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Abstract: Cement replacement materials can not only benefit the workability of the concrete but
can also improve its compressive strength. Reducing the cement content of concrete can also lower
CO2 emissions to mitigate the impact of the construction industry on the environment and improve
energy consumption. This paper aims to predict the compressive strength (CS) and embodied carbon
(EC) of cement replacement concrete using machine learning (ML) algorithms, i.e., deep neural
network (DNN), support vector regression (SVR), gradient boosting regression (GBR), random forest
(RF), k-nearest neighbors (kNN), and decision tree regression (DTR). Not only is producing an
optimal ML model helpful for predicting accurate results, but it also saves time, energy, and costs,
compared to conducting experiments. Firstly, 367 pieces of experimental datasets from the open
literature were collected, in which cement was replaced with any of the cementitious materials.
Secondly, the datasets were imported into the ML models, whose parameters were tuned by the
grid search algorithm (GSA). Then, the prediction performance, the coefficient of determination
(R2), the prediction accuracy, and the root mean square error (RMSE) were employed to indicate
the prediction ability of the ML models. The results demonstrate that the GBR models perform the
best prediction of the CS and EC. The R2 of the GBR models for predicting the CS and EC are 0.946
and 0.999, respectively. Thus, it can be concluded that the GBR models have promising abilities for
design assistance in cement replacement concrete. Finally, a sensitivity analysis (SA) was conducted
in this paper to analyse the effects of the inputs on the CS and EC of the cement replacement concrete.
Pulverised fuel ash (PFA), blast-furnace slag (GGBS), Expanded perlite (EP), and Silica fume (SF)
were noticed to affect the CS and EC of cement replacement concrete significantly.

Keywords: machine-learning-assisted design; eco-friendly concrete; cement replacement materials;
embodied carbon; K-fold cross validation

1. Introduction

Concrete is the most widely used artificial material, and it is the second most consumed
resource in the world after water. More than four billion tonnes of cement are produced
each year, which accounts for approximately 8% of global CO2 emissions [1]. The most
significant mechanical property of a concrete design is its compressive strength. The
comprehensive strength is a reliable indicator of the overall performance of a concrete mix
because it can be used to calculate other properties of concrete with high precision. Cement
is a vital ingredient in concrete. Cement acts as the “glue”, which holds the fine and coarse
aggregates together and gives the concrete strength. The primary raw materials of cement
are limestone and clay, which are pulverised and blended with other elements, such as iron
ore. These materials are then fed into a cylindrical kiln and are heated to approximately
1450 degrees Celsius. This process, known as "calcination", generates more than 50% of the
total CO2 emissions of cementitious products [1].
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Embodied carbon (EC) is the total CO2 emitted when materials are produced. It
can be estimated from the energy used to extract, process, and transport materials. The
EC stated throughout this paper considers the carbon emissions from the manufacturing,
transportation, and extraction processes of the supplementary cementitious materials
(SMCs). When replacing the cement with other binding materials, the EC is reduced. In
the majority of cases, the CS tends to decrease as the cement content drops. However,
studies have demonstrated that some cementitious materials, such as ground granulated
blast-furnace slag (GGBS) and metakaolin, produce a slightly increased CS when replacing
cement in small amounts [2]. For this reason, it is not easy to calculate the CS and EC when
reducing the cement content. This paper aims to assist in concrete design by producing
high-quality ML models that can accurately predict the CS and EC of concrete with various
cement replacement materials.

1.1. Cement Replacement Materials

Pulverised fuel ash (PFA) is a type of waste material that is collected from coal-
burning power stations. It cannot be considered the best replacement material for cement
as there are few coal-burning power stations left in the United Kingdom and, thus, it
would have to be shipped in from elsewhere [3]. This not only increases the cost and time
to construction, but also the total EC of the concrete because of the shipping emissions.
GGBS is a byproduct from the production of iron. It is a cementitious material produced
in blast furnaces, and its typical chemical composition is 40% calcium oxide, 35% silica,
13% alumina, and 8% magnesia [4]. It is a famous cement replacement material and has
been researched in detail for many years. It is often combined with PFA at higher volumes
of cement replacement [5]. Limestone fines (also known as limestone powder) can reduce
the number of voids between aggregates and cement paste. This property makes it a useful
material for reducing the CO2 emissions of concrete, and it can be utilised as up to a 35%
replacement within the British standard, BS EN 197-1 [6]. Silica fume (SF) is a pozzolanic
material. It is a byproduct of the ferrosilicon industry that can enhance the mechanical
properties of concrete. Employing SF increases the demand for water within the mix but it
can produce dense and impermeable concrete [7]. Metakaolin is a relatively new cement
replacement material. It was observed to increase and decrease the overall CS of concrete
in various studies [8]. It should also be noted that, similarly to SF, metakaolin increases the
demand for water within the concrete mix. Perlite is a naturally occurring material that is
produced by the rapid cooling of volcanic lava. Expanded perlite (EP, also known as perlite
powder) is perlite that has undergone a heating process that causes it to expand 4–20 times
its original size [9]. EP is a widely available building material that has been reported to
reduce CO2 emissions significantly, and to improve the flowability of concrete slurry by
means of replacing a part of the cement content [10,11]. A cement replacement of up to
40% of EP could produce 28-day compressive strength values comparable to traditional
concrete [11]. Pumice is a pozzolanic material derived from volcanic sources, similar to
perlite. It can be used in concrete as an aggregate, or as an SMC when ground into a
powder. Studies have demonstrated that, when utilised at levels up to 25%, adding ground
pumice as an SMC could improve the CS of concrete mixes at later ages [12].

1.2. Literature Review of ML-Assisted Prediction

Many articles were found from extensive research that provides details about using
ML models to predict the mechanical properties of concrete containing cement replacement
materials. For instance, four ML models were developed by Mohammed et al. [13] to
predict the CS of mortar containing PFA. A total of 450 pieces of experimental CS data, on
mortar with PFA ranging from 0% to 70%, were used to develop the ML models. A linear
regression model (LR), a nonlinear regression model (NLR), an M5P-tree model (M5P),
and an artificial neural network (ANN) were created. The ANN predicted the CS better
than all of the other applied models, with a reliable correlation coefficient (R) of 0.934.
Moreover, the CS of high-performance concrete with PFA and SF was investigated using
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an ANN. The ANN used nonlinear modelling and employed a radial basis function (RBF).
The ANN results showed a strong correlation between the experimental and predicted
CSs, with the coefficient of correlation being 0.96 [14]. Furthermore, the CS of geopolymer
concrete (GPC), with partial cement replacement with GGBS, SF, and natural zeolite, was
experimentally studied. The replacement ranged from 0% to 30% in 5% increments. An
ANN model to predict the CS of GPC containing these materials was also proposed, using
the results collected during the study. To achieve the lowest absolute percent error, the
ANN had two hidden layers, with six and five neurons, respectively. The ANN produced a
training mean square error (MSE) of 3.5262 and a R of 0.985, validating the experimental
results and the model itself [15]. Moreover, the CS of concrete with GGBS was modelled
using the M5P model and an ANN. The ANN models hybridised with the M5P model
produced architecture with approximately half the errors produced from the M5P model
alone, in both the training and testing phases. The study also states that developing a
predictive model is necessary for GGBS, as it is required in many design codes. This
indicates that more cement replacement materials have the potentials to be included in
codes as standards with time. This also evidences that the optimal ML models produced
in this paper will become more useful over time [16]. Moreover, the CS of the mortar
containing metakaolin was to be predicted employing the support vector machine, RF,
decision tree, adaptive boosting (AdBoost), and kNN algorithms. The results show that
AdaBoost and RF exhibited higher R2 values than other types of ML models. The R2

values of AdaBoost and RF were 0.9473 and 0.9439, respectively. Moreover, the CS of high-
performance concrete was predicted using GBR, Gaussian process regression, and kernel
ridge regression. The results demonstrate that the GBR model had the best prediction
performance (R = 0.965) among the ML models [17].

However, only three types of cement replacement materials were considered in one
article, at most. More cement replacement materials, such as SF, PFA, pumice, and GGBS,
can be employed together as variables to enhance the practical applicability of an ML model
for the better design instruction of cement replacement concrete. Additionally, there is no
research related to the EC prediction of cement replacement concrete, which means that
the EC of cement replacement concrete cannot be chosen in concrete design. Furthermore,
the amount of cement should be considered an input to improve the prediction ability of
ML models. Moreover, the proportions of coarse and fine aggregates need to be taken into
account in the ML models, even though the EC of them are not considered in this paper.

This paper will build on the ideas addressed in previous literature and will fill in the
gaps in the research by combining seven alternative cement replacement materials into
six types of ML models. It is proposed, for the first time, that the EC of cement replace-
ment concrete can reduce the negative influence of concrete on the environment. Firstly,
367 experimental datasets, containing the CSs and EC of cement replacement concrete,
were collected from the open literature. Secondly, 12 variables of the datasets were con-
sidered as the inputs of the ML models. Then, SVR, RF, GBR, DTR, kNN, and DNN were
utilised to predict the CS and EC of the cement replacement concrete, while the parameters
of the ML models were tuned by the GSA. Finally, the R2 and the RMSE values of the ML
models were compared to identify the optimal ML model. This means that the concrete
mixes containing at least one of the inputs can be designed to produce the expected CS
while lowering the overall amount of EC produced by the concrete.

2. Materials and Methods
2.1. Data Collection

In this paper, 367 pieces of experimental datasets associated with the CS and EC of
concrete containing cement replacement materials were collected from the open litera-
ture [2,6,7,18–31]. The datasets were collected from a large number of credible and pub-
lished sources to ensure that the datasets were as accurate and robust as possible. Table 1
shows the EC values for each of the cementitious input materials of the ML models, accord-
ing to British standards and the open literature. The EC of concrete mixes containing SMCs
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is calculated according to Equation (1), in accordance with EN15978 [32]. The datasets
are simplified into 12 input variables and 2 output variables, CS and EC, listed in Table 2.
Regarding Table 2, the water binder ratio (WB), the amount of cement (C), the amount
of superplasticiser (S), the amount of coarse aggregates (CA), and the amount of fine
aggregates (FA) are essential concrete components. In addition, the variables associated
with cement replacement materials include PFA, LP, SF, M, PP, and GP.

Cumulative EC of a concrete mix = ECprocess,m +

(
n

∑
i=1

ECi + ECtransportation,i

)
(1)

where ECprocess,m indicates the EC produced by the manufacturing of SMCs (m = C, PFA,
SF, etc.). ECi and ECtransportation,i represent the EC due to the manufacturing and trans-
portation processes of the intermediate product, i, to produce SMCs.

Table 1. Embodied carbon of cement replacement materials.

Material Embodied Carbon (kg CO2/t) Reference

Cement 860 [33]
Pulverised fuel ash 0.1 [34]

Ground granulated blast-furnace slag 79.6 [35]
Limestone powder 8 [36]

Silica fume 28 [37]
Metakaolin 330 [37]

Perlite powder 30 [38]
Ground pumice 30 [38]

Table 2. Inputs and outputs of the ML models.

Type of Parameters Parameter Symbol Unit Minimum Maximum

Inputs

W/B ratio WB - 0.25 1
Cement C % 0 100

Pulverised fuel ash PFA % 0 70
Ground granulated blast-furnace slag GGBS % 0 70

Limestone powder LP % 0 43
Silica fume SF % 0 25
Metakaolin M % 0 50

Perlite powder PP % 0 20
Ground pumice GP % 0 25

Coarse aggregate CA kg 0 1437.75
Fine aggregate FA kg 0 1166

Superplasticizer S - 0 1

Outputs Compressive strength at 28 days CS MPa 3.3 106.5
Embodied carbon EC kg CO2/t 40.64 860.00

2.2. Prediction Procedure

Firstly, 367 datasets were normalised, employing Equation (2), to enhance the predic-
tion ability of the ML models. The normalised data ranged from zero to one.

Yn =
y− ymin

ymax − ymin
(2)

where Yn is the experimental data after normalisation; ymin and ymax are the minimum and
maximum experimental data, respectively; and y is the raw experimental data.

Secondly, the normalised datasets were input into the introduced ML models, i.e., GBR,
DTR, RF, SVR, kNN, and DNN. Detailed information about the ML models can be found
in the articles, [17,39–50]. The experimental datasets were randomly split at 8:2. A total
of 20% of the datasets were randomly selected to test the generalisation ability of the ML
models, while the rest of the datasets were utilised for training the ML models.
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Then, the parameters of the ML models were tuned by the GSA to generate the best
prediction ability. The GSA can search for the optimal parameter of multidimensional
arrays from various directions. The theory of the GSA is to select the optimal parameter
through an exhaustive analysis of a series of parameter combinations [51]. The GSA has
been extensively employed to conduct ML parameter optimisation. For instance, a high
prediction ability, 0.952 of the R2 value, was obtained for predicting the CS [52]. The reasons
for employing the GSA as the optimisation method are as follows [22,53]:

• Multiple parameters can be tuned simultaneously;
• It will not take a long time to conduct the GSA for fewer parameters;
• The global optimal solution can be obtained by employing the GSA.

Finally, the optimal ML models for predicting the CS and EC of concrete containing
cement replacement materials were selected according to the prediction ability indicators,
the R2 and the RMSE, explained in Equations (3) and (4) [54,55]:

RMSE =

√
∑n

i=1
(
y′i − yi

)2

n
(3)

R2 = 1− ∑n
i=1
(
y′i − yi

)2

∑n
i=1(yi − y)2 (4)

where n indicates the samples number; y′i indicates the predicted value; and yi represents
the experimental value.

3. Results

In this section, the prediction ability indicators of the aforementioned ML models are
demonstrated. The relationship between the experimental and predicted properties (CS
and EC) of cement replacement concrete for the training and testing datasets is demon-
strated in Figures 1 and 2, respectively. As shown in Figures 1 and 2, the horizontal axis
stands for the CS and EC generated by the ML models, respectively, while the vertical axis
indicates the CS and EC of the experimental datasets collected from the open literature.
Furthermore, the differences in the R2 and the RMSE values of the ML models for predict-
ing the CS and EC are shown in Table 3. Moreover, the tuned parameters of the ML models
utilizing the GSA are exhibited in Table 4. The optimal ML model is defined when the
model performs the highest R2 and the lowest RMSE.

Table 3. The R2 and RMSE values of the six types of ML models for predicting CS and EC.

Algorithm Dataset
CS Prediction Performance EC Prediction Performance

R2 RMSE R2 RMSE

GBR
Training 0.985 0.028 0.999 0.002
Testing 0.946 0.058 0.999 0.012

DTR
Training 0.881 0.077 0.999 0.010
Testing 0.876 0.093 0.998 0.015

DNN
Training 0.927 0.062 0.996 0.013
Testing 0.892 0.077 0.995 0.015

SVR
Training 0.953 0.049 0.999 0.005
Testing 0.924 0.057 0.985 0.026

RF
Training 0.977 0.030 0.998 0.010
Testing 0.933 0.062 0.997 0.012

kNN
Training 0.924 0.063 0.969 0.038
Testing 0.888 0.082 0.965 0.039
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Figure 1. Predicted vs experimental CS values for the ML models: (a) GBR-training; (b) GBR-testing; (c) DTR-training; (d) DTR-
testing; (e) DNN-training; (f) DNN-testing; (g) SVR-training; (h) SVR-testing; (i) RF-training; (j) RF-testing; (k) kNN-training;
and (l) kNN-testing, with the corresponding R2 and RMSE values.
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Figure 2. Predicted vs experimental EC values for the ML models: (a) GBR-training; (b) GBR-testing; (c) DTR-training; (d) DTR-
testing; (e) DNN-training; (f) DNN-testing; (g) SVR-training; (h) SVR-testing; (i) RF-training; (j) RF-testing; (k) kNN-training;
and (l) kNN-testing, with the corresponding R2 and RMSE values.
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Table 4. Tuned parameters of the ML models using the GSA.

Algorithms Parameters CS EC

DNN
Hidden layers 3 3

Hidden neurons 27–27–30 30–28–28
Learning rate 0.1009 0.1000

Activation function Maxout Maxout

GBR

Depthmax 11 11
Splitmin 0.001 0.001

Learning rate 0.4 0.1
Number of trees 21 100

DTR

Depthmax 5 21
Splitmin 1 1
Leafmin 1 1
Gainmin 0.001 0.001

SVR

Cpenalty 0.01 1.00
Epsilon 0.001 0.001
Gamma 6000.0004 10,000.0000

Kernel type Anova Anova

RF

Depthmax 31 51
Splitmin 0.001 0.100
Leafmin 80 80
Gainmin 1.0000 0.5005

Number of trees 100 11

kNN k 6 7

With regard to the ML-aided prediction of the CS, what can be clearly seen in
Figure 1a,b is that the GBR model shows the highest R2 (0.946) and the lowest RMSE
(0.058) among the ML algorithms. Furthermore, the R2 and RMSE values of the SVR and
RF models are (0.924, 0.057) and(0.933, 0.062), respectively, which are similar to those of
the GBR model (Figure 1g–j). As shown in Figure 1c–f,k,l, the R2 and RMSE values of
the DTR, DNN, and kNN are (0.876, 0.093), (0.892, 0.077), and (0.888, 0.082), respectively,
representing a slightly low prediction performance and a poorer prediction accuracy than
other ML models.

With regard to the prediction of the EC, the GBR model shows the best prediction
performance (R2 = 0.999) and prediction accuracy (RMSE = 0.012) among the ML models,
as shown in Figure 2a,b. As demonstrated in Figure 2c–f,I,j, the R2 and RMSE values of the
DTR, DNN, and RF are (0.998, 0.015), (0.995, 0.015), and (0.997, 0.012), respectively. It can
be interpreted that the DTR, RF, and DNN models have similar abilities for predicting the
EC of cement replacement concrete. Moreover, the prediction ability of the SVR and kNN
models is slightly lower than other ML models. The R2 and RMSE values of the SVR and
kNN models are (0.985, 0.026) and (0.965, 0.039), respectively (Figure 2g,h,k,l).

4. Discussion

The relationship between the predicted and experimental CSs and EC of cement
replacement concrete employing the GBR models is illustrated in Figures 1 and 2. As
demonstrated, the GBR models for predicting the CS and EC of cement replacement
concrete perform better in terms of prediction ability than other types of ML models. In
other words, the relationship between the outputs of the cement replacement concrete
and the 12 variables can be precisely explained employing the GBR models. The better
prediction ability of the GBR models can be attributed to the fact that the GBR model is a
type of ensemble learning algorithm that has a remarkable generalisation capacity because
of the employed boosting strategy. Weak learners can be generated by the boosting strategy.
Higher weights will be distributed to the weak learners with promising prediction ability,
while the weak learners with poor prediction ability will obtain lower weights. The robust
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prediction ability of the GBR models will be generated by a strong learner made up of the
weak learners. However, DNN, SVR, kNN, and DTR are individual ML algorithms, with
relatively lower generalisation capacities than ensemble ML algorithms.

4.1. K-Fold Cross Validation

K-fold cross validation is employed in this paper to further investigate the prediction
ability of the optimal ML models for predicting the CS and EC of cement replacement
concrete. Moreover, the reliability of the optimal ML models are reported using K-fold
cross validation [56]. Employing K-fold cross validation reduces the variance from the
training and testing dataset selection. In this paper, 10-fold cross validation is utilised to
demonstrate the prediction ability of the GBR models [57]. Firstly, the datasets are equally
split into ten groups. Secondly, nine groups are used to train the GBR models, while the
rest of the datasets are employed to conduct the validation of the GBR models. Then,
the second step is repeated ten times. Finally, the prediction ability of the GBR models is
generated by averaging the R2 and RMSE values of the 10-fold cross validation [58].

Figure 3a–d demonstrate the R2 and RMSE results of each fold for predicting the CS
and EC in the 10-fold cross validation. It can be observed from Figure 3a that the R2 values
of the 10-fold cross validation for predicting the CS demonstrate slight fluctuations. For
instance, the minimum R2 is 0.939 at Fold 1, while the maximum R2 is 0.951 at Fold 5.
Moreover, the RMSE value exhibited in Figure 3b slightly decreases, from 0.246 to 0.223
between Folds 1 and 6. It then keeps constant at around 0.221, until Fold 10. As shown in
Figure 3c, the R2 values of the 10-fold cross validation for predicting the EC are maintained
at approximately 0.997, while the RMSE values fluctuate between 0.012 and 0.014 from Fold
1 to Fold 10, demonstrated in Figure 3d. Furthermore, several statistical results, the average
R2 and RMSE values of the CS and EC predictions, are listed in Table 5. The average R2

and RMSE values of the CS prediction are 0.9471 and 0.2270, respectively. Moreover, the
standard deviations (SDs) of the R2 and the RMSE for predicting the CS are 0.0037 and
0.0087, respectively, which means that the coefficient of variations (COVs) of the R2 and
RMSE for predicting the CS are only 0.4% and 3.8%, respectively. In addition, the average
R2 and RMSE values of the 10-fold cross validation for the EC prediction are 0.9967 and
0.0125, respectively, while the SDs are 0.0013 and 0.0007, indicating that the COVs of the R2

and RMSE are 0.1% and 5.6%, respectively. On the basis of the average R2, the RMSE, and
the COVs of the 10-fold cross validation for CS and EC prediction, it can be concluded that
the prediction error of the GBR models is small; in other words, the excellent prediction
ability of the GBR models is reliable.

Table 5. 10-fold cross-validation and statistical results.

Folds
CS Prediction Performance EC Prediction Performance

R2 RMSE R2 RMSE

Fold 1 0.939 0.246 0.995 0.014
Fold 2 0.942 0.240 0.995 0.013
Fold 3 0.946 0.231 0.997 0.012
Fold 4 0.949 0.225 0.997 0.012
Fold 5 0.951 0.223 0.997 0.012
Fold 6 0.950 0.223 0.997 0.012
Fold 7 0.949 0.222 0.997 0.012
Fold 8 0.949 0.221 0.995 0.013
Fold 9 0.946 0.220 0.999 0.012
Fold 10 0.950 0.219 0.998 0.013
Average 0.9471 0.2270 0.9967 0.0125

SD 0.0037 0.0087 0.0013 0.0007
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Figure 3. 10-fold cross validation results: (a) R2 for predicting CS; (b) RMSE for predicting CS; (c) R2 for predicting EC;
(d) RMSE for predicting EC.

4.2. Sensitivity Analysis

Sensitivity analysis is a method used to evaluate how the changes in the outputs of ML
models can be affected by their inputs [59]. In this paper, GBR ML models were selected
to conduct the SA because they have the best performances for predicting the CS and EC
of cement replacement concrete. In order to investigate the sensitivity of the chosen ML
models, one type of cement replacement material is perturbed at a time, while the other
five types of cement replacement materials are kept constant at their mean values. Then,
the new datasets are introduced to the GBR models to predict the CS and EC of the cement
replacement concrete [60]. After that, the corresponding sensitivity analysis parameter
(SAP) of each input can be calculated using Equation (5):

SAi =
Pmax(Ii)− Pmin(Ii)

∑i Pmax(Ii)− Pmin(Ii)
× 100 (5)

where Pmax(Ii) and Pmin(Ii) are the maximum and minimum predicted CS and EC values
of the cement replacement concrete corresponding to the input, Ii. SAi is the SAP of the
input Ii.

Figure 4 represents the SAPs of the inputs, from which a pronounced influence, 19.96%
and 30.44% of the PFA on the predicted CS and EC, respectively, can be observed. With
regard to the SAPs of the inputs for predicting CS, similar SAPs of 15.25, 14.07, 12.37,



Sustainability 2021, 13, 13663 13 of 17

13.99, and 15.32% for GGBS, SF, LP, PP, and GP, respectively, are investigated. Furthermore,
Figure 4 demonstrates the high SAPs of the inputs for predicting the EC: 24.05, 16.61, and
21.77% for GGBS, LP, and SF, respectively. Additionally, the SAPs for M, PP, and GP are
lower than for GGBS, LP, and SF, which are 4.25, 1.58, and 1.30%, respectively. The SAP
results of the inputs for predicting the CS and EC of cement replacement concrete indicate
that PFA plays the most significant role in the CS and EC of cement replacement concrete.
As such, GGBS, LP, and SF should be thoroughly investigated in predicting the CS and EC,
employing the GBR models. According to these findings, PFA, GGBS, LP, and SF need to
be carefully controlled in cement replacement concrete design because of their prominent
effect on the CS and the EC.
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Figure 4. Sensitivity analysis parameter results of the inputs for the predicted CS and EC of cement
replacement concrete.

5. Conclusions

This paper set out to predict the CS and EC of cement replacement concrete employing
the ML models, with six kinds of algorithms, to aid in cement replacement concrete design.
Thus, cement replacement concrete with the expected CS and the lowest EC can be designed
by using the ML models produced in this paper. The ML models are employed to explain
the relationship between 12 inputs and 2 outputs, the CS and the EC. Meanwhile, the GSA
hyperparameter tuning method is utilised to optimise the parameters of the ML models. A
10-fold cross validation is employed to investigate the prediction ability of the optimal ML
models. Finally, several key inputs are observed by applying SA.

With regard to the R2 and RMSE values of the ML models, the prominent findings to
emerge from this paper can be concluded as follows:

• This paper shows that the GBR ML models have the best ability to predict the CS and
EC of concrete containing cement replacement materials, as indicated by the R2 and
the RMSE values of the CS prediction (0.946, 0.058), and of the EC prediction (0.999,
0.012). On the basis of the R2 and the RMSE values, it can be stated that the GBR ML
models have an excellent ability for predicting the CS and EC of cement replacement
concrete using the 12 inputs;

• The average R2 and RMSE values of the 10-fold cross validation for predicting CS
are 0.9471 and 0.2270, respectively. Moreover, the average R2 of the 10-fold cross
validation for predicting the EC is 0.9967, while the RMSE value is 0.0125. The 10-fold
cross-validation results indicate that the prediction error of the GBR models is very
low. Hence, the promising prediction ability of the GBR models is robust;

• The R2 and the RMSE values of the other five ML models (SVR, RF, DNN, kNN, and
DTR) are compared with the GBR model. The results reveal that the GBR model, as
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an ensemble ML algorithm, exhibits an outstanding superiority to other individual
ML algorithms;

• The SAP results of the inputs note that PFA, GGBS, LP, and SF have stronger correla-
tions to the CS and EC predictions of cement replacement concrete than other inputs.
Thus, more attention should be paid to PFA, GGBS, LP, and SF in the ML-aided design
of cement replacement concrete in order to reduce the EC.
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Abbreviations

AdBoost Adaptive Boosting
ANN Artificial Neural Network
CS Compressive Strength
DNN Deep Neural Network
DTR Decision Tree Regression
EC Embodied Carbon
EP Expanded Perlite
GBR Gradient Boosting Regression
GSA Grid Search Algorithm
GGBS Ground Granulated Blast-Furnace Slag
GPC Geopolymer Concrete
kNN k-Nearest Neighbours
LR Linear Regression Model
ML Machine Learning
M5P M5P-tree model
MSE Mean Square Error
NLR Nonlinear Regression Model
OPC Ordinary Portland Cement
PFA Pulverised fuel ash
RF Random Forest
R2 Coefficient of Determination
RMSE Root Mean Square Error
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RBF Radial Basis Function
SVR Support Vector Regression
SMC Supplementary Cementitious Materials
SF Silica Fume
SA Sensitivity Analysis
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