficient segments in
YbB6 nanowires. Furthermore, the magnetoresistance (MR) of the YbB6 nanowire was
tested with perpendicular magnetic field B = 0–7 T at various temperatures. As displayed
in Figure 5c, the MR shows no sign of saturation at high magnetic field up to 14 T and
has a linear dependence with B2 at 2 K and 10 K, which follows Kohler’s law. Because a
semiconductor–insulator transition occurred at 2 K for YbB6 nanowires, the hole-dominant
transport is credible at 2 K and the transport at 10 K is electron-dominant.

Of all the metal borides, YB6 bulk crystals have the second highest superconducting
transition temperature of 7.2 K after MgB2. More superconducting properties have been
studied in bulk YB6 single crystals, but the superconducting properties of YB6 nanowires
have not been reported. Recently, Wang et al. reported the synthesis of 1D YB6 nanowires
by a high-pressure solid-state method and studied their magnetic properties (Figure 6). The
temperature-dependent magnetization under zero-field cooling and field cooling revealed
that the YB6 nanowires have a superconducting transition with Tc = 7.8 K. Meanwhile,
they found that the YB6 nanowires exhibited a peak effect in the superconducting state
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observed from the magnetic hysteresis loops obtained at 2 K and 10 K, indicating that YB6
nanowires pertain to a type-II superconductor.
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LaB6 bulk single crystals have been applied in commercial scanning electron mi-
croscopy and transmission electron microscopy. For RB6 nanowires, the most attrac-
tive application is also the field emitter of an electronic gun of an electron microscope
(Figure 7) [66–68]. Published in Nature Nanotechnology, Zhang et al. reported the first
application of a single LaB6 nanowire to scanning electron microscopy, revealing excellent
performance [66]. Their LaB6 nanowire electron source shows low work function, is chemi-
cally inert, and has high monochromaticity. When assembled into a field-emission gun of
SEM, it demonstrates ultra-low emission decay, and its current density gain is three orders
of magnitude higher than traditional W tips. By this LaB6 nanowire-based SEM, they
obtained low-noise and high-resolution images, better than W-tip-based SEM. Recently,
published in Nature Nanotechnology in 2021, Zhang et al. reported the installation of a
single LaB6 nanowire into an aberration-corrected transmission electron microscope [67].
The LaB6 NW-based TEM achieved atomic resolution and probe-forming modes at 60 kV
energy. Compared with the state-of-the-art W (310) electron source, the nanostructured
electron source provides higher temporal coherence at a spatial frequency of 105 pm, show-
ing a higher contrast transfer amplitude of 84% and a spectral energy resolution of 35%.
The first demonstration of the LaB6 nanowire electron source in SEM and TEM reveals
that the RB6 nanowires have notable application prospects and commercial value both in
electron microscopy and other electron-emitting devices.
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3.2. Optoelectronic Properties

Most of the RB6 crystals are metals with zero band gap, and thus, they are not suitable
for semiconductor devices, such as field effect transistors and photodetectors. However,
as a topological Kondo insulator, SmB6 shows a small gap (3 meV), evidenced by elec-
trical transport measurements, and may have potential in fabricating devices. Recently,
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Zhou et al. [69] first reported the self-powered SmB6 nanowire photodetectors with broad-
band wavelengths covering from 488 nm to 10.6 µm (Figure 8). They claimed that the
photocurrent stemmed from the interface of SmB6 nanowire and Au electrodes owing to
the built-in potential, proved by the spatially resolved photocurrent mapping. The current
on/off ratio, responsibility, and specific detectivity are 100, 1.99 mA/W, and 2.5× 107 Jones,
respectively. The demonstration of a SmB6 nanowire photodetector reveals its application
potential in mid-infrared photodetectors.
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3.3. Electrochemical Performances

RB6 crystals show excellent metal-like conductivity (>103 S m−1) and they are suitable
for active electrochemical electrode materials for energy storage. Recently, Wang et al. [52]
reported the application of CeB6 nanowires as lithium-ion battery anode materials, and
they obtained a capacity of ~225 mA h g−1 after 60 cycles (Figure 9a). The kinetic analysis
shows that the Li+ storage mechanism mainly comes from the surface capacitive behavior.
Xue et al. [70] reported the LaB6 nanowires on carbon fiber as electrode materials for
supercapacitors (Figure 9b). The LaB6 electrode materials showed a high areal capacitance
of 17.34 mF cm−2 and revealed suitable cycling stability after 10,000 cycles. The successful
application of RB6 nanowires in batteries and capacitors demonstrates their potential in
the field of electrochemical energy storage.
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Figure 9. (a) The charge–discharge curves of CeB6 nanowire electrodes for lithium-ion battery
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4. Conclusions and Outlook

In conclusion, we review in this paper the recent developments in RB6 nanowires in
the past five years. Two main synthesis methods (CVD and HPSS) of RB6 nanowires are
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outlined and compared. Moreover, their electronic transport, magnetic properties, and
superconducting properties are summarized. Finally, the applications of RB6 nanowires
are revealed, including as field electron emitters, photodetectors, and in energy storage.

With the rise of two-dimensional (2D) materials, RB6 nanowires should absorb some
of the advantages of 2D material, such as atomically thin and large area lateral size. If
RB6 nanowires become thinner and wider, also called RB6 nanobelts, they may reveal
novel properties (Figure 10). In a recent study, Lee et al. reported the perfect Andreev
reflection in a topological superconducting state based on SmB6/YB6 heterostructures [71].
We believe the heterostructures based on combinations of RB6 nanowires or films may
find new physical phenomena and represent future trends. In terms of the synthesis
methods, CVD, solid-state, MBE, and PLD methods are all applicable, and only few
improvements are needed. For instance, when using the CVD method to grow RB6
nanobelts, mica substrates may be the best. Furthermore, adding some salts can improve
the growth efficiency [72]. Meanwhile, 2D rare-earth materials have shown novel properties
and applications, and thus, new discoveries and properties will also arise regarding the
atomically thin 2D RB6 nanobelts.
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