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Abstract: Sustainable food supply has gained considerable consumer concern due to the high
percentage of spoilage microorganisms. Food industries need to expand advanced technologies that
can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds,
provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory
characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as
bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to
reduce food losses, and sustainable developments in preservation, nutritional security, and food safety
are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved
because they increase food quality, reduce water utilization, decrease emissions, improve energy
efficiency, assure clean labeling, and utilize by-products from waste food. These processes include
pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed
light. This review describes the use of HPP in various processes for sustainable food processing.
The influence of this technique on microbial, physicochemical, and nutritional properties of foods
for sustainable food supply is discussed. This approach also emphasizes the limitations of this
emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited
global food source must have a balanced approach to the raw content, water, energy, and nutrient
content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains
the nutritional value. HPP technology meets the essential requirements for sustainable and clean
labeled food production. It requires limited resources to produce nutritionally suitable foods for
consumers’ health.

Keywords: high-pressure processing; sustainable food; food quality; economic sustainability; waste
minimization; water conservation

1. Introduction

Sustainability is a vital need of fulfilling the basic societal requirements by improving
social, environmental, and economic systems [1]. With the world’s increasing population,
people mainly focus on healthy, nutritious, and safe foods [2]. For this reason, the main
target of the United Nations 2030 programs is the implementation of the latest food pro-
duction for the sustainability of food. Sustainability is a major feasible way to access the
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upcoming basic requirements for a safe, nutritious, and healthy diet [3]. Sustainable food
processing demands the exclusive use of natural resources to minimize food waste [4].
Many foods, especially fruits, vegetables, and grains, are wasted during storage, transporta-
tion, and processing [5]. Nowadays, the food industry is forced to develop sustainable food
systems [6]. Some limitations of conventional technologies that lead to the adaptation of
non-thermal technologies are off-flavors due to chemical reactions, fluctuations in nutrients,
and losses of food quality [7].

The food industry has adopted different effective non-thermal techniques such as a
pulsed electric field [8] (PEF), ultra-sonication [9] (US), cold plasma [10], high-pressure
processing [11] (HPP), and ultraviolet radiation. All of these techniques maintain the origi-
nal food quality, overcome nutrient loss, and have a low energy consumption compared
with conventional systems [12]. The effects on the flavor, viscosity, appearance, nutritional
value, and practical function in inactivating pathogens and vegetative micro-organisms are
reduced compared with many conventional therapies [13]. HPP technology is considered
environmentally friendly and kills bacterial cells, yeasts, and molds without heat [14]. It
lessens the need for chemical additives and increases bioavailability [15,16]. HPP is per-
ceived as a replacement for thermal techniques because it improves food safety, increases
shelf life, and preserves the sensorial, physiochemical, and nutritional content of food [17].
The basic goal of HPP of meat and meat items is to minimize the infectious and spoilage
microbes and to extend the shelf life [18].

HPP is also called high hydrostatic pressure, ultra-HPP, pascalisation or cold pasteur-
ization. In this technique, high pressure is applied to solid or liquid foods to enhance their
safety, organoleptic attributes, and quality. Firstly, high-pressure treatment was applied
in the late 1890s for the inactivation of microbes in dairy products, i.e., milk [19]. HPP
works on the isostatic principle, which states that different media such as water or oil
apply constant pressure to the sample. The combination of water with oil lubricates the
equipment and reduces corrosion. Thus, it helps eliminate the microorganisms in food
samples and is not affected by the size and shape of the food samples [20]. According to
the isostatic principle, HPP does not depend on volume; therefore, pressure is transmitted
instantly and constantly throughout a sample, and pressure gradients do not exist. HPP
has been utilized in food sterilization and preservation processes to enhance the shelf life
of food and maintain high quality by following Le Chatelier’s and Pascal’s principles for
specific purposes [21]. Le Chatelier’s Principle states that phenomena lead to a decrease in
volume, such as state changes, chemical reactions, and alterations in molecular arrange-
ment, enhanced by pressure. In contrast, volume increases by reduced pressure. HPP
will perform an essential role as an alternative approach in food sterilization when the
transmission medium is water [22].

It has been proven that HPP allows shelf-life extension [23], pathogen removal [24],
and clean-label [25] convenience while providing natural and safe food to consumers. HPP
has been utilized in different food categories such as vegetables, fruits, dairy, meat, sea
foods [26], jams, fruit jellies, sauces, purees, juices [27], ready to eat meat, Deli Salads,
Dips, Salsa markets [28], infants food, and the fish industry for different purposes. Table 1
describes the applications of HPP in different industries of food.
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Table 1. Applications of HPP in the food industry.

Applications Treatment
Conditions Food Sample Treatment Effects References

Meat processing 175–600 MPa,
3–5 min,

Meat, Meat Products,
and Seafood

Showed minimal effect on
nutrients and sensorial

characters. Slowed down
microbial growth and

reduced the activity rate
of spoilage bacteria

[29–31]

Microbial
reduction

300–600 MPa,
5–10 min

Meat, juices, milk
products

Caused significant
reductions in microbes in
food items, i.e., about a

1.6–5-log reduction

[32–34]

Extraction 250–500 MPa,
5–15 min

Seeds, fruits,
vegetables, plants,

cereals

carbohydrates,
bioactive

compounds

Extraction yields were
enhanced by HPP
compared with the

conventional method

[35–39]

Pretreatment 200–300 MPa,
2–6 min

Meat, fruits,
vegetables

HPP as a pretreatment
improved textural,

nutritional, and
sensorial attributes

[40–43]

Seed treatment
200–400 MPa,

10–60 min
20–60 ◦C

Moringa oleifera
kernels, Basil,

chia seeds

HPP enhanced the
extraction of oil as well as

the structure of seeds
[44–46]

MPa: megapascal, CFU: colony-forming unit.

HPP operated at 350 MPa for 4 min and combined with 0.05% allyl isothiocyanate
(AITC), showed a 5-log reduction of Salmonella and at 350 MPa for 12 min with 0.075%
AITC, showed more than 7-log inactivation of Salmonella in ground chicken meat [47]. HPP
as a pretreatment maintained the color and texture of albacore steaks when operated at
200 MPa for 6 min [48]. Nunez-Mancilla et al. [49] studied the HPP impact on strawberries
at 100–500 MPa for 10 min. The results clearly showed higher antioxidant activity and a
total phenolic content at 400 MPa; HPP also retained the vitamin C content in strawberries.
This review mainly focuses on describing HPP sustainability, advantages, and limitations.
HPP is an efficient, non-thermal, and the most accepted technique by the consumer [50].
Furthermore, the continuous demand for healthy and safe foods has discovered HPP for
mild food preservation without chemicals and preservatives.

The current study was done based on research articles found on 14 March 2021, using
the internet database Web of Science (WoS). The authors discovered some of the most highly
cited articles referencing the term “high-pressure processing”. The search revealed papers
that referred to “high-pressure processing” in their titles, abstracts, or author keywords.
Furthermore, the authors established two criteria to limit the relevant research papers that
were selected: either the most cited or the most current research.

2. Working Mechanism of HPP

HPP equipment mainly consists of the following components: a pressure vessel
composed of high-tensile strength steel determined by the process’s lethality, closures or
plugs, a yoke/wire-wound steel frame, a pressure pump, and a control system [51] as
demonstrated in Figure 1. The food sample is kept in a pressure chamber using water as
a pressure-transfer medium after being filled and sealed in flexible pouches. Additional
fluid may be injected into the pressure chamber to create pressure. Because of the isostatic
principle, pressure is uniformly distributed across the whole product in the container,
ensuring that all food parts are under equal pressure. Surprisingly, the product’s size and
shape have minimal impact on the HPP treatment.
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Figure 1. A standard batch HPP system.

A pressure vessel may also be used to create a pressure intensifier. The pressure
vessel, which holds a packed food product and pressurization fluid, is intended to endure
a certain pressure and temperature. The quantity of fluid that a pressure vessel can contain
determines its size, varying from a few milliliters in research units to several hundred liters
in commercial units [52].

Both batch and continuous HPP systems are utilized in food industries. Batch process
systems are used for most solid food products; however, liquids and other pumpable goods
have the option of being treated in a continuous system [53]. Semi-continuous process
systems comprise two or more pressure vessels, a small pressure pump to fill the vessels, a
high-pressure transmission pump, holding and sterile tanks, and controlling valves [54].
Pressure vessels contain a separating piston that moves freely to separate the product
from the pressurizing fluid. Controlling valves prevent cross-contamination of the treated
product with the upcoming untreated product [55]. At the start of the process, the pressure
vessel using a low-pressure pump fills with the liquid product. When the food section is
filled, the inlet valve is closed, and pressurizing fluid moves the free piston to compress the
liquid. The vessel is depressurized after a suitable holding time, which will decompress
the food and the piston returns to its original state. Finally, the processed liquid product
is aseptically packed in sterilized containers [53]. Vessels are connected so that when one
vessel discharges the product, the second system is pressurized, and the third is loaded
with a food sample. Therefore, a continuous product is maintained. In a commercial-scale
industry, three pressure vessels are used to provide a continuous product output. This
production is generated by the operation of these three vessels simultaneously; one is
loading, the second is compressing, and the last is discharging at any point in time [56].

Pressure, such as heat, is a fundamental thermodynamic variable. In a strict sense,
the effects of temperature and pressure cannot be isolated during HPP. This is because
each temperature has an associated pressure. Thermal effects result in volume and energy
changes during pressure treatment. However, pressure mainly influences the product
volume. The combined net impact may be synergistic, antagonistic, or additive [57]. Hence,
the HPP process is characterized by three parameters: temperature (T), pressure (p), and
exposure time (t) compared to heat preservation. Figure 2 shows the pressure, temperature,
and time relationship in HPP.
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Figure 2. Presentation of temperature, pressure, and time in HPP.

The pressure is built up to a particular point until it reaches the desired pressure. The
target pressure (pressure established as a standard for the product) is maintained for a
specific time before being released. The pressure at which the sample food is held in the
pressure vessel is termed the process pressure. The temperature at which the product
obtains its process pressure is called the process temperature. The process temperature
depends on the initial temperature, pressure transmitting fluid, and heat compression
values. The time required to increase pressure from 0.1 MPa to the required process
pressure is called the pressure come-up time [52]. However, the pump power (horsepower)
and target process pressure increase or decrease the pressure come-up time. Strain gauges
that function on the principle of a change in resistance under pressure strain (compression-
decompression) and displacement transducers mounted on the external frame can be used
to measure the pressure [58]. The pressure holding time is the time interval over which the
product needs to be held under the process pressure. It is the period that occurs between
the end of compression and the start of decompression.

In pulsed-HPP (p-HPP), pressure is applied with pulses to the sample with a total
holding time [59]. The effectiveness of the p-HPP process has been reported to be more
effective than an equivalent single pulse of equal time [60].

A pressure holding time of 3–10 min is used for economically viable commercial
processes. After the pressurization, the temperature of the product is increased due to
molecular arrangements. Therefore, a decompression period is needed to return the food
sample from the process pressure to air pressure (0.1 MPa), and the product temperature
is also reduced during depressurization [58]. HPP is applied at 400 to 600 MPa in most
processes at ambient temperature. Most HPP processes operate at low temperatures,
depending on the pressure of food processing. Depending on the product’s composition,
the water temperature of the product in the pressure chamber may increase by 3–6 ◦C for
every 100 MPa increase in pressure. Table 2 shows the target pressure for different HPP
applications in food.

Table 2. Target pressure for different food processing applications in HPP.

Applications Target Pressure Food Samples References

Pasteurization (300–600 MPa) Meat, Milk, fruit juices, cereals [61,62]
Sterilization (500–900 MPa) Fruits, macaroni, cheese [63]
Extraction (250–500 MPa) Seeds, fruits [35]

Pretreatment (200–600 MPa) Meat, vegetables [40]



Sustainability 2021, 13, 13908 6 of 27

The target pressure must be varied for different food applications. For example, the
target pressure for the extraction of xyloglucan from tamarind was 250–500 MPa [35].
Moreover, for pasteurization and sterilization, the target pressure was 300–600 MPa [64]
and 500–900 MPa [63].

3. HPP Processing towards Sustainability

The Food and Agriculture Organization (FAO) and World Health Organization (WHO)
reported on world food day 2019 the “Sustainable healthy diets–guiding principles” (FAO
and WHO, 2019) and have described three pillars of sustainability: social, economic, and
environmental. It was clearly defined that sustainable healthy diets are complete dietary
patterns that improve an individual’s health and wellbeing [65]. Furthermore, sustainable
diets are accessible, feasible, safe, and nutritious and are mostly accepted by consumers
and have less impact on the environment.

Food product quality and safety are the most crucial factors for society and industry [66].
HPP is an environmentally friendly technology, which provides sustainable food without
compromising the safety or quality of products and improves the food sector
economically [67]. Moreover, HPP is an all-natural process that assures clean labeling
of food products. According to consumer demands, HPP allows natural food ingredients
without the addition of chemicals and preservatives [68]. Table 3 demonstrates the HPP
contributions towards sustainability in different food applications. The following part
demonstrates each part of this contribution.

Table 3. HPP Contributions to sustainable food processing.

Contributions Application Treatment Conditions Contributions Toward
Sustainability References

Food safety

Nutritional
Improvement 200–600 MPa, 5–15 min Improved nutritional value

by HPP [69]

Food preservation 200–400 MPa, >2 min
More efficiently used for

pasteurization of liquid foods
and dehydration of solid foods

[70]

Reduction of food
contaminants 30 to 500 MPa, 30–50 ◦C Helped to decrease food

contaminants and toxins [59]

Solid food pretreatment 200 MPa, 0–6 min Maintained texture and color [48]

Environmental
sustainability Reduced food waste 300 MPa, 3 min Contribution to reducing

food waste [71]

Food packaging Effects on
food packaging

600 a, 60 min; 800 MPa,
10 min, 60 ◦C

Minimal effect on
packaging material [72]

Economic sustainability Profit attained 356 and 600 MPa, 30 min
Contributed to the recovery of

valuable components
from food

[73]

Water efficiency Minimal water
consumption

Not only energy saving but
also water-saving technology [74]

Energy efficiency Minimal energy
consumption 300–700 MPa Utilised less energy than

conventional techniques [75]

Food security Enhanced yield 200 and 500 MPa HPP improved the food yield [76]

HPP enhanced the extraction rate of bioactive compounds such as polyphenols,
carotenoids, isothiocyanates, fatty acids, essential oils, and nutrients in food
components [77,78]. For example, HPP enhanced the extraction of ferulic acid from Angelica
sinensis [79] and the extraction of phenolic compounds from Chilean papaya (Vasconcellea
pubescens) seeds [80]. Moreover, the extraction of astaxanthin carotenoid from shrimp shells
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was done efficiently by HPP at 200 MPa for 5 min [81]. Figure 3 illustrates the role of HPP
in sustainable food production.
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HPP was found to be capable of destroying vegetative as well as pathogenic bacteria
and enzymes under certain circumstances; thus, it has been increasingly employed to
compensate for the limitations of conventional thermal pasteurization and sterilization
methods [82]. Microbes have a role in food spoilage and food losses. The inactivation of mi-
crobes helps to make food safe and extend the shelf life. HPP increases the product quality,
sensory attributes, and shelf life and decreases microbial shelf life [64,83]. Woolf et al. [84]
stated that the fragile sensory characteristics of avocado could be preserved with a long
shelf life. HPP can also improve the product texture and structure [85].

3.1. Food Safety

Food safety has been a significant issue focused on since 1963 by the United Nations
through an international forum. The FAO stated food safety as the “assurance that food will
not cause harm to the consumer when it is prepared and/or eaten according to its intended
use” [86]. According to another definition, food safety refers to food free from hazards [87].
Therefore, the number of interferences involving food safety can be diminished by assess-
ing the possible hazards to forestall them and their adverse consequences. Nowadays,
HPP plays a role in reducing microbes, enhancing shelf life, preserving nutrients, and
assuring the safety and quality of raw and processed food items [88]. For example, in
the meat industry, HPP is helpful to increase the shelf life and safety of ready-to-eat meat
products [89].

3.1.1. Food Preservation

Preservation of food reduces microbial growth. Survival and tendency to grow depend
on the response of microbes. Spoilage and pathogenic microbes affect food quality and
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safety. The main requirement is the production of high-quality foods with high nutritional
value. The latest preservation technologies were accepted based on their efficiency to
reduce pathogenic and spoilage foodborne microorganisms [90]. HPP slows down the
activation of microorganisms by controlling their reproduction and survival rate [91]. HPP
reduced L. monocytogenes by about 0.91 log10 colony forming unit (cfu)/g at 600 MPa in
different food items such as guacamole, cheese, fruit juices, meats, and seafood [92]. HPP
has been proved as an effective food preservation technique to replace thermal techniques,
especially in the meat industry. [93]:

i. Liquid Food Preservation:

According to Food and Drug Administration (FDA) terms, liquid food demands
processes that show at least a 5-log reduction during preservation [6]. HPP successfully
removes pathogenic and spoilage microorganisms in liquid foods [23]. In addition, a study
on cactus juice was performed at 600 MPa, 15 ◦C for 10 min by HPP, and a 3-log reduction
of yeast/mold was observed [94]. Table 4 explains the microbial load in some liquid foods
after HPP treatment.

Table 4. Treatment of liquid foods by HPP.

Food Sample Target Product Treatment Conditions Log Reduction References

Coconut water Clostridium botulinum type E
and Clostridium sporogenes 550 MPa, 3 min, 10 ◦C 3.0 ± 0.1 [95]

Açaí juice Bacteria 600 MPa, 3 min 5–6 [96]

Whole milk and skim milk Cronobacter sakazakii 300 MPa, 400 MPa,
5.0 min No detection [97]

Cucumber juice Yeast and mold, total
aerobic bacteria 500 MPa 5 min 1.35–1.94 [98]

Beetroot and carrot juice E. coli 300–500 MPa No detection [99]
Raw milk Pathogens 600 MPa, 3 min 5 [100]

Acidic fruit juices Alicyclobacillus acidoterrestris 600 MPa, 80 ◦C, 3 min 2.0–2.5 [101]
Wines Brettanomyces bruxellensis 200 MPa, up to 3 min, 1.1–5.1 [102]

In 2013, orange juice was treated at 200–600 MPa, 20–60 ◦C by HPP. The result showed
a 2-log reduction in Alicyclobacillus acidoterrestris [103]. Hiremath and Ramaswamy [104]
concluded that applying 400 MPa for 10 min caused a 6-log inactivation of E. coli O157:H7
in mango juice using HPP. According to Huang et al. [105] E. coli O157:H7 showed 6-log
CFU/g inactivation in frozen strawberry puree, under HPP conditions of 450 MPa for
2 min at 21 ◦C. Shahbaz [106] stated that applying HPP at 600 MPa and 25 ◦C for 1 min
with 8.45 J/cm2 of TiO2-UV photocatalysis caused 7.1-log CFU/mL and 7.2-log CFU/mL
reductions of E. coli and Salmonella Typhimurium in apple juice. Syed et al. [107] treated
orange juice by HPP at 700 MPa for 5 min for complete inactivation of S. aureus. HPP
successfully reduced the microbial content (p ≤ 0.05) in Sabah Snake Grass juice at 400 and
500 MPa [11].

ii. Solid Food Preservation

HPP is a beneficial non-thermal process utilized to inactivate microbiota in certain
foods [108]. HPP has been used for more than 100 years as a well-known pasteurization
technique to make food products safe and contaminant-free [109]. HPP at 300–600 MPa
effectively stopped the growth of decaying microbes in meat products [110].

HPP with antimicrobials increased the decontamination of foodborne pathogens
and microbial safety of meat and meat products [111]. For example, parma ham treated
with HPP showed a reduction of L. monocytogenes and was easily packaged and sold
worldwide [112]. The same results were shown in the case of dry-cured ham by enhancing
the shelf life of ham [113].

Water plays a major role in microorganism growth and enzymatic reactions in food [114]
and therefore must be removed. HPP plays a role in food dehydration. For example, the
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combined effect of HPP and osmotic stress on the dehydration of ginger slices were
studied [115]. At 600 MPa, the moisture content decreased, and the solid content increased.

HPP induced freezing and thawing, which formed ice crystals, resulting in a uniform
crystal structure within the food matrices [116]. Thus, HPP preserves the structure and
texture of solid food products through freezing. For example, peach and mango were
treated at 200 MPa and −20 ◦C; high-pressure shift freezing of peach and mango with high
supercooling formed uniform rapid ice crystals throughout the sample. As a result, large
ice crystal formation and quality losses due to freezing cracking could be reduced [117].

HPP-assisted thawing caused less quality damage than traditional freezing techniques
in meat by applying 100–200 MPa for 10 min [118]. According to another study, broccoli
was treated at about 180–210 MPa pressure and −16 ◦C to −20 ◦C, which decreased the
protein content and did not inactivate peroxidase and polyphenol oxidase enzymes. After
one month, unpleasant changes in the flavor of broccoli occurred, but the texture remained
the same. It destroyed the vacuole membrane and disorganized internal cells [119].

3.1.2. Effect of HPP on Food Contaminants

Food contaminants consist of environmental contaminants, food processing contami-
nants, unapproved adulterants, food additives, and migrants from packaging materials [120].
Environmental contaminants include impurities that are introduced by humans or naturally
arise in water, air, or soil. Food processing contaminants contain unwanted components
such as nitrosamines, chloropropanols, acrylamide, furanes, and polycyclic aromatic hydro-
carbons (PAH) during baking, roasting, canning, heating, fermentation, or hydrolysis [121].
Moreover, chemical supplies found in food, animal feed, or antibiotic injections injected
into poultry animals are examples of food contamination from chemicals [122]. HPP re-
duces the activity rate of pectin methylesterase (PME) isoenzymes. They mainly cause
pectin degradation and cloud loss in most citrus juices. HPP showed less food quality
loss, flavor retention, and eliminated spoilage microflora, i.e., yeasts, molds, and lactic acid
bacteria, in citrus juice [123].

Over the last 10 years, HPP has become the most reliable and fastest decontamina-
tion technology, so many commercial large-scale units have been introduced in western
countries [124]. Research has shown the combined effect of pressure and temperature
(high-pressure thermal sterilization) in the inactivation of spores [125]. Therefore, high-
pressure thermal sterilization (HPTS) was certified in 2015 and it reduces food processing
contaminants (FPCs), e.g., furan [126], acrylamide, hydroxymethylfurfural (HMF), and
3-MCPD/-esters etc. HPP induced microbial inactivation and structural alterations in food
components [127]. Therefore, it has been proved that it is a beneficial tool for the reduction
of pesticides and mycotoxins. For example, studies showed that the common pesticide
chlorpyrifos in fruits and vegetables, e.g., tomatoes and Brussel sprouts [128] was reduced
under optimal conditions to 75 MPa, 5 ◦C, by HPP.

3.1.3. Reduction of Pesticides

Pesticides are helpful to eliminate pests, enhance shelf-life, and maintain quality.
Specific laws enable their production, marketing, and usage [129]. About two million tons
of pesticides are utilized every year worldwide. Sharma et al. [130] reported a serious risk
by contaminating raw sources of food. The pesticide residue levels in food are controlled
by law to lessen exposure to the consumer [131,132].

HPP has been utilized as a phytosanitary treatment for reducing insect pests in fresh
or processed fruits and vegetables to enhance their shelf-life [133]. Moreover, HPP applied
with pre-sterilized packaging reduced chemicals in liquid effluents [134].

3.1.4. Degradation of Toxins

Due to the increasing demand for safe food, it is essential to explore new innovative
techniques for reducing pesticides and mycotoxins in food products [135]. Studies showed
that most foods are contaminated by pesticides and mycotoxins [136]. The major sources of
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contamination are polluted raw materials [137] that are contaminated before coming into
food factories [138]. Cereals utilized as staple food have a high risk of mycotoxins, such
as aflatoxin and ochratoxin. HPP has a serious effect on mycotoxins and minimizes their
toxicity in the environment [13]. Kalagatur et al. [61] found that when 550 MPa pressure
was applied to maize grains at 45 ◦C for 20 min, the maximum reduction in ZEA and
DON levels occurred. Another experiment was done to reduce two heat-resistant fungi,
Aliivibrio fischeri and Talaromyces macrospores, in strawberry puree by combining pressure
and heat [139].

HPP is an efficient technique utilized in the food sector to inactivate spore fungi
and stop their growth. According to research, it was found that HPP (600 MPa) with
US treatment (24 kHz/0.33 W/mL) at 75 ◦C for 30 min eliminated the ascospores of
Byssochlamys nivea in strawberry puree [140]. In another study, the combination of HPP
(600 MPa) and US (24 kHz/0.33 W/mL) at 75 ◦C helped to remove ascospores of Neosar-
torya fischeri and B. nivea in apple juice [62,141]. Moreover, the combination of HPP with
ultrasound can enhance decontamination. A study by Huang et al. [142] concluded that
600–800 MPa pressure inactivated the mycotoxigenic fungus A. flavus. Tokusoglu, Alpas,
and Bozoglu [143] proved that mold flora and the level of citrinin mycotoxin in black table
olives were successfully reduced by HPP treatment.

3.2. Food Security

Food security is a multifaceted concept, and it can be achieved at the individual,
household, national, regional, and global levels when all people consistently have physical
and economic access to adequate, safe, and nutritious food to fulfill their intake needs
and food choices for an active and healthy life. Food insecurity, malnutrition, and poverty
are the most serious global challenges of the 21st century. Food insecurity is chronic. Xie
et al. [144] showed an alarming food insecurity situation. The period from 2013 to 2019 was
shown as an active period of food insecurity. According to one national nutrition survey,
food insecurity has reached its highest level, it was 58% in 2005–2006 and about 72.8% in
2013, causing troubles in some regions.

3.2.1. Sustainable Nutrition Security

During 2014–2016, almost 795 million people worldwide were undernourished [145].
Therefore, there is a need for non-thermal techniques that preserve the nutrients and the
quality of food products. Non-thermal preservation techniques result in minimal changes
in flavors, nutrients, and vitamins due to low temperatures [146].

HPP generally causes no marked nutritional loss in foods compared with conventional
thermal processes [147]. In addition, some studies showed no significant changes in
carotenes immediately [148]. Some authors suggest that antioxidant activity increases by
HPP [149], but others have come to the opposite conclusion [150]. Table 5 shows the effect
of HPP on food nutrients in different food samples.
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Table 5. HPP effects on food nutrients.

Food Nutrients Food Sample Treatment Conditions Treatment Effects References

Fatty acid Caprine milk 200–500 MPa
No marked differences in the fatty
acid profile, excluding an increase

in branched-chain fatty acids
[151]

Free amino acids Serrano dry-cured ham 600 MPa, 6 min, 4 ◦C No effect of HPP on total
FAA levels [152]

Protein Milk 150–450 MPa, 15 min
The disintegration of casein
micelles at >250 MPa; serum

proteins were denatured
[153]

Free amino acids Chinese rice wine 400 MPa or 600 MPa
10 min

HPP increased the free amino
acid content [154]

Carotenoids Cloudy carrot juice 300, 450, 600 MPa,
5 min, ≈22 ◦C

The highest carotenoid
degradation (41%) occurred at 350

MPa, whereas the lowest (26%)
occurred at 600 MPa

[155]

Polyphenols Kiwi berry 450, 550 or 650 MPa, 5
or 15 min

Caused a significant increase in
the individual polyphenol content [156]

Anthocyanins,
non-anthocyanin

phenolics, tocopherols
Acai juice 400, 450, 500 and 600

MPa, 5 min, 20 ◦C

Efficient preservation technique
for anthocyanins compared to

thermal pasteurization (up to 40%)
[157]

Polyphenols, Enzymes Carrot juice 450 and 600 MPa,
5 min, ≈ 22 ◦C

At 300 MPa, maximum
inactivation of (PPO) enzymes

(57%) was achieved, and at
600 MPa, about 31% inactivation

of peroxidase (POD) enzymes was
observed. Significant changes in

the color parameters and the
browning index were observed

[77]

Anthocyanin,
polyphenol oxidase,
and β-glucosidase

Blueberry 300 MPa
HPP treatment resulted in better
puree colour retention than the

conventional treatment
[158]

Total phenolic
compounds, vitamin C Strawberry 100 and 500 MPa,

10 min

At 400 MPa, the maximum total
phenolic content was obtained;

preserved vitamin C content
in strawberry

[49]

Oxidoreductive
enzymes Mushroom 200–900 MPa, 5–45 ◦C,

1–15 min

HPP used in the experiments
significantly (p < 0.05) decreased
PPO and POD activities, with a
greater decrease in the relative
activity (RA) of the enzymes
observed when the pressure

was increased

[159]

Carbohydrate
hydrolysing enzymes Lemon flavedo 400 MPa, 10 min

HPP-treated samples had high
levels of carbohydrates

Hydrolyzing enzyme inhibition
[160]

Polyphenol oxidase Pawpaw 600 MPa, 4 ◦C, 76 s

HPP significantly decreased PPO
activity. HPP was proved to be an
effective technique for the longer

shelf-life of fresh-packaged
pawpaw pulp

[161]

Additionally, it was considered that the HPP technique at 100, 200, and 400 MPa
efficiently enhanced the functional properties of pine nut protein isolates with enhanced
heat-induced gel strength [162]. Compared with conventional treatments, HPP enhanced
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nutrient retention [163] and reduced the effects on antioxidant activity [164]. As a result,
HPP enhances the food shelf life and decreases nutritional losses [165].

HPP preserves the value of the vitamins in food; for example, it was observed that heat,
light, pH, metals, and free radicals are prominent factors that affect vitamin E activity. In an
anaerobic environment, tocopherols and trienols are stable to heat and alkaline conditions.
A pressure of 400 to 600 MPa caused no marked reduction in the amount of tocopherol in
milk [166]. However, HPP increased the concentration of phenolic compounds [167]. It
was concluded that the polyphenol content of apple juice (600 MPa, 50 min) was 409.2 mg,
which was 14% higher than that in thermal treatments. In addition, HPP application
influences the stability of chlorophyll at a high temperature and low pressure. Medina-
Meza et al. [168] showed high stability of chlorophyll at lower pressures from 400 to
650 MPa in spinach sauce.

HPP enhanced the solubility of myofibrillar protein at low pressure. Ziye et al. [169]
stated that myofibrillar proteins are sensitive to high pressure. At 100–200 MPa, the
quaternary structure dissociates, while above 200 MPa, tertiary structures are affected, and
at 300–700 MPa, secondary structures are affected. HPP improves the gelation properties of
myofibrillar proteins. Chan et al. [170] found that at low-pressure (≤200 MPa), the solubility
of myofibrillar proteins improved; at a pressure higher than 300 MPa, the solubility of
myofibrillar proteins decreased and large aggregates formed. Hence, it was proved that
HPP successfully improved the texture of food products [171].

HPP plays a role in the tenderness of meat, which depends on myofibrillar and
connective tissue. The mechanisms of meat tenderization that occur in the HPP of pre-
rigour muscles and chill ageing of post-rigour muscles are different. HPP causes alterations
in the muscle microstructure, sarcomere contraction, muscle fibre damages, and myofibril
fragmentation, such as hydrolyzing the proteins in the muscle fibres, weakening the
cell structure, releasing the ions, and activating calcium-activating enzymes [172]. HPP
treatment (300 MPa, 20 min, 20 ◦C) reduced (34.78%) the sheer force of goose breast [173].
An HPP of almost 175 MPa decreased the sheer force of hot-boned beef and improved
the eating quality. Thus, the moderate pressure treatment of pre-rigour meat seems to
have potential since the meat was tender and looked normal [31]. According to Ma and
Ledward [174], the tenderness of pre-rigour meat was significantly improved at about
100–150 MPa.

3.2.2. Food Yield

Limited agro-processing technologies have been a major concern, i.e., that many
countries, especially developing ones, lack a nutritious food supply. HPP can tackle this
issue. In earlier studies, it was observed that HPP had been used to increase oil yields.
Jung and Mahfuz [76] reported that HPP treatment at 200 and 500 MPa enhanced the yield
(3.20% and 1.30%) of soybean oil in the presence of aqueous enzymatic extraction (AEE)
(protease enzyme). Moreover, when HPP was applied before AEE, a higher oil yield was
obtained with ground kernels than with whole kernels at a similar pressure and time [44].
Table 6 illustrates the impact of HPP on food yield.
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Table 6. HPP impact on food yield.

Components Sources Treatment Conditions Yield References

Polyphenols and
anthocyanins Blueberry pomace 500 MPa

A marked increase in the yield of
polyphenols and anthocyanins
was observed, about 70% and

40%, using HPP compared with
the conventional heating method

(53% and 32%)

[175]

Tomatoes Below 100 MPa A marked increase in the yield of
tomatoes occurred, i.e., >60% [176]

Astaxanthin Shrimp
Carapace 210 MPa Increased the yield from 29.44%

to 59.97% by HPP [177]

Cheese Milk 250–600 MPa A 15% increase in the yield of
cheese was obtained [178]

M. oleifera oil M. oleifera (MO) kernels 50–250 MPa

Free oil (73% w/w) was
recovered from ground-sieved

kernels by using HPP compared
with AEE alone

[44]

In research, polyphenols and anthocyanins are extracted from blueberry pomace. The
combined US, microwave, and HPP effect was compared with the conventional extraction
method [175]. The recovery of polyphenols and anthocyanin increased by about 70% and
40% under HPP, while in the case of conventional treatment, the values were about 53%
and 32% [179]. Other research was performed under HPP conditions of 470 MPa, 30 min,
with a 55% ethanol solution to extract phenolic compounds from pomegranate (Punica
granatum); again, the results showed a marked increase in the yields [73].

HPP treatment enhanced the extraction yields of carotenes from plant materials [180].
HPP at 200–600 MPa for 5 min increased the total carotenoid content [181]. Furthermore,
HPP as a pretreatment [182] is highly feasible to enhance the recovery of valuable com-
pounds by being implemented with the solvent [183].

3.3. Environmental Sustainability

Food product quality and safety is the main and most important factor for society
and manufacturers and distributors [180]. Commercial food production systems have
limitations, such as food losses and quality losses due to a high environmental impact [184].
HPP has less impact on the environment as it utilizes less energy and water and has lower
CO2 emissions than conventional thermal processes [185]. Therefore, HPP treatment is con-
sidered environmentally friendly compared to conventional processing. HPP contributes
to environmental sustainability by providing nutritious, safe, and healthy food with an
acceptable shelf life in developed countries [186]. HPP has been proven more effective
than MAP (modified atmosphere packaging) from an environmental and an economic
perspective [187]. However, due to recent food loss and food waste, environmental sus-
tainability may be threatened [187]. A study of thermal pasteurization of orange juice
compared with HPP concluded that it is more environmentally friendly than thermal
pasteurization [188].

3.3.1. Reduction of Food Waste

The FAO defined food waste as: “The decrease in quantity or quality of food. Thus,
food waste is part of food loss and refers to discarding or alternative (non-food) use of
food that is safe and nutritious for human consumption along the entire food supply chain,
from primary production to the end household consumer-level” [189].

Recently, food waste elimination has gained more attention worldwide [190]. Euro-
pean countries have waste reduction plans to lessen their food waste by almost 30% and
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50% by 2025 and 2030 (European Commission, 2018). Food loss and food waste affect food
security in two ways. Economically, food loss and food waste reduction allow easy access to
food by decreasing food prices. Some studies showed that higher food waste increases food
prices [191]. Economic losses from food loss and food waste have no significant impact on
the consumer lifestyle in developed countries but are a threat to human livelihood [191].
Although decreasing food waste and food loss contributes to improving food security, it
has not been proven to have a clear role in dietary shifts and yield increases [192].

From food waste, different types of compounds such as phenolics and antioxidants
are extracted; for example, fruits and vegetables usually contain sufficient bioactive com-
pounds, which are mostly present in peels, seeds, and kernels [193]. It is necessary to
rupture the cell wall to obtain natural extracts from the target product [194]. As an effective
non-thermal technique, HPP is used for improving the extraction of natural extracts from
food waste [195]. Many researchers have discussed the possibility of using HPP to lessen
food waste in the food sector. Table 7 shows the valuable compounds extracted from food
waste by HPP.

Table 7. Extraction of different valuable compounds from food waste.

Food Waste Treatment Conditions Recovered Compounds References

Orange peel 300 and 500 MPa Polyphenols [71]
Tomato pulp 450 MPa Lycopene, Flavonoids [196]

Cape gooseberry pulp 300–500 MPa Bioactive compounds [197]
Grape pomace 200 MPa Phenolic compounds [198]
Pumpkin puree 600 MPa, 70 ◦C Bioactive compounds [199]

Pumpkin contains carotenoids that can be lost during harsh thermal treatments [200].
HPP can reduce carotenoid losses and natural color losses in pumpkins [199]. In addition,
HPP tends to preserve carotenoid contents in vegetables such as pumpkin and other
foods [201]. Pumpkin contains different valuable compounds that are extracted, e.g.,
polysaccharides, pectin proteins, fixed oils, and sterols [202]. HPP-assisted extraction more
successfully extracted polyphenols from orange and lemon peels [71]. HPP operated at
200 MPa for 5–10 min to extract phenolic compounds from grape pomace improved the
extraction rate up to 16 times compared with enzyme-assisted extraction [198].

Food pollutants indicate the presence of chemical or biological contaminants in nat-
ural food. The chemicals commonly related to food pollution are metals, chlorodane,
pesticides, and agrochemicals [203]. The pollution load can be reduced by using electricity
produced from a clean, renewable energy source. In addition, HPP reduces the usage of
cooling systems, which saves 50% electricity consumption [204] and therefore also reduces
pollutant emissions.

3.3.2. Effects on Food Packaging

To achieve the best pressure transfer within the food product, food prepared for HPP
processing has no gas inclusions, no headspace in the package, and high moisture content.
In addition, the type of material used to pack food products must also be appropriate. HPP
technology is used in different packaging methods, e.g., whether the product is processed
in a container or packaged after processing. The physical and mechanical properties
of the packaging material affect the HPP capacity. Packaging materials should have a
good pressure tolerance and sealing ability to prevent quality losses after the pressure is
applied. The packaging materials must be flexible enough to transmit the pressure without
structural damage. Due to pressurization, the food is compressed, and the package must
allow this reversible deformation. HPP treatment does not apply to rigid materials such as
metal and glass, as they will not withstand the treatment. The space should be less due to
efficient utilization of packaging material, and it takes less time to reach the target pressure.

Different packaging materials such as soft polymeric bags, cans, trays, and bottles
are commonly used for HPP food products. Vacuum packaging is mostly used for HPP
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products. HPP may lead to uneven processing. Packaging can reduce unnecessary physical
pressure exerted on the external package by gases within the package [205]. Changes occur
in the packaging properties of pressure-assisted thermally processed packaging materials
used for extended storage time, but how these changes in packages affect product quality
are not well understood [206].

In one study, the impact of HPP (680 MPa at 105 ◦C for 3 min and 680 MPa at 100 ◦C
for 5 min) on polyethylene terephthalate (PET), ethylene-vinyl alcohol copolymer (EVOH),
and Nylon6 was studied. There were no changes shown in the melting temperature and
the enthalpy of fusion of the EVOH layer [207]. However, Ayvaz et al. [206] applied
HPP (600 MPa, 110 ◦C, 10 min) to baby carrots in three different pouches (nylon, EVOH,
ethylene-vinyl acetate (EVA)) and stored the pouches in the dark at suitable conditions
(25 and 37 ◦C for four weeks). High-barrier packaging material, i.e., nnlon/EVOH/EVA,
showed less impact.

Dhawan et al. [208] stated that pressure-assisted thermal sterilization (PATS) affected
the polymer morphological properties and free volume distributions, which caused a
reduction in the gas-barrier properties of polymer packaging materials and maintained the
original properties of PATS-processed foods. Therefore, they investigated the effect of HPP
at 680 MPa for 5 min at 100 ◦C on two multilayer EVOH films. HPP enhanced the oxygen
and water vapor transmission rates in the two films.

Fleckenstein [209] experimented on several common single layer films (PE-HD, PE-LD,
PP-BO, PA6-BO, and PET-BO) and multilayer (PS/PE, PPBO/ PE peel, and PET-BO/PE)
films at 600 MPa at 80 ◦C/90 ◦C. The impact of HPP on the surface roughness of biaxial-
oriented polymer films as single-layer films was studied. There were no changes shown
in these films after treatment. HPP hardly affected the surface energy of any stretched,
non-stretched, single, or laminated films.

Arfat et al. [210] determined the impact of HPP on polylactic acid (PLA) and polyethy-
lene glycol (PEG) at 300 MPa at 23 ◦C for 10 min. HPP significantly increased the percentage
crystallinity. HPP did not result in any marked alterations to the mechanical properties
of the structure. In one study in 2013, the impact of HPP on the thermal and mechanical
properties of low-density polyethene (LDPE) films was examined at 200–800 MPa for
5–10 min at 25 and 75 ◦C [211]. The storage modulus increased with increasing pressure
intensity, and the tensile strength increased, but elongation decreased with increasing
pressure treatment.

3.4. Economic Sustainability

Economic sustainability includes the efficient utilization of energy and water, with
high profits through highly competitive food processing. This will be further explained in
terms of HPP treatment.

3.4.1. Yield Efficiency

Product yield is of substantial economic importance to food manufacturers, and HPP
improves the yield of products, with effects depending on product type and treatment
intensity [212]. HPP was successfully used in the treatment of oysters. HPP denatures the
adductor muscle, which enables easy opening of the oyster shell without causing knife dam-
age to the product, so it reduces labor costs and risks associated with hand-shucking [213].
Different food production systems involve the extraction of valuable components [214].
Generally, there are two essential parameters for the extraction of metabolites from cells:
the solvent’s diffusion into the cell and the mass transfer of metabolites into the bulk
of the extraction medium [215]. Table 8 demonstrates that HPP was helpful to enhance
production and profit margins. Nincevic et al. [216] observed that HPP enhanced pectin
and polyphenol recovery from tomato peel waste by about 15% compared with conven-
tional techniques.
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Table 8. Extraction of valuable compounds using HPP.

Components Sources Treatment Conditions Production References

Pectin and polyphenols Tomato peel waste 30 and 45 min
Enhanced pectin recovery by

about 15% compared with
conventional extraction

[216]

Phenolic compounds Watercress 3.1 min, 600 MPa 64.68 ± 2.97 mg/g yield
recovered [217]

Phosvitin Egg yolk 400 and 600 MPa, 5 and
10 min

Phosvitin recovery was
maximum at 600 MPa [218]

Chitosan Squid pen waste 500 MPa, 10 min Maximum yield of 81.9% [219]

Xyloglucan Tamarind seed 250–500 MPa
Yields were about 51.6–53.0%
higher than the conventional

yield (46.4%)
[35]

Caffeine Green tea leaves 500 MPa, 1 min Maximum yields: 4.0 ± 0.22% [220]
Lycopene Tomato waste 700 MPa, 30 min Maximum yield: 89.4 mg/kg [221]

5-methyltetrahydrofolate Egg yolk 400 MPa, 5 min Maximum recovery: 93% [222]

Phosvitin was successfully extracted from egg yolk at 400 and 600 MPa for 5 and
10 min by HPP [218]. According to Limsangouan et al. [35], the xyloglucan extraction
rate was between 51.6% and 53% from tamarind seed using HPP at 250–500 MPa. Strati
et al. [221] extracted lycopene from tomato waste using HPP; at 700 MPa for 30 min, the
maximum increase in production, about 89.4 mg/g, was observed.

3.4.2. Water Efficiency

Limited water reserves force the government and water authorities to improve wa-
ter utilization efficiency. The water consumption of every food industry varies. Some
food industries, including meat, dairy, and fruit and vegetable processors utilize more
water. Bakeries and grain producers, primarily involved in dry processes, are small water
users [223]. There are always some benefits of higher water efficiency. For example, the
Australian Government surveyed manufacturing groups and reported large savings in
total water usage of up to 25, 30, and 60% using basic initiatives such as behavioral changes,
water recycling (without conditioning treatment), and water use monitoring, respectively.
HPP is used in food industries for energy saving and water saving purposes. It enhances re-
liability, decreases emissions, results in higher product quality, improves productivity [74],
and has less influence on the environment.

3.4.3. Energy Efficiency

For the last 30 years, energy saving has been focused on automating production
processes and increasing demand for food safety. The higher levels of hygiene consecutively
established as goals subsequently lead to more significant consumption of cold and hot
water and an increased number of cleaning cycles in production [204].

Non-thermal technologies utilize less energy than conventional technologies [224].
During HPP, momentary pressure of about 300–700 MPa is transmitted throughout the
food products, reducing the processing time and, consequently, energy consumption [75].
Bull et al. [225] reported that HPP (600 MPa, 20 ◦C, 60 s) reduced microbes in 12 weeks
and enhanced the shelf life compared to pasteurization (65 ◦C, 1 min; 85 ◦C, 25 s). Another
study concluded that HPP (400 and 600 MPa for 5 min at 20 ◦C) was a better alternative for
apple processing than thermal pasteurization (75 ◦C, 10 min) [226].

HPP requires less energy than chilling and freezing. The energy phase is changed
during the HPP process; the heat of vaporization of water is nearly 30% lower than that at
atmospheric pressure [227]. Due to water expansion during freezing, pressure increases
can lead to lower freezing points [228]. Research indicated that HPP consumed less energy
per kg of food than conventional thermal processes. During HPP, heat is conveyed to
the foods through convection, conduction, or radiation, causing slow heat transfer rates
and increased processing times. In HPP, there is no need for energy to generate heat,
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and isotactic pressure is applied by utilizing a specific amount of energy throughout the
product. Therefore, it is considered that HPP reduces the total energy consumption in the
food industry.

4. Limitations of HPP Processing

HPP is a feasible non-thermal technique that preserves food quality, preserves food
safety, and increases the shelf life nutritional value but has some limitations in its introduc-
tion to the food sector.

The main disadvantage is that it is a costly process due to the high amount of power
consumed [229]. Sampedro et al. [230] estimated that HPP was seven times more costly
than conventional thermal processing. HPP has been utilizing for more than 100 years
in the food sector, but it has limited use due to the high cost and requirement of skilled
expertise [231].

In addition, HPP has limitations in killing spores; the combination of heat and HPP
(PATS) would solve this problem [232]. Therefore, food with a higher acidic content is
preferred for HPP compared with low acid food as it is less stable [233].

Moreover, in a modified HPP treatment method, the product is subjected to
compression–decompression cycles with a fixed pressure holding time, but rapid compres-
sion and decompression increase the number of cycles in the vessel and subject the vessel
material to significant stress and the risk of premature failure [60].

5. Conclusions

Consumers’ demand for fresh and nutritional food has resulted in an increase in
non-thermal processing techniques, which can retain authenticity and, at the same time,
can ensure the safety of food. The combination of mild heat treatment with some of these
non-thermal methods also delivered promising results. HPP used alone or in combination
with other treatments stops microbial growth and improves macromolecules, increasing
the chemical reactions and shelf life of food products. HPP responds to the demands of
consumers for higher sensory and quality attributes, such as taste, extended storage, highly
nutritious, healthy, and eco-friendly processing. HPP produces less waste than thermal
processing. It also enhances energy efficiency and water efficiency in food products
and causes no toxic gas emissions. HPP is a beneficial and sustainable technique for
food production. However, despite the ability of HPP to reduce foodborne pathogens
and enhance nutritional qualities and shelf life, the high fixed costs limit its use in food
processing industries. Further research is required in terms of cost optimization and
scalability of HPP to fulfill the needs of both the industry and the consumer.
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72. Dobiáš, J.; Voldřich, M.; Marek, M.; Chudáčková, K. Changes of Properties of Polymer Packaging Films during High Pressure
Treatment. J. Food Eng. 2004, 61, 545–549. [CrossRef]

73. Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. Experimental Design, Modeling, and
Optimization of High-Pressure-Assisted Extraction of Bioactive Compounds from Pomegranate Peel. Food Bioprocess Technol.
2017, 10, 886–900. [CrossRef]

74. Masanet, E.; Masanet, E.; Worrell, E.; Graus, W.; Galitsky, C. Energy Efficiency Improvement and Cost Saving Opportunities for the
Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers; Lawrence Berkeley National Lab.
(LBNL): Berkeley, CA, USA, 2008. [CrossRef]

75. Barba, F.J.; Terefe, N.S.; Buckow, R.; Knorr, D.; Orlien, V. New Opportunities and Perspectives of High Pressure Treatment to
Improve Health and Safety Attributes of Foods. A Review. Food Res. Int. 2015, 77, 725–742. [CrossRef]

76. Jung, S.; Mahfuz, A.A. Low Temperature Dry Extrusion and High-Pressure Processing Prior to Enzyme-Assisted Aqueous
Extraction of Full Fat Soybean Flakes. Food Chem. 2009, 114, 947–954. [CrossRef]
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