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Abstract: The building industry, which emits a significant quantity of greenhouse gases, is under
tremendous pressure due to global climate change and its consequences for communities. Given the
environmental issues associated with cement production, geopolymer concrete has emerged as a
sustainable construction material. Geopolymer concrete is an eco-friendly construction material that
uses industrial or agricultural by-product ashes as the principal binder instead of Portland cement.
Fly ash, ground granulated blast furnace slag, rice husk ash, metakaolin, and palm oil fuel ash were
all employed as binders in geopolymer concrete, with fly ash being the most frequent. The most
important engineering property for all types of concrete composites, including geopolymer concrete,
is the compressive strength. It is influenced by different parameters such as the chemical composition
of the binder materials, alkaline liquid to binder ratio, extra water content, superplasticizers dosages,
binder content, fine and coarse aggregate content, sodium hydroxide and sodium silicate content,
the ratio of sodium silicate to sodium hydroxide, the concentration of sodium hydroxide (molarity),
curing temperature, curing durations inside oven, and specimen ages. In order to demonstrate the
effects of these varied parameters on the compressive strength of the fly ash-based geopolymer
concrete, a comprehensive dataset of 800 samples was gathered and analyzed. According to the
findings, the curing temperature, sodium silicate content, and alkaline solution to binder ratio are the
most significant independent parameters influencing the compressive strength of the fly ash-based
geopolymer concrete (FA-BGPC) composites.

Keywords: geopolymer concrete; mix proportion; fly ash; compressive strength; curing; alkaline
solution; sustainable concrete; sustainability; circular economy; composite materials design

1. Introduction

It is well known that the production of Portland cement necessitates a significant
amount of energy and, at the same time, contributes to the release of a large amount of total
carbon dioxide (around 7%) into the atmosphere, both directly and indirectly [1]. The direct
release of CO2 is called calcination, while the indirect release of CO2 is caused by burning
fossil fuels to heat the kiln and quarrying and transporting the cement [2,3]. In addition, one
ton of cement requires around 2.8 tons of raw materials; this is a resource-depleting process
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that consumes a vast number of natural resources such as limestone and shale for the
manufacturing of cement clinkers [4]. Furthermore, the concrete industry requires around
one trillion liters of mixing water every year [5]. Behind aluminum and steel manufacturing,
the cement sector is the most energy-intensive construction material in the same lines. Each
ton of cement produced in a typical cement factory consumes roughly 110–120 kWh [6].
However, on the other hand, cement-based concrete is still the most widely utilized
material in the building industry worldwide [7]. Therefore, a highly efficient application of
renewable and non-renewable raw materials is essential for economic development [8]. As
the world continues to face major environmental concerns, developing a unique material
to replace Portland cement has become increasingly important [9,10].

A convenient, suitable replacement to conventional concrete is geopolymer technology
developed first by Davidovits in France, 1970 [11]; the ancient Roman civilizations used
geopolymer to build their monumental and castles in ancient times [12]. Geopolymers
are inorganic alumino-silicate polymers made by activating various aluminosilicate min-
erals with different alkaline solutions [13]. Geopolymer materials have an amorphous
microstructure and chemical components similar to natural zeolitic materials [14]. The
chemical reaction between alkaline solution and source binder material which contains
aluminosilicate is called polymerization process; a polymeric chain and ring structure
comprised of Si-O-Al-O linkages is produced during the polymerization process as shown
in Scheme 1, the scheme is adapted from [15], with an empirical formula of {Mn[-(SiO2)z-
AlO2]n.wH2O}, where M is an alkali action, n is the percent of polymerization, and w
is the content of water [14]. In addition, the chains in aluminosilicate could be in the
form of poly-(sialate) with the ratio of Si to Al being equal to 1.0 (-Al-O-Si- chain), poly
(sialate-siloxo) with the ratio of Si to Al being equal to 2.0 (-Al-O-Si-Si- chain), and poly
(sialate-disiloxo) with the ratio of Si to Al being equal to 3.0 (-Al-O-Si-Si-Si- chain) [16].
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The following is a quick explanation of how geopolymerization process works. In
the first stage, the dissolution of the binder’s silicate and aluminum elements inside
the high alkalinity aqueous solution produces silicon and aluminum oxide ions. After
that, a mixture of silicate, aluminate, and aluminosilicate species is used in the second
stage, which is further condensed through a simultaneous poly-condensation-gelation
operation, and finally, an amorphous gel is produced [17]. The type of source binder
materials, concentration of alkaline solution, molarity of sodium hydroxide, ratio of sodium
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silicate to sodium hydroxide, extra water, mixture proportions, and curing process can
all affect the performance of geopolymer concrete [18,19]. Moreover, the end output of
the geopolymerization process is influenced by the chemical composition of the source
binder materials ash-based geopolymer and the alkaline activator, which is frequently
accelerated at higher temperatures [20,21]. Thus, after lime and cement, the geopolymer
can be considered the third generation of cementing ingredients [22], and it is an eco-
friendly and green material that has low green gas emission of around 70% lower than
the Portland cement concrete due to the high consumption of by-product materials inside
their mix proportions [23]. The mixed proportions of the geopolymer concrete consist of
aluminosilicate binder, fine and coarse aggregates, alkaline solutions and water, and finally,
a solid concrete formed from the polymerization of these components, which is quite
similar to the typical conventional concrete [24]. Alumino-silicate-rich materials such as fly
ash (FA), ground granulated blast furnace slag (GGBFS), rice husk ash (RHA), metakaolin
(MK), silica fume (SF), red mud (RM), and palm oil fuel ash (POFA), or any hybridization
of these ashes with or without Portland cement are used as geopolymer concrete binder
materials. The performance and reactivity of these source binder materials are mainly
dependent on their chemical composition, fineness, and glassy phase content, as presented
in our former work [25]. Because of its low cost, wide availability, and increased potential
for geopolymer preparation, fly ash is the most widely used source binder material for
creating geopolymer concrete [26]. Fly ash is the finely chopped residue produced from
the combustion of pulverized coal. It is imparted from the combustion chamber by using
exhaust gages by electrostatic precipitators or other devices to filtrate the particles before
the flue gages reach the chimneys [27,28]. Generally, based on the source of the coal being
burned, FA is divided into two classes, namely class F fly ash which is produced from
burning anthracite or bituminous coal, and class C fly ash which is mainly made from the
burning of lignite coal sources, the former type has lower calcium content compared to
class C fly ash [29]. Further, the main components of FA have typically consisted of SiO2,
Al2O3, Fe2O3, and CaO with a lower percent of some other minerals, which is shown in
Table 1. The total percent of SiO2, Al2O3, and Fe2O3 for the class F fly ash is over 70%, with
the content of CaO less than 10%, while for the class C fly ash total content of SiO2, Al2O3,
and Fe2O3 should be between 50% to 70% with the percent of CaO greater than 20% [30,31].
In addition, FA is considered a dangerous material because it contains many trace elements,
such as Mn, Ti, Cr, V, Co, As, Pb, and Mo. The intensity of the toxic trace elements in FA
could be 5–10 times greater than those in the raw material sources [32–34], and it has small
amounts of polycyclic aromatic hydrocarbon and dioxins [35,36]. Therefore, the erroneous
discarding of FA and any other by-product or waste materials will increase land occupation
and destroy the environment and ecology [37–39]. Thus, to tackle these problems of FA and
any other waste materials, efforts have been made towards re-use of them in an efficient
and green way; for instance, high volumes of FA have been used to replace Portland cement
in different types of concrete and cementitious composites [40–47]. More recently, FA has
been utilized as an alternative source to make geopolymer paste [48,49], mortar [50,51],
and concrete [52–54].

For the production of FA-BGPC, some reactions take place between alkali liquids
and fly ash, and condensation among the resultant of Al3+ and Si4+ patterns, followed by
other complex nucleations, oligomerization, and polymerization, which lastly produce a
new amorphous three-dimensional network structure with a novel aluminosilicate-based
polymer as shown in Figure 1, the figure is adapted from [55].

The alkaline liquids in geopolymer concrete are sodium hydroxide or potassium
hydroxide mixed with sodium silicate or potassium silicate and water. Alkaline solutions
are concentrated aqueous alkali hydroxide or silicate solutions containing soluble alkali
metals, mainly sodium or potassium-based, used in the manufacturing of alkali activators
for balancing the negative charge of the alumina if fourfold cooperation with the silica is
achieved [2]. The purity of sodium hydroxide is around 97% and the two major states of
sodium hydroxide are pellets and flakes. Meanwhile, the composition of sodium silicate
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consists of three main compounds, namely SiO2, Na2O, and H2O. Regarding the reviewed
papers, the range of SiO2 was between 28 and 37 percent, Na2O was between 8 and
18 percent, and the proportion of H2O was between 45 and 64 percent, as shown in Table 2.
These solutions generated a geopolymeric binder by activating and extracting Si and Al
elements from the different source binder materials, as stated by Ouyang et al. [56].
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Figure 1. The schematic graphical representation shows the transition of fly ash to fly ash-based
geopolymer cement/concrete.

Several research studies have been published in the literature to highlight the effect
of various parameters on the fresh, physical, mechanical, durability, and microstructural
properties of FA-BGPC. The compressive strength (σc) is one of the essential mechanical
characteristics of concrete structures, and it usually provides a general performance regard-
ing the quality of the concrete [57]. The σc test is carried out by following the standard test
method of ASTM C39 [58]. The former paper [19] aimed to provide and develop some em-
pirical equations among mechanical properties of different source binder materials-based
geopolymer concrete. It was found that there is a lack of a systematic and comprehensive
review on the impact of a wide range of mixed proportion parameters and curing condi-
tions on the σc of FA-BGPC from an early age to older curing ages and different curing
temperatures. As a consequence, in this study, the influence of several parameters such
as the ratio of SiO2 to Al2O3 of the fly ash, alkaline liquid to the binder ratio, superplasti-
cizers and extra water content, fly ash content, fine and coarse aggregate content, sodium
hydroxide and sodium silicate content, the ratio of sodium silicate to sodium hydroxide,
molarity, curing temperature, curing duration inside ovens, and specimens ages on the σc
of FA-BGPC was investigated using 800 samples from the literature studies.

Table 1. Chemical composition of fly ash.

References Sp. Gr. SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 LOI

[59] - 53.3 26.49 10.86 1.34 0.77 0.8 0.37 1.7 1.39
[60] - 77.1 17.71 1.21 0.62 0.9 - 0.8 2.2 0.87

[61]

- 62.9 25.8 3.1 2.3 0.3 - - - 1.7
- 66.6 25.9 0.9 0.4 0.1 - - - 1.3
- 77.2 15.2 2.5 0.6 0.3 - - - 0.7
- 43.4 26.2 17.4 5.4 1.4 - - - 0.7
- 52.7 33.4 9 1 0.6 - - - 0.4
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Table 1. Cont.

References Sp. Gr. SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 LOI

[62] 1.95 62.5 29.02 4.22 1.1 - - 0.2 0.22 0.52
[63] - 62.1 25.5 4.28 3.96 1.27 - - 0.73 -
[64] 1.95 62.5 29.02 4.22 1.1 - - 0.2 0.22 0.52
[65] 2.13 57.9 31.1 5.07 1.29 0.97 1 0.09 0.05 0.8
[66] 2.42 65.6 26.5 5.49 0.31 0.76 0.23 0.36 0.31 0.41
[67] 2.12 70.3 23.1 1.4 0.2 0.6 0.9 0.4 0.2 2
[68] - 47.8 24.4 17.4 2.42 1.19 0.55 0.31 0.29 1.1
[69] 2.2 62.3 28.1 2.1 0.5 1 1 0.5 0.4 2.5
[70] - 52 33.9 4 1.2 0.81 0.83 0.27 0.28 6.23
[71] - 49 31 3 5 3 1 4 0 0
[72] - 48 29 12.7 1.76 0.89 0.55 0.39 0.5 1.61
[73] - 32.1 19.9 16.91 18.75 3.47 2.38 0.69 2.24 0.07
[74] - 51.5 23.63 15.3 1.74 1.2 0.84 0.38 0.28 1.78

[75]
2.04 59.2 24.36 7.074 2.235 1.4 3.37 0.378 - 1.517
2.3 62.3 21.14 7.347 1.568 2.35 0.73 2.445 - 2.071

[76] 2.05 64.9 26.64 5.69 0.33 0.85 0.25 0.49 0.33 0.45
[77] - 47.8 24.4 17.4 2.42 1.19 0.55 0.31 0.29 1.1
[78] - 59.7 28.36 4.57 2.1 0.83 - 0.04 0.4 1.06
[79] 2.36 37.6 14.79 18.56 19.61 2.7 0.98 0.73 4.81 -
[80] - 53.7 27.2 11.17 11.17 1.9 0.54 0.36 0.3 0.68
[81] 2.54 42.4 21.3 15.7 13.2 2.3 2 0.9 1 0.4
[82] - 50.7 28.8 8.8 2.38 1.39 2.4 0.84 0.3 3.79
[83] - 50.7 28.8 8.8 2.38 1.39 2.4 0.84 0.3 3.79
[84] - 50.5 26.57 13.77 2.13 1.54 0.77 0.45 0.41 0.6

Table 2. Purity of sodium hydroxide and compositions of sodium silicate.

References
Sodium Hydroxide Sodium Silicate

Purity% SiO2 Na2O Water

[59] 98 29.4 14.7 55.9
[60] 97 34.31 16.37 49.28
[61] 98 29.4 14.7 55.9
[63] 98 32.4 13.7 53.9
[65] 98 34.64 16.27 49.09
[66] 98 35.06 16.95 47.99
[68] 98 29.4 14.7 55.9
[70] 99 28 8 64
[76] 99 45 55
[77] 98 29.4 14.7 55.9
[78] 98 34.64 16.27 49.09
[79] 99 34.72 16.2 49.08
[80] 98.5 30.1 11.4 58.6
[85] 97 36.7 18.3 45
[86] 98 29.93 12.65 56.42
[87] 99 29.4 14.7 55.9
[88] 99.51 28 9 63

2. Research Significance

The primary goal of this research is to look at the impact of various mixture propor-
tions and curing regimes on the σc of FA-BGPC. Despite the widespread use of geopolymer
concrete, according to the authors of this study’s extensive review on the subject, there
is no comprehensive systematic review that shows the impact of different mixture pro-
portions and curing regimes on the σc behavior of FA-BGPC. As a result, the effect of
several parameters such as fly ash SiO2/Al2O3 (Si/Al), alkaline liquid to binder ratio (l/b),
superplasticizers and extra water content, fly ash (FA) content, fine aggregate (F) content,
coarse aggregate (C) content, sodium hydroxide (SH) content, sodium silicate (SS) content,
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SS/SH, molarity (M), curing temperature (T), and curing duration inside ovens (CD) were
quantified. Thus, approximately 800 tested specimens with different Si/Al, l/b, FA, F,
C, SH, SS, SS/SH, M, T, and CD were collected and analyzed to broaden the horizons of
researchers and the construction industry by providing significant information about the
influence of these different parameters on the σc of FA-BGPC.

3. Methodology

During the preparation of the database, an extensive literature search was made using
the different search engines of several databases such as Google Scholar, Scopus, Web of
Science, and ScienceDirect.

A wealth of information is available in the literature about geopolymer concrete with
various source binder materials such as FA, GGBFS, RHA, SF, MK, RM, etc. However, the
authors of this study focused on those studies that used FA as a source binder material
to make geopolymer concrete composites. In this study, an extensive search was made
to collect a relatively large amount of tested data (800 datasets) for the properties of the
compressive strength of fly ash-based geopolymer concrete composites.

The datasets were made up of the Si/Al ranges from 0.48–7.7, the l/b ranges from
0.25–0.92, the FA ranges from 254–670 kg/m3, the F ranges from 318–1196 kg/m3, the
C ranges from 394–1591 kg/m3, the SH ranges from 25–135 kg/m3, the SS ranges from
48–342 kg/m3, the SS/SH ranges from 0.4–8.8, the M ranges from 3–20, the T ranges
from 23–120 ◦C, and the CD ranges from 8–168 h, as depicted in Table 3. The datasets
were then utilized to study the impact of these parameters on the σc of fly ash-based
geopolymer concrete composites. Further details of the data collection and reviewing work
are summarized in a flow chart in Figure 2.
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Table 3. Summary of different fly ash-based geopolymer concrete mixes.

References (Si/Al) (l/b) FA (kg/m3) F (kg/m3) C (kg/m3) SH (kg/m3) SS (kg/m3) (SS/SH) M T (°C) CD (hr.) A (Day) fc′ (MPa)

[59] 2 0.35 476 554 1294 48–120 48–120 0.4–2.5 8–14 24–90 8–96 3–94 17–64
[60] 1.5–5.1 0.5–0.6 300–500 471–664 1000–1411 42–120 90–215 1.5–2 12–16 70 24 7 16–64
[61] 2.4 0.6 385 601.7 1203 66 165 2.5 12 80 24 3–28 74–81
[62] 2.1 0.45 350–400 505–533 1178–1243 45–52 112–129 2.5 8–16 24 - 3–28 7–41
[63] 1.8 0.45–0.55 300–350 698–753 1048–1131 38–55 96–118 2.5 10 100 24 7–28 26–36
[64] 2.4 0.45 298–430 533–590 1243–1377 38–55 96–138 2.5 8–14 10–90 24 3–28 19–43
[65] 3.0 0.81 409 686 909 129 204 1.58 15 80 24 28–96 22–27
[66] 2.3 0.35–0.5 327–409 554–672 1201–1294 40–54 108–112 2–2.5 8–16 60 24 28 31–62
[67] 1.9 0.35 408 554 1294 41 103 2.5 8–14 60 24 7 40–64
[68] 2.2 0.3–0.45 400 830–895 830–895 32–52 85–129 2–3.3 12–18 50 48 7–28 16.36
[69] 1.5 0.3–0.5 400–475 529–547 1235–1280 34–57 85–142 2.5 14 24 - 7–56 7–44
[70] 1.6 0.35 408 647 1202 41 103 2.5 14 24–60 24 28 27–40
[71] 1.6 0.6 390 585 1092 67 167 2.5 8–18 24 - 28 23–32
[72] 2.1 0.35–0.38 408 660 1168–1201 41 103 2.5 10–16 24–50 24 28 25–72
[73] 2.8 0.55 356 554.4 1293 43–78 117–152 1.5–3.5 10 60 48 7–28 23–35
[74] 2.4–2.9 0.45 500 575 1150 64 160 2.5 14 24 - 28 44–52
[75] 0.4 0.4 350 650 1250 41 103 2.5 8 24–60 24 3–28 6–32
[76] 1.9 0.35 408 640–647 1190–1202 41 103 2.5 14–16 60 24 28 42–62
[77] 1.9 0.3 670 600 970 80 120 1.5 3–9 50 72 3–7 59–61
[78] 1.9 0.6 450 500 1150 135 135 1 10 40 24 7–96 18–49
[79] 1.7 0.4 400 554 1293 45 113 2.5 14 100 72 3–28 29–45
[80] 1.7 0.4 400 554 1293 45 113 2.5 14 100 72 3–28 29–45
[81] 1.9 0.37–0.4 408 647 1201 62–68 93–103 1.5 14 60 24 28 32–38
[82] 2.3–3.3 0.4 420–440 340–575 660–1127 60–68 150–169 2.5 12 80–120 72 7 21–61
[83] 1.9 0.35 356–444 554–647 1170–1248 36–44 89–111 2.5 14 60 24 7–28 24–63
[84] 3 0.35 409 549 1290 41 102 2.5 10 24 - 7–112 10–41
[85] 2.1 0.38–0.46 350–400 540–575 1265–1343 38–53 95–132 2.5 16 24–90 24 3–28 2.6–44
[86] 1.5 0.35 408 554 1294 41 103 2.5 8 24 - 7–28 12–16
[87] 2.1 0.35–0.65 254–420 318–1198 394–1591 25–76 69–165 1.5–3.5 8–16 24–120 6–72 3–28 13–60
[88] 1.9 0.4 400 651 1209 45 114 2.5 14 24 - 3–96 5–33
[89] 2.4 0.4 440 723 1085 64 112 1.75 12 60 48 3–28 23–35
[90] 1.5–3.9 0.7–0.9 412–420 693–706 918–936 39–92 241–342 2.6–8.8 15 80 24 3–96 22–57
[91] 2.5 0.55 310 649 1204 48.8 122 2.5 10 80 24 28–96 44–47
[92] 2.6–2.9 0.5 420 630 1090 60 150 2.5 12 80 24 7 32–41
[93] 1.5 0.37 424 598 1169–1197 63 95 1.5 14 70 24 3–96 2–58
[94] 2.3 0.5 368 554 1293 52 131 2.5 16 100 24 28 41
[95] 2.1–2.6 0.3 450 788–972 945–972 67 67 1 10 70 24 7–28 25–41
[96] 5.6 0.4 410 530 1044 67 117 1.74 10 24–75 26 7–180 4–36
[97] 2.3 0.45 500 550 1100 64.3 160.7 2.5 14 70 48 28 49.5
[98] 1.9 0.4 400 651–656 1209–1218 40–46 100–114 2.5 14 24 - 28–90 25–41
[99] 1.6 0.58 380 462 1386 62 156 2.5 10 60 24 28–56 18–23
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Table 3. Cont.

References (Si/Al) (l/b) FA
(kg/m3) F (kg/m3) C (kg/m3)

SH
(kg/m3)

SS
(kg/m3) (SS/SH) M T (°C) CD (hr.) A (Day) fc′ (MPa)

[100] 2.2 0.5 414 588 1091 69–104 104–138 1–2 10–20 24–60 24 7–28 19–54
[101] 1.9 0.4 394 554 1293 45 112 2.5 12 24–60 24 7–28 8–28
[102] 2.1 0.3–0.4 428 630 1170 44–57 114–122 2–2.5 8–14 60–90 24 3–7 20–49
[103] 1.5 0.3 563 732 5994 44 124 2.8 10 75 16 28 33–45
[104] 3.1 0.5 400 650 1206 50–70 140–154 2–2.75 14 60 168 7–28 30–36
[105] 7.7 0.4–0.6 345–394 554 1294 45–83 94–148 1.5–2.5 8–16 24 - 28 7–22
[106] 2.0 0.4 400 644 1197 53 107 2 10 24 - 3–56 5–23
[107] 1.8 0.4 394 554 1293 45 112 2.5 8 24 - 7–28 3–18
[108] 1.8 0.4 350 483 1081 40 100 2.5 14 24 - 7–28 3–23
[109] 1.7 0.45 436 654 1308 56 140 2.5 8 24 - 3–12 8–18
[110] 2.7 0.45 380 660 1189 48 122 2.5 8 24 - 28 30
[111] 2.6 0.65 639 639 959 121 304 2.5 8–12 24 - 7–28 6–32
[112] 1.6 0.35 500 623 1016 70 105 1.5 14–16 24 - 3–28 7–27
[113] 2.1 0.41 350 645 1200 41 103 2.5 8 24 - 3–56 7–21
[114] 2.3 0.4 394 646 1201 45 112 2.5 16 24–60 24 3–28 8–50

Remarks
(Ranges are

varied
between)

0.4–7.7 0.25–0.92 254–670 318–1196 394–1591 25–135 48–342 0.4–8.8 3–20 23–120 8–168 3–112 2–64
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4. Mixture Proportion Parameters
4.1. Chemical Composition of Fly Ash (SiO2/Al2O3) (Si/Al)

Various fly ashes with slightly different chemical compositions, specific surfaces, and
specific gravity were used in the literature to prepare the geopolymer concrete. Based on
ASTM C618 [29], ash with a summation of their SiO2 + Al2O3 + Fe2O3 greater than 70%
can be known as fly ash. The Si/Al ratio of the fly ashes ranged from 0.48 to 7.7, with
an average of 2.58, the variance of 2.06, the standard deviation of 1.44, skewness of 2.83,
and kurtosis of 7.31 based on 800 data points obtained from several research works. In a
symmetrical normal distribution, skewness refers to distortion or asymmetry. When the
curve in a dataset is shifted to the right or left, it is said to be skewed. For example, the
skew of zero was measured for a normal distribution and the right skew was measured as
an indication of lognormal distribution [115].

An experimental laboratory research work was conducted by Thakur and Ghosh [116]
to investigate the effect of silica content on the σc and microstructure of FA-BGPC. They
reported that the σc was improved almost linearly with Si content up to 4, and then it was
decreased, as illustrated in Figure 3, the figure is adapted from [116].
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In the same context, a research study was carried out on the FA-BGPC by Al-Azzawi
et al. [60] who used five different types of fly ashes. The fly ashes had different chemical
compositions with the ratio of Si/Al of 1.58, 1.66, 2.44, 2.57, and 5.08. The highest σc
was recorded for the fly ash with a Si/Al ratio of 1.66, which was 34 MPa. This value
was significantly higher than the other fly ash geopolymer concrete specimens by 20.5%,
38.2%, 41.2%, and 44.1% for the Si/Al of 1.58, 2.44, 2.57, and 5.08, respectively. This result
could be explained by the fact that varied fly ash characteristics lead to varying degrees of
polymerization between the alkaline activator and the fly ashes, which influences the σc of
the geopolymer concrete. Furthermore, the degree to which the polymerization process is
carried out has an impact on the microstructure of the FA-BGPC, which in turn reflects on
the σc of the geopolymer concrete [60].

Moreover, an experimental investigation was carried out to demonstrate the impact of
two distinct types of fly ash on the mechanical and durability qualities of FA-BGPC. At
28 days, the compression strength was 51.6 and 44.8 MPa at ambient curing temperature
for Si/Al ratios of 2.43 and 2.95, respectively [74]. The fly ash’s reduced CaO content
and low activity were blamed for this finding [117,118]. Furthermore, to investigate the
long-term permeation characteristics of the geopolymer concrete, four different types of
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fly ashes were used to prepare FA-BGPC. Their results claimed that the highest σc was
achieved for the geopolymer concrete with a Si/Al of 1.71, and the lowest σc was recorded
at a Si/Al of 1.8, while the other fly ash types fell between the two. Moreover, all their
geopolymer concrete mixtures archived almost 70% of their one-year σc at three days. For
instance, the geopolymer concrete with a Si/Al of 1.71 displayed about a 20 MPa strength
increment between 3 and 365 days [90]. This result revealed a continuous improvement in
the polymerization process, which leads to progress in the σc of different types of FA-BGPC.
This output contrasts with past studies on FA-BGPC, which recorded a slight subsequent
improvement in the σc for the heat curing conditions [59,119,120]. In the same manner,
another research study was carried out on the mechanical characteristics of geopolymer
concrete. They used three different fly ashes with different chemical compositions. In the
controlled heat curing conditions and constant mixture proportions, the σc values were
32.1, 41, and 36.6 MPa for the Si/Al of the fly ash of 2.9, 2.78, and 2.6, respectively [92].
The results behind different σc values were examined by Scansning electron microscopy
(SEM). They reported that the samples made from the fly ash with a Si/Al of 2.78 had
the highest degree of reacted fly ash spheres participating in the greatest σc. This result
was reported by other researchers who claimed that the total reacted Si/Al is crucial to
the progress in the polymerization of FA-BGPC [59,119]. Similarly, the σc of geopolymer
concrete improved as the Si/Al ratio was raised [69,121,122].

For example, Thokchom et al. [122] discovered that increasing the Si/Al ratio of
the source binder materials enhanced residual σc of the geopolymer concrete when the
specimens were exposed to various temperatures, as shown in Figure 4, the figure is
adapted from [122]. The geopolymer concrete with a 2.2 ratio of Si/Al preserved nearly
63% of its σc even after exposure to 900 ◦C, while the geopolymer concrete mixture with
a 1.7 ratio of Si/Al had a residual σc of 50%. SEM examinations confirmed that the
geopolymer concrete specimens prepared with a Si/Al ratio of 1.7 had complete matrix
disruption due to phase sintering inside the samples but that the interconnected matrix
had most of the original pores sealed during the heating process. Geopolymer concrete
with a Si/Al ratio of 2.2, on the other hand, has a generally undisturbed matrix except in a
few locations [122].
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Finally, mechanical properties of high early strength FA-BGPC were investigated using
an experimental study program. They used five types of fly ash as a source binder, each
with a different Si/Al ratio and CaO content. Their results indicated that the mixture with
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2.18 Si/Al and 4.96 CaO content had the highest σc [95]. Figure 5 which is adapted from [95]
shows the variation of σc of FA-BGPC with different percentages of CaO and SiO2 + Al2O3
of fly ash, emphasizing the idea that the CaO, SiO2, and Al2O3 content has a direct impact
on the mechanical properties of FA-BGPC. The high CaO fly ash-based geopolymer concrete
mixture gains strength due to two main distinct mechanisms, namely polymerization and
hydration under-regulated curing conditions, which can explain this outcome. The σc of
the FA-BGPC increased as the SiO2 and Al2O3 content of the fly ash increased due to the
polymerization process, while the lack of CaO inhibits the polymerization process, the σc
of geopolymer concrete suffers as a result [123].
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4.2. Alkaline Solution to the Binder Ratio (l/b)

The term “alkaline solution” refers to the sum of the sodium hydroxide and sodium
silicate contents, whereas “binder content” refers to the entire weight or volume of fly ash
or other source binder materials in the geopolymer concrete’s mixed proportions [19,54].
Based on the collected data from the literature studies, the l/b ratio of the FA-BGPC
varied between 0.25 and 0.92, with an average variance, standard deviation, skewness, and
kurtosis of 0.46, 0.01, 0.1, 1.24, and 2.31, respectively. The variance is a measure of variability
that is calculated by averaging the squared deviations from the mean. Additionally,
variance indicates the degree of spread within the dataset. The wider the data distribution,
the larger the variance in proportion to the mean [124].

Based on the findings of Aliabdo et al. [68], when the chemical admixture content,
additional water content, SS/SH, and M were kept constant at 10.5 kg/m3, 35 kg/m3, 0.4,
and 16, respectively, the σc of FA-BGPC was increased with the increment in the l/b ratio
up to 0.4, and then the effect was reversed as shown in Figure 6 adapted from [68]. In
comparison to a 0.3 alkaline liquid to fly ash ratio, the increase in the σc of FA-BGPC was
52 percent, 78 percent, and 68 percent for mixes with 0.35, 0.4, and 0.45 alkaline liquid
to fly ash ratios, respectively. Similarly, Shehab et al. [63] discovered that increasing the
proportion of l/b enhanced the σc of FA-BGPC at 7 and 28 days. In the same vein, an
experiment was conducted to investigate the effect of various parameters on the mechanical
properties of FA-BGPC and it was discovered that as the l/b increased up to 0.55, the σc
was significantly increased, and beyond that, the mechanical properties of FA-BGPC were
negatively affected. They reported that the σc of 39, 47, 58, and 44 MPa were obtained with
l/b ratios of 0.35, 0.45, 0.55, and 0.65, respectively, when all other variables were constant
even though different curing temperatures of 60, 80, and 100 ◦C were used [87].
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In contrast to the findings mentioned earlier, some research indicates that increasing
the l/b ratio decreased the σc of FA-BGPC. For example, an experimental study was
conducted to determine the behavior of low-CaO fly and bottom ash-based geopolymer
concrete with varying l/b ratios when cured at room temperature. They observed that
at 28 days, the σc of the geopolymer concrete was 18.8, 27.2, and 34.3 MPa, respectively,
with l/b ratios of 0.5, 0.35, and 0.3 [69]. This result was attributed to the fact that the
water content in the reaction medium of the geopolymer concrete mixture was increased,
as any increase in the l/b ratio leads to decreased friction between the particles and, as
a result, a reduction in the σc of the geopolymer concrete [125]. Nevertheless, only one
exception to this general trend can be found in the same geopolymer concrete with an
l/b ratio of 0.25, where a slight reduction in σc was actually observed due to a lack of
workability of the geopolymer concrete mixture in the fresh state, which caused placement
problems during concrete casting when compared to the other l/b ratio mixtures, and as
a result, affected the σc value [69]. Other investigations have produced similar findings,
even though each study’s alkaline solution to binder ratio was different [26,66,102]. In
a similar vein, Fang et al. [106] asserted that an increase in the l/b ratio substantially
impacts the σc of blended fly ash-slag-based geopolymer concrete at early ages but has no
significant impact on the compressive strength of geopolymer concrete at later ages. This
finding argued that decreasing the l/b ratio will accelerate the alkaline activation process
of fly ash-slag geopolymer concrete due to a decrease in the consistency of the geopolymer
concrete mixture [126]. In this case, the calcium aluminate silicate hydrate (C-A-S-H) and
sodium aluminate silicate hydrate (N-A-S-H) gels can be produced rapidly in a geopolymer
concrete mixture with a low l/b ratio, thereby contributing to the development of the
early-age σc of fly ash-slag geopolymer concrete [127].

Finally, it was discovered that the σc of lower sodium hydroxide concentrations
(molarity) cured at ambient temperature declined as the l/b ratio increased. For example,
for an l/b ratio of 0.4, 0.5, and 0.6, the σc was 11, 7.6, and 7.5 MPa, respectively, when the
molarity was 8 M. The σc of FA-BGPC improved to 18.1, 21.5, and 21.5 MPa at 0.4, 0.5,
and 0.6 l/b ratio, respectively, when the molarity was increased to 14 M [105], as shown in
Figure 7, the figure is adapted from [105]. Further, increasing the l/b ratio from 0.5 to 0.6
decreases the σc of the geopolymer concrete by about 6.1%, 8.8%, 13.8%, 22.2%, and 14%,
respectively, for sodium hydroxide concentrations of 8, 10, 12, 14, and 16 M. This finding
demonstrated that raising the molarity of the alkaline liquid results in the existence of a
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greater solid component relative to the water content, which has a substantial effect on the
polymerization process and, as a result, compressive strength was increased [128].
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4.3. Superplasticizer Dosage and Extra Water

Superplasticizer and water content are two essential parameters that determine the
workability behavior of FA-BGPC and so influence its hardened properties. Since the
alkaline solution, which is composed of sodium hydroxide and sodium silicate, is more
viscous than water, its use in geopolymer concrete results in a mixture that is stickier
and more cohesive than conventional concrete [129]; consequently, additional water and
superplasticizer are added to the geopolymer concrete mixture to improve workability.

Hardjito et al. [130] conducted an experiment to determine the influence of superplas-
ticizer dosage on the σc of FA-BGPC. They used a variety of high-range water-reducing
admixtures. Their findings indicated that adding superplasticizer improves the workability
of the FA-BGPC on the one hand and that adding superplasticizer to the geopolymer
concrete mixture has a negligible effect on σc up to nearly 2% fly ash by mass on the other
hand, as illustrated in Figure 8, the figure is adapted from [130]. After 2% superplasti-
cizer dosage, the σc declined when superplasticizer dosage was increased. For example,
when the superplasticizer dosage was increased from 2% to 3.5%, the σc reduced by 19%.
Furthermore, according to the findings of this research study [130], σc was dramatically
reduced with the addition of excess water to the geopolymer concrete mixture at various
curing temperatures. This conclusion is consistent with the findings of Barbosa et al. [131],
who conducted research on geopolymer concrete pastes.

In addition, an experiment was carried out to see how the addition of more water
affected the workability and σc of FA-BGPC. Their findings showed that increasing the
amount of extra water in the geopolymer concrete mixture enhanced and improved work-
ability while decreasing σc. For example, when the excess water content increased from
0.25 to 0.30, 0.35, and 0.40, the σc reduced by 32%, 42%, and 71%, respectively [132]. This
result was attributed to the fact that water evaporates from geopolymer concrete, leaving
pores and cavities within the geopolymer concrete matrix when geopolymer concrete
specimens are curing at high temperatures inside ovens, and the presence of additional
water may influence the alkalinity environment of the FA-BGPC matrix, thereby slowing
the polymerization process [60]. In the same vein, a study was conducted to determine
the effect of increased water and superplasticizer concentration on the σc of FA-BGPC.
They concluded that as the amount of extra water in the geopolymer concrete mixture
increased, σc decreased, as shown in Figure 9 at the ages of 7 and 28 days, this figure is
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adapted from [68]. This decline in σc was not greater than 10% up to 30 kg/m3 of extra
water but was increased to 24% when 35kg/m3 of additional water was used [68]. They
also discovered that as the superplasticizer dose increased, the σc of FA-BGPC reduced
marginally. For example, they found that the σc of FA-BGPC with 5, 7.5, and 10.5 kg/m3

superplasticizer dosages were reduced by 4.2%, 8.6%, and 24%, respectively, when com-
pared to the same mixture with 2.5 kg/m3 admixture content [68]. Furthermore, Josef and
Mathew [87] found that when the water to geopolymer concrete solids ratio increased, the
σc of FA-BGPC dropped. This reduction in σc is approximately linear for all values of l/b
ratio, as shown in Figure 10 adapted from [87].
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Lastly, an experiment was conducted to determine the impact of superplasticizer and
water to binder ratio on the σc of FA-BGPC. The σc was found to be drastically reduced
as the superplasticizer dosage and water to binder ratio were increased. For instance, σc
was reduced by 41% and 50% at 13.92 and 48 kg/m3 superplasticizer content, respectively,
compared to 8.64 kg/m3 superplasticizer content; additionally, σc was reduced to 46.2 and
27.2 MPa at 45.6 and 60 kg/m3 extra water content, respectively, compared to 40.8 kg/m3

extra water content with the σc of 55.6 MPa [93]. Similar results were achieved by Vora and
Dave [102], who observed that the σc of FA-BGPC was decreased as the superplasticizer
and water to binder ratio of the concrete mixture increased. This is because the extra
water in the geopolymer concrete mixture causes large gel crystals with trapped water
inside. Then, once the entrapped water evaporates in the mixture, it produces a highly
porous matrix, causing a decrease in σc and an increase in the absorption capacity of the
geopolymer concrete [133]. In general, a greater proportion of water and superplasticizer
in the geopolymer concrete mixture results in a decrease in the compressive strength of the
geopolymer concrete composite due to decreased contact between the activating solution
source reacting material [26,134].

4.4. Fly Ash (FA) Content

Due to its low cost, abundant availability, and greater potential for preparing geopoly-
mers, fly ash (FA) is commonly employed as a source binder material for making geopoly-
mer concrete [25,26]. For the gathered data, the content of fly ash in the mixture proportions
of different Fa-BGPC ranged from 254 to 670 kg/m3. The chemical compositions of the FAs
vary, and their specific gravity ranges from 1.95 to 2.54. The FA’s average, standard devia-
tion, skewness, and kurtosis were 386 kg/m3, 73.9 kg/m3, 5466, 1.52, and 4.04, respectively.
The kurtosis is a statistical measure of how far the tails of a data distribution differ from
the tails of a normal distribution. Kurtosis also controls the weight of the distribution tails,
whereas skewness determines the symmetry of the distribution [54].

Al-Azzawi et al. [60] conducted an experimental laboratory study to investigate the
effect of different fly ash contents on the bond and σc of FA-BGPC. They found that as the
fly ash content was increased, the bond and σc of the geopolymer concrete improved. The
maximum increase in σc for three different fly ash content levels for five distinct fly ash
types (ER, MP, BW, GL, and CL) was 19%, 23%, 17%, 36%, and 25%, respectively, when the
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fly ash content level was increased from 300 kg/m3 to 500 kg/m3 [60]. This result (based on
their SEM tests) argued for the fact that higher content of fly ash in the geopolymer concrete
mixture gives denser and compacted microstructure to the geopolymer concrete matrix.
Additionally, the fly ash particles enhance movement among the aggregate particles due
to their spherical form and smooth surface [135]; therefore, lowering the fly ash content
reduces the ability of FA-BGPC components to consolidate and compact properly, lowering
bond and σc. On the other hand, as the fly ash content increased, the volume of fine fraction
particles in the geopolymer concrete matrix increased, filling the voids and pores between
the aggregate particles, and hence compressive strength was improved [60]. Similar results
of increased σc of FA-BGPC with increasing fly ash content were reported at both heat
curing and ambient curing regimes [63,85]. For example, as the fly ash concentration grew
from 300 to 400 kg/m3, the σc increased from 21 MPa to 42 MPa [85].

Furthermore, Singhal et al. [62] discovered that the σc of FA-BGPC improved as the
fly ash content rose. For example, when the fly ash content was increased from 350 kg/m3

to 375 and 400 kg/m3, respectively, at the ambient curing age of 7 days, the σc improved
by 11% and 32%, and increased by 15% and 24% at the age of 28 days. At the ambient
curing age of 28 days, this enhancement in the σc of geopolymer concrete was documented
for other sodium hydroxide molarities, as illustrated in Figure 11 adapted from [62]. This
result can be attributed to the fact that fly ash is the primary source of aluminosilicate
source materials in the geopolymer concrete mixture, and as the amount of fly ash content
increased, silica and alumina levels increased, affecting polymerization reactions, resulting
in increased C-A-S-H and N-A-S-H gels, and finally improved the σc of FA-BGPC [62].
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In the same manner, a study was undertaken to evaluate the characteristics of fly
ash-based geopolymer concrete. They employed varied volumes of fly ash and found that
as the fly ash content grew, the σc of FA-BGPC increased. For example, with 356, 408, and
444 kg/m3 of fly ash concentration, the σc was 25.44, 36, and 48 MPa, respectively, [83].
This finding is credited to the same source as previously noted. Similarly, Ramujee and
PothaRaju [66] showed that as the proportion of fly ash in the geopolymer concrete mixture
increased, the σc increased. Overall, most studies found that the σc of FA-BGPC increased
as the amount of fly ash in the geopolymer concrete mixture increased, implying that fly ash
with a higher fineness and glassy phase is more reactive, resulting in a faster polymerization
rate and, as a result, a high strength geopolymer concrete was produced [20,136,137].



Sustainability 2021, 13, 13502 17 of 38

4.5. Aggregate Content

The aggregates used in geopolymer concrete mixtures are the same as those used in
traditional concrete mixtures, including fine and coarse particles. Previous research used
the river and crushed sand with a maximum aggregate size of 4.75 mm and a specific
gravity of 2.60–2.8 as fine aggregate, and its grade also met the ASTM C 33 [138] standards.
For the collected 800 datasets, fine aggregate content ranged from 318 to 1196 kg/m3 for
FA-BGPC mixtures, with an average of 610 kg/m3, a standard deviation of 93.8 kg/m3, a
variance of 8806.7, and other statistical variables such as skewness and kurtosis were 1.49
and 5.56, respectively.

Crushed stone or gravel with a maximum aggregate size of 20 mm, on the other
hand, has been employed as the coarse aggregate in the literature for the preparation of
fly ash-based geopolymer concrete mixtures. The coarse aggregate content ranged from
394 to 1591 kg/m3 based on data collected from various amounts of FA-BGPC mixtures.
The dataset’s statistical analysis reveals that the average coarse aggregate content was
1174.5 kg/m3, the standard deviation was 148.3 kg/m3, the variance was 21,993, the
skewness was −1.43, and the kurtosis was 3.0.

The influence of total aggregate content on the σc of FA-BGPC at various molarities and
curing temperatures was investigated by Chithambaram et al. [64]. They used five different
volume fractions of total aggregate contents ranging from 74% to 82%. It was discovered
that the σc of FA-BGPC increased with the increment of entire aggregate content up to 78%
and subsequently declined due to insufficient binding material for holding the aggregates
together. Furthermore, as shown in Figure 12 (adapted from [64]), they observed that the
highest σc was reached for the geopolymer concrete mixture with 78% total aggregate
content at 60 ◦C curing conditions. However, this percentage of aggregate results in a 37.5%
loss in workability compared to a geopolymer concrete mixture with 76% aggregate. As a
result, they prefer to employ 76% of total aggregate content with a molarity of 12 M and
cured at 90 ◦C since it gives a low σc drop (about 2.6%) without affecting the slump value
of the FA-BGPC mixture [64].
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In addition, an experimental study was carried out to investigate the effect of aggregate
properties on the mechanical and absorption properties of fly ash-based geopolymer
mortars. They employed three types of aggregates: river sand, crushed sand, and a hybrid
of the river and crushed sand. They observed that the σc of the geopolymer mortar mixtures
ranged from 28.2 to 47.8 MPa at one day when the molarity was 12 M, the SS/SH ratio
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was 2.5, and the specimens were cured at 90 ◦C for 24 h. Moreover, when compared to
other aggregates, it was discovered that the geopolymer mixture with crushed sand had
a greater σc. This outcome was attributed to the crushed sand’s rough surface texture
and angular shape, which results in a higher surface-to-volume ratio and thus improved
binding qualities between the aggregates and the paste matrixes [139]. Additionally, they
reported that the crushed sand with a coarser grade (2–4 mm) had the maximum σc when
compared to the other grades, as shown in Figure 13 adapted from [139]. Mane and
Jadhav [140] published similar findings, stating that crushed sand had a higher σc than
river sand. Furthermore, they observed that when granite is used as a coarse aggregate,
the σc of the FA-BGPC is increased compared to when coarse basalt stones are used.
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In the same context, Nuaklong et al. [141] investigated the effect of recycled concrete
aggregates and crushed limestone aggregates on the characteristics of FA-BGPC. They
asserted that it is possible to use recycled concrete aggregates to produce FA-BGPC with
a σc of 30–38 MPa after seven days, but this value is slightly less than that of FA-BGPC
with crushed limestone aggregates, which has a σc of 38–41 MPa after seven days. Similar
results can be obtained in other investigations, despite different mixing proportions being
utilized [78].

Sreenivasulu et al. [142], on the other hand, investigated the σc of fly ash/GGBFS-
based geopolymer concrete with varying fine aggregate contents and grades. They em-
ployed granite slurry as a natural sand replacement to create varied ratios of blended
natural sand and granite slurry (100:0, 80:20, 60:40, and 40:60). In the circumstances of
ambient curing conditions with the molarity of 8 M and the ratio of SS/SH of 2, they
discovered that the σc was significantly increased in all curing ages of 7, 28, and 90 days,
until the blend of 60:40 and beyond that, a decline in the σc was reported, as represented in
Figure 14, the figure is adapted from [142]. For example, the σc of blended natural sand
and granite slurry proportions of 60:40 was 34, 51, and 59.9 MPa for curing ages of 7, 28,
and 90 days, respectively, but for the blend of 40:60, this result was 22.4, 33.6, and 38.6 MPa.
These findings suggest that the granite slurry acts as a filling agent, filling the voids and
pores of the geopolymer concrete and thus making the geopolymer concrete dense, result-
ing in an increase in σc of the geopolymer concrete until 40% sand replacement, after which
the σc decreases due to the high percentages of fine materials in the geopolymer concrete
mixtures [142]. Moreover, according to the findings of Embong et al. [75]. They studied the
effects of replacing coarse granite aggregate with limestone. Their experiments replaced
the portion of coarse granite aggregate in the geopolymer concrete mixtures with limestone
0%, 25%, 50%, 75%, and 100%. They discovered that in the ambient curing state, replacing
limestone had a bigger impact on the σc of the FA-BGPC than in the oven curing condition.
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For example, a 35.3%, 19.5%, and 14.15% increase in σc was attained for replacement levels
of 25%, 50%, and 75%, respectively, compared to a control geopolymer concrete mixture
without any limestone ingredient. This result was attributed to the formation of extra
C-A-S-H gels that provided a solid structural framework in the geopolymer concrete [75].
In addition, the added solubility of Si element in fly ash to form C-A-S-H gels addresses
the disadvantages of low reactivity in ambient curing circumstances [143]. However, a
10.2% decrease in σc was recorded for the replacement level of 100% limestone due to
decreased aggregate packing density provided by evenly graded limestone in the geopoly-
mer concrete mixtures [75]. The replacement of granite with limestone in the oven curing
state, on the other hand, gives an improvement in σc only up to a 25% replacement level,
and beyond that, a fall in σc was recorded, as shown in Figure 15, the figure is adapted
from [75].
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Finally, a study was conducted to demonstrate the effect of aggregate content on the
fresh and mechanical properties of FA-BGPC. They utilized various aggregate contents and
fine aggregate-to-total aggregate ratios. They concluded that the σc of geopolymer concrete
mixtures rose with increasing total aggregate content up to 70% and then decreased.
Furthermore, the σc was increased by increasing the fine aggregate to the total aggregate
ratio of 0.35 percent and subsequently reducing it [87]. As a result, a limit proportion of
fine aggregate and total aggregate content for a given type of coarse and fine aggregate
produced the best σc for the FA-BGPC.

4.6. Na2SiO3/NaOH Ratio or SS/SH Ratio

Sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) are commonly employed
as activator solutions in preparing geopolymer concrete mixtures. The sodium hydroxide
(SH) concentration of the 800 datasets gathered ranged from 25 to 135 kg/m3, with an
average of 57 kg/m3, a standard deviation of 19.33 kg/m3, a skewness of 1.75, a kurtosis
of 3.55, and a variance of 373.7. The purity of the SH in all of the FA-BGPC combinations
was greater than 97 percent, with pellets and flakes being the two major states of the SH
in all of the mixtures. Furthermore, the sodium silicate (SS) level was changed from 48 to
342 kg/m3. The SS was made up of SiO2, Na2O, and water. SiO2 levels ranged from 28 to
37%, Na2O levels ranged from 8 to 18%, while the percentage of water in the SS ranged
from 45 to 64%. The average concentration of SS in the fly ash-based geopolymer concrete
mixture was 128.2 kg/m3, the standard deviation was 45.8 kg/m3, the variance was 2097,
skewness was 2.56, and kurtosis was 7.73, according to the statistical analysis. Moreover,
based on the data collected, the ratio of Na2SiO3 to NaOH varied between 0.4 and 8.8,
with an average of 2.34. The standard deviation, variance, skewness, and kurtosis were,
respectively, 0.73, 0.54, 4.25, and 37.4.

Several studies have been published in the literature to explore the effect of alkaline
solutions on the engineering properties of FA-BGPC mixtures. For example, Hardjito
et al. [130] carried out a laboratory experiment to demonstrate the influence of varied
sodium silicate to sodium hydroxide ratios on the σc of FA-BGPC mixtures. They employed
two different molarities and two different SS/SH ratios of 0.4 and 2.5. Their findings
indicated that increasing the ratio of SS/SH significantly increased σc. For example, when
the molarity was 8 M and the specimens were cured at 60 ◦C for approximately 24 h, the σc
of FA-BGPC increased from 17.3 MPa to 56.8 MPa simply by increasing the ratio of SS/SH
from 0.4 to 2.5. It was also discovered that changing the SS/SH ratio from 0.4 to 2.5 at a
molarity of 14 M increased the σc from 47.9 MPa to 67.6 MPa [130].

Al-Azzawi et al. [60] showed an increase in the σc of FA-BGPC when the ratio of
SS/SH rose in all geopolymer concrete mixtures, despite fly ash levels varying from 300
to 500 kg/m3. Similarly, Aliabdo et al. [68] evaluated the performance of FA-BGPC using
three different SH/SS ratios of 0.3, 0.4, and 0.5. According to their findings, σc dropped as
the SH/SS ratio grew, or compressive strength increased as the SS/SH ratio increased, as
shown in Figure 16, the figure is adapted from [68]. The σc of the FA-BGPC has reduced by
22.5% and 29.5% at 0.4 and 0.5 SH/SS ratios, respectively, as compared to the SH/SS ratio
of 0.3. Similar results have been reported in other investigations, despite different SS/SH
being utilized [83,100,112,144].

Furthermore, Joseph and Mathew [87] carried out an experimental research study
to investigate the effect of various parameters on the performance of FA-BGPC. It was
observed that the σc increased with the increment of SS/SH ratio up to 2.5, and beyond
that decline in the σc was reported, as shown in Figure 17, the figure is adapted from [87].
This result supported the theory that the microstructure of geopolymer concrete changes
with the increment of the amount of sodium silicates, whereas the reduction in σc was
attributed to the absence of a sufficient amount of sodium hydroxide in the mixture to
complete the dissolution process during geopolymer formation [145,146], or due to the
excess of OH- concentration in the geopolymer concrete mixture [25]. On the other hand,
some researchers thought that an overabundance of sodium could result in the formation
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of sodium carbonate by air carbonation, interfering with the polymerization process and
lowering compressive strength [131]. Another study was conducted in the same vein to
study the impact of different SS/SH ratios on the σc of FA-BGPC. They utilized 0.5, 1.0,
1.5, 2.0, 2.5, and 3.0 as SS/SH ratios, and it was claimed that increasing the SS/SH ratio
enhanced σc up to a ratio of SS/SH of 2.5 and thereafter lowered it [147]. However, several
researchers found that the effect of the sodium silicate to sodium hydroxide ratio on the σc
of geopolymer concrete was not noticeable [88,106].
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In contrast to the earlier results, fewer studies reported that the σc of FA-BGPC
decreased as the ratio of sodium silicate to sodium hydroxide increased. For example,
a study was carried out by Ghafoor et al. [105] to determine the influence of alkaline
activators on the mechanical properties of FA-BGPC under ambient curing conditions.
Their findings demonstrate that as the SS/SH ratio increased from 1.5 to 2, σc declined
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by 5.2%, 7.6%, 7.6%, 10.8%, and 12.8%, respectively, for molarities of 8, 10, 12, 14, and
16. Similar patterns were observed when the SS/SH ratio was increased from 2 to 2.5, as
shown in Figure 18, the figure is adapted from [105]. This result was explained by the
fact that increasing the SS/SH ratio reduces the amount of sodium hydroxide solution
and hydroxide ions (OH-), which reduces the formation of N-A-S-H gels, which is the
main 3D network that directly affects the microstructure of geopolymer concrete, and
thus σc is reduced [148,149]. Similarly, Vora and Dave [102] documented a decrease in
the σc of FA-BGPC as the SS/SH ratio was increased from 2 to 2.5. Furthermore, as the
SS/SH ratio grew from 1.0 to 1.5, 2.0, and 2.5, the σc of fly ash-based geopolymer mortar
decreased [150]. Therefore, it is suggested to use the ratio of SS/SH in the range of 1.5–2.5
for getting FA-BGPC with superior compressive strength.
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4.7. Sodium Hydroxide Concentration (Molarity)

The concentration of sodium hydroxide is one of the critical parameters that affect the
performance of FA-BGPC. Therefore, a wide range of studies has been done to highlight the
effects of this issue. The sodium hydroxide concentration (molarity) ranged from 3 to 20 M,
with an average of 12.05 M, a standard deviation of 2.88 M, a variance of 8.28, a skewness
of 0.00, and kurtosis of −0.44 based on 800 dataset samples collected from prior studies.

An experimental laboratory research work was performed by Hardjito et al. [130]
to demonstrate the influence of different molarities on the σc of FA-BGPC. At a ratio
of SS/SH of 0.4, they found that σc improved by 176% for molarity of 14 M compared
to molarity of 8 M, while, at a molarity of 14 M, this advantage was reduced to 19%
when compared to molarity of 8 M at an SS/SH ratio of 2.5. In the same context, a
research study has been carried out to evaluate the effect of different molarities on the
σc of FA-BGPC. They observed that the σc was improved with the increment in the
molarity of sodium hydroxide. For instance, σc improvement of 40% and 8% was reported
when the concentration of sodium hydroxide changed from 8 M to 12 M and 12 M to
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16 M, correspondingly [62]. This result was credited to an increase in sodium ions in the
geopolymer concrete mixture, which was significant for the geopolymerization process
because sodium ions were used to balance charges and build alumino-silicate networks
from the source binder materials in the geopolymer concrete mixture [125,147]. On the
other hand, at low molarity, the geopolymerization process is small due to the lower
concentration of the base material. Consequently, a small amount of Si and Al are leached
from the source binder materials [151].

Furthermore, Chithambaram et al. [64] did another experimental study to demonstrate
the impacts of different molarities of sodium hydroxide on the mechanical properties of FA-
BGPC. They used four different molarities at different curing temperatures and found that
increasing the molarity promoted σc up to 12 M but decreased beyond that. For example, at
the curing temperature of 90 ◦C and 28 days of age, the σc was 36, 38.5, 42.5, and 40.9 MPa
for 8, 10, 12, and 14 molarities, respectively. Similarly, at 70 ◦C curing temperature, they
reported σc of 33.8, 35.9, 40.5, and 39.4 MPa for 8, 10, 12, and 14 molarities, respectively.
Additionally, they asserted that similar tendencies held true for curing temperatures of
60 and 80 ◦C. Similar results can also be observed in other studies even though different
molarities were used [76,100]. However, Varaprasad et al. [152] claimed that the σc was
improved with increased molarity. For example, they reported that the σc of FA-BGPC was
improved by 8.5%, 14.7%, and 19.2% at 12, 14, and 16 molarities, respectively, compared to
the molarity of 10 M at the age of 28 days with the curing temperature of 60°C. In the same
manner, some other research studies claimed that the σc was improved as the molarity of
sodium hydroxide increased [77,102,111,112].

According to the findings of Aliabdo et al. [68], the σc was increased as the molarity
of sodium hydroxide increased in the FA-BGPC mixture up to 16 M, and then it decreased
as depicted in Figure 19, the figure is adapted from [68]. In addition, they reported that
the optimum concentration of NaOH was 16 M for 48 h of curing at 50°C. Moreover,
Chindaprasirt and Chalee [153] discovered similar results when they employed various
molarities of sodium hydroxide ranging from 8 to 20 M and recorded a maximum σc of
32.2 MPa at 16 M after 28 days of ambient curing. In the same context, a research study was
carried out to demonstrate the influence of different NaOH molarities (10, 13, and 16 M)
on the σc of FA-BGPC at elevated temperatures of 200, 400, 600, and 800°C. According to
their findings, the σc was larger for specimens with higher molarities (13 and 16 M) at all
temperature changes than specimens with 10 M NaOH solutions, as shown in Figure 20, the
figure is adapted from [72]. On the other hand, they discovered that the rate of σc loss after
600 ◦C is also high in FA-BGPC mixtures with higher NaOH solution concentrations [72].
In addition, a study was carried out to see how different molarities of sodium hydroxide
solutions (8, 10, 12, 14, and 16 M) affected the σc of FA-BGPC, and it was observed that the
compressive strength of fly ash-based geopolymer concrete improved as the molarity of
NaOH increased up to 10 M and then decreased, as shown in Figure 21, which is adapted
from [87]. This is due to the fact that while the concentration of sodium hydroxide solution
has a beneficial influence on hydrolysis, dissolution, and condensation processes during the
manufacturing of geopolymer concrete while, overflowing alkali concentration prevents
the condensation of silicate elements [145,146,154].

Finally, Ghafoor et al. [105] looked into the influence of alkaline activators on the
mechanical properties of FA-BGPC when cured at room temperature. Their findings
demonstrate that when the molarity of NaOH increased up to 14 M, the σc of FA-BGPC
increased but then declined. For example, when the molarity of NaOH is changed from 8
to 10 M, 10 to 12 M, and 12 to 14 M, the σc improves by 55.8%, 10.5%, and 33%, respectively.
However, when the concentration of sodium hydroxide increased from 14 M to 16 M, the
compressive strength of the geopolymer concrete mixture decreased by around 9%.

In general, increasing the molarity of sodium hydroxide improves the σc of FA-BGPC
composites, which could be attributed to the complete dissolution of aluminum and silicon
particles during the polymerization process [144]. The larger the molarity of sodium
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hydroxide, the more Al and Si particles dissolve, and as a result, the σc of geopolymer
concrete mixtures increases [155].
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4.8. Curing Condition and Curing Ages

Generally, there are three different curing regimes for curing FA-BGPC composites:
ambient curing, oven curing, and steam curing. The influence of these curing conditions
on the σc of FA-BGPC was discussed in the following paragraph.

In comparison to other curing condition types, the majority of studies used oven
curing conditions to cure the FA-BGPC and it was found that the most commonly utilized
curing temperatures ranged from 60 to 80 ◦C.

Hardjito et al. [130] conducted research to determine the effect of various oven curing
temperatures on the σc of FA-BGPC. Their results revealed that the σc was increased as
the oven curing temperatures increased, as illustrated in Figure 22, the figure is adapted
from [130]. However, this increase in the σc was not significant above the curing tempera-
ture of 60 ◦C. In addition, a study was carried out to demonstrate the impact of various
curing conditions on the mechanical properties of FA-BGPC. At the ages of 3, 7, and 28 days,
the σc of specimens cured under heat curing conditions was higher than that of specimens
treated under ambient curing circumstances, as shown in Figure 23, the figure is adapted
from [85]. For instance, at 90 ◦C oven curing temperature, the 28-day σc of FA-BGPC was
22.1 MPa, but at ambient curing temperature, it was 13.9 MPa [85]. Similar results can be
found in other studies even though different ambient and oven curing temperatures were
used [70,72,75,77,93,100,101,107,111,114].

In a similar vein, Chithambaram et al. [64] discovered that the σc of FA-BGPC in-
creased as oven-cured temperatures climbed up to 90 ◦C and subsequently declined. For
example, when the sodium hydroxide molarity in the concrete mixtures was 8 M, the σc
at 28 days was 32.5, 33.8, 35.4, 36, and 33.9 MPa at 60, 70, 80, 90, and 100 ◦C oven curing
temperatures, respectively. Similar trends were observed for ages 3 and 7 and for NaOH
molarities of 10, 12, and 14 M. Similarly, Vora and Dave [102] found that increasing the
oven curing temperature enhanced the σc of FA-BGPC mixtures. For example, when the
oven curing temperature is increased from 60 to 75 ◦C and 75 to 90 ◦C, the σc increases by
21% and 6.5%, correspondingly.
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Furthermore, an experimental laboratory study was carried out to see how the me-
chanical properties of FA-BGPC composites were affected by ambient and oven curing
conditions. As demonstrated in Figure 24 (this figure is adapted from [93]), it was claimed
that the σc enhancement for specimens cured under oven curing circumstances was larger
than that for specimens cured under ambient curing regimes. This is because as the tem-
perature of the geopolymer concrete specimens rises, the process of geopolymerization
accelerates, and as a consequence, the σc improves [93].
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Similarly, Joseph and Mathew [87] demonstrated that the σc of FA-BGPC increased
with increasing oven curing temperatures up to 100 ◦C and declined thereafter, as illustrated
in Figure 25, the figure is adapted from [87]. Additionally, they stated that this pattern held
true for a variety of alkali solution to fly ash ratios. The drop in σc beyond 100 ◦C was
attributed to moisture loss from the geopolymer concrete samples. Even when adequately
sealed, at temperatures above 100 ◦C, the geopolymer samples may dry out, resulting
in a fall in the σc. Similarly, Thakur and Ghosh [116] and Chindaprasirt et al. [153]
found that increasing the oven curing temperature increased the σc of the geopolymer
concrete composite.
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Furthermore, Hassan et al. [96] investigated the effect of curing conditions on the
mechanical properties of FA-BGPC. They found that the σc of FA-BGPC at 7 and 28 days
was in the range of 10.50–31.11 MPa for heat (75 ◦C) curing regimes, but it was reduced
to 4.5–10 MPa for ambient curing regimes. In addition, they discovered that at 75 ◦C heat
curing, the σc of FA-BGPC increased by 67% to ambient curing conditions after 28 days.
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As illustrated in Figure 26 (adapted from [96]), a similar tendency was seen for varied
ages of geopolymer concrete specimens. In the same vein, a study was done to determine
the effect of ambient, steam, and heat curing conditions on the performance of FA-BGPC
composites. Their findings suggested that the highest σc was obtained under heat curing
conditions, followed by steam curing, and finally under ambient curing conditions. For
instance, at the age of 3 days, the σc was 20.8, 16.7, and 8.75 MPa at heat, steam, and
ambient curing conditions, correspondingly [109]. Another study, on the other hand, was
done to demonstrate the effect of ambient, hot gunny sack, and external exposure curing
regimes on the performance of FA-BGPC. They discovered that external exposure curing
conditions resulted in a greater increase in σc than ambient curing conditions, whereas the
worth curing condition was documented for hot gunny suck curing regimes [113].
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Last but not least, one of the challenges that some researchers address is the period
of curing FA-BGPC specimens within ovens. For example, a study was conducted by
Thakur and Ghosh [116] to determine the effect of various mix compositions on the σc and
microstructures of FA-BGPC composites. They revealed that the σc improved when the
curing time inside the oven was increased at a steady temperature. After 48 h of thermal
curing, the σc of FA-BGPC reached 40.8 MPa. They also discovered that increasing the
curing time did not significantly increase the σc of FA-BGPC, as demonstrated in Figure 27,
the figure is adapted from [116]. Similar results have been reported by Hardjito et al. [130].
On the other hand, Joseph and Mathew [87] declared that as the curing time inside the oven
was increased at a constant temperature, the σc of FA-BGPC was enhanced. This increase
in strength is proportional to the curing period, and a very small increase in strength can
be acquired after 24 h, as illustrated in Figure 28, the figure is adapted from [87]. This
result may be explained by the fact that most of the geopolymerization process occurs
within 24 h.
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5. Research Needs

Studies on the various properties of fly ash-based geopolymer concrete composites
are a thriving field with both outstanding intellectual merits and significant broader impli-
cations. More fundamental research on the potential of this type of sustainable concrete
composite is currently needed to broaden scholars’ horizons and to be used by the con-
struction industry. The objective is to develop a mechanistic understanding of FA-BGPCs’
rheological, hydration, or polymerization process and in-service behaviors. Detailed lab-
oratory and field investigations are needed to gather a massive amount of data on the
engineering properties of FA-BGPC composites and their durability in various service envi-
ronments and lay the groundwork for their specification and use by practicing engineers.

A variety of codes and standards governs traditional concrete. These relationships
between strengths are based on a wealth of data on various engineering properties and
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developed over decades. Geopolymer concrete has been studied less extensively than
traditional concrete, and quantitative data on its durability and mechanical properties are
lacking. However, Mohammed et al. [19] developed empirical equations for geopolymer
concrete composites, but their equations were designed for a wide range of data with
different source binder materials, curing conditions, and various mixture proportion pa-
rameters; therefore, it is suggested to develop equations for predicting the most important
mechanical properties of geopolymer concrete such as splitting tensile strength, flexural
strength, and modulus elasticity based on their compressive strength results. This issue
needs a considerable amount of data in the same condition because, unlike conventional
concrete, geopolymer concrete is affected by a wide range of parameters as discussed in
detail in this study.

Geopolymer concrete is a technique that is rarely used in large-scale engineering
projects, while it is mostly accepted and familiar in academic and research circles. There
are barriers to industrial application, such as geopolymers using various raw materials,
and developing and certifying the raw materials requires significant investment. The
construction and manufacturing industries are conservative in their approach to product
adoption. In developed countries, particular performance standards for the binder are in
place. As a result, products such as geopolymer concrete may not be entirely acceptable,
as geopolymer concrete does not fully comply with regulatory standards, most notably
in terms of rheology and chemical composition. This can be a significant impediment to
geopolymer concrete adoption. Further, there is a shortage of research on the mechanical
properties of FA-BGPC at room temperature. Thus, additional studies at ambient tem-
perature are required to ensure that the FA-BGPC can be used extensively in cast-in-situ
concrete applications.

A few researchers have proposed some changes to the existing traditional concrete
mix design for geopolymer concrete. However, it is necessary to establish an optimal mix
proportioning and design for geopolymer concrete for getting the required compressive
strength of FA-BGPC like ACI 211 [156]; thus, standardization of testing methods, tech-
nical indicators, and performance-based specifications directly applicable to geopolymer
products are essential works that needs further efforts, and further research into the new
application area and the establishment of an evaluation system for geopolymer-related
products are required. On the other hand, there are studies available on the effect of
curing temperature, curing duration, rest period, the molarity of NaOH, and the ratio
of Na2SiO3/NaOH on the properties of geopolymer concrete. However, the optimal val-
ues for these parameters must be determined in order to achieve the desired level of
FA-BGPC strength.

Geopolymerization involves a complex chemical process and our understanding of
it is still developing. Therefore, it is recommended to conduct more and more studies to
clarify the geopolymerisation process as well as the polymerization products, which are
the main issues that govern the compressive strength of geopolymer concrete composites.

Last but not least, it is essential for studies to be carried out to investigate materi-
als properties of geopolymer composites such as nonlinear viscoelastic-viscoplastic with
hardening-relaxation constitutive relationship for geopolymer mixtures as these issues
were successfully studied for asphalt mixtures [157,158]. In addition, trying to improve ma-
terials properties by adding newly developed additives such as styrene-butadiene-styrene
(SBS) or Evotherm-M1 is one of the other essential works that researchers in this field
should adequately investigate, because these additives were significantly improved engi-
neering properties of asphaltic mixtures [159]. Furthermore, geopolymer concrete behavior
in multi-axial stress states, stiffness degradation, and recovery should be studied further
to better understand the structural behavior of geopolymer concrete. Finally, geopolymer
concrete is a brittle material with low tensile strength, just like conventional concrete. This
issue was adequately and extensively studied for traditional concrete by using steel bars
and various types of fibers [160], while more research is essential in the case of FA-BGPC.
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6. Discussion

I. As a result of the above systematic comprehensive review of the literature, geopoly-
mer concrete can be defined as cementless concrete that uses industrial or agro
by-product ashes as the main binder instead of ordinary Portland cement, making
it an eco-efficient and environmentally friendly construction material. This type
of concrete is affected by many mixed proportion parameters as well as curing
conditions. Further, this type of concrete reduces energy consumption, waste
disposal, and construction cost.

II. The alkaline solution to binder ratio (l/b) is the sum of sodium hydroxide and
sodium silicate content to the entire weight or volume of the fly ash or other source
binder materials in the mixture proportions of the geopolymer concrete mixtures.
This ratio has a considerable impact on the σc of the FA-BGPC. According to several
studies, the σc improved as the l/b increased up to a certain point, then dropped.
However, on the other hand, some researchers noticed a decrease in σc as the l/b
was raised. Decreasing l/b ratio will lead to accelerating in the alkaline activation
process of FA-BGPC due to the decrease of consistency of the geopolymer concrete
mixture, and in this case, the calcium aluminate silicate hydrate (C-A-S-H) gel
and sodium aluminate silicate hydrate (N-A-S-H) gel can be generated quickly
in the geopolymer concrete mixture, and as a consequence participated in the
development of early-age σc of FA-BGPC. Therefore, it is suggested to use the ratio
of l/b in the range of 0.35 to 0.55 for getting an FA-BGPC mixture with the required
workability and strength.

III. Superplasticizer and water content are two key parameters that govern the worka-
bility behavior of the FA-BGPC and hence affect the hardened characteristics of the
geopolymer concrete. Like conventional concrete, increasing water content or extra
water to the FA-BGPC will lead to decreasing the σc of the geopolymer concrete.
This is due to water evaporation in the geopolymer concrete mixture, which results
in the formation of pores and cavities within the geopolymer concrete matrix as
the geopolymer concrete specimens cure at high temperatures within ovens. Fur-
thermore, excess water may affect the alkalinity environment of the fly ash-based
geopolymer concrete matrix, thereby slowing the polymerization process between
the alkaline and source materials. While the addition of a superplasticizer increases
the σc of FA-BGPC composites up to a point, and it has a detrimental influence on
σc above that point.

IV. Fly ash is one of the most common types of source material binders to produce
geopolymer concrete composites. The amount of fly ash content in the geopolymer
concrete mixture influences the composite’s σc. As the fly ash content increased in
the geopolymer concrete mixture, the σc was improved. This is because the higher
content of fly ash in the geopolymer concrete mixture gives a denser and compacted
microstructure to the geopolymer concrete matrix. Moreover, the particles of fly
ash facilitate movement among the aggregate particles owing to the spherical
shape and smooth surface of the particles of fly ash; on the other hand, the volume
of fine fraction particles in the geopolymer concrete matrix increased as the fly ash
content increased, thus, in turn, fill the voids and pores between the aggregate
particles and hence σc was improved. In addition, fly ash is the main source of
aluminosilicate source materials in the geopolymer concrete mixture, which silica
and alumina increase as the amount of fly ash content increases; thus, they affect
the reactions in the polymerization process, which, in turn, increased C-A-S-H and
N-A-S-H gels, and finally, σc was improved.

V. Fine and coarse aggregates have the same effect on the performance of geopolymer
concrete mixtures as they do on conventional concrete mixtures. As a result, it was
proposed that good aggregate quality be used to make good geopolymer concrete
composites and that roughly 65–75% aggregate content be used to make 1.0 m3

of FA-BGPC.
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VI. The amount of alkaline solution and the ratio of sodium silicate to sodium hydrox-
ide (SS/SH) considerably affect the σc of FA-BGPC. The σc of FA-BGPC increases
as the ratio of SS/SH increases up to a limited amount; this increase in the σc
is due to the improvement in the microstructure of geopolymer concrete at the
required quantity of sodium silicates content, while, at a high ratio of SS/SH,
reduction in the σc happened due to the fact that there is not a sufficient amount
of sodium hydroxide present in the mixture to completion of dissolution process
during the formation of geopolymer or due to the excess OH- concentration in
the geopolymer concrete mixture. On the other hand, the excess of the sodium
content can form sodium carbonate by atmospheric carbonation, and this may
disrupt the polymerization process, and as a result, σc was decreased. Therefore, it
is suggested to use the ratio of SS/SH in the range of 1.5–2.5 for getting FA-BGPC
with superior σc.

VII. The value of the concentration of sodium hydroxide solution has an appreciable
effect on the σc of FA-BGPC. Because it leads to increased sodium ions in the
geopolymer concrete mixture, which was significant for the polymerization pro-
cess, sodium ions were used to balance the charges and formed alumino-silicate
networks as a source materials binder in the geopolymer concrete mixture. There-
fore, it was suggested to use the molarity of sodium hydroxide in the range of
10–16 M to produce the FA-BGPC mixtures with acceptable σc behavior.

VIII. The σc of FA-BGPC is significantly affected by the curing temperature and duration.
Longer curing time and curing at high temperatures (50–100 ◦C) increases the σc of
FA-BGPC, although the increase in strength may be insignificant for curing at more
than 60 ◦C and for periods longer than 48 h. Therefore, for heat curing regimes,
temperatures between 50–80°C and curing time of 24 h are widely accepted values
for a successful polymerization process. In addition, among the curing condition
methods (oven, steam, and ambient), oven curing techniques better influence the
σc of FA-BGPC composites.

7. Conclusions

Based on the extensive literature review and discussions made in this study, the
following conclusions can be reached:

I. Geopolymer concrete with acceptable σc values could be produced by using fly
ash as source binder materials.

II. The alkaline solution to the binder ratio (l/b) significantly impacts the σc of the
FA-BGPC. Some researchers believe that the σc was improved as the l/b increased.
At the same time, the reduction in the σc was reported by many researchers as the
l/b was increased.

III. Increasing water content or extra water in the FA-BGPC will decrease the σc of the
geopolymer concrete. In comparison, superplasticizer content improves σc of the
FA-BGPC composites up to a limited value of around 2.5% of fly ash content.

IV. The σc of FA-BGPC increases as the ratio of SS/SH increases up to around 2.5,
then decreases.

V. It was suggested to use the molarity of sodium hydroxide in the range of 10–16 M
to produce the FA-BGPC mixtures with acceptable σc behavior.

VI. Among the curing methods, the heat curing regime is the best one for getting early
and high σc in FA-BGPC.

VII. It was suggested to use the oven curing temperatures between 50–80 ◦C and curing
time of 24 h for a successful polymerization process and getting acceptable σc
in FA-BGPC.

Recommendation: Detailed investigations on fly ash-based geopolymer concrete’s fresh
and mechanical properties can be found in the literature. However, studies which are
focused on the other properties of this composite are still limited. For this composite
to be acceptable by the construction industry, some durability properties such as water
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permeability, gas permeability, chloride resistance, and freeze-thaw resistance should be
examined comprehensively. Finally, the fatigue performance of fly ash-based geopolymer
concrete needs more research and experimental investigations.
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