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Abstract: Remote sensing is the main technical means for urban researchers and planners to effec-
tively observe targeted urban areas. Generally, it is difficult for only one image to cover a whole
urban area and one image cannot support the demands of urban planning tasks for spatial statistical
analysis of a whole city. Therefore, people often artificially find multiple images with complementary
regions in an urban area on the premise of meeting the basic requirements for resolution, cloudiness,
and timeliness. However, with the rapid increase of remote sensing satellites and data in recent
years, time-consuming and low performance manual filter results have become more and more unac-
ceptable. Therefore, the issue of efficiently and automatically selecting an optimal image collection
from massive image data to meet individual demands of whole urban observation has become an
urgent problem. To solve this problem, this paper proposes a large-area full-coverage remote sensing
image collection filtering algorithm for individual demands (LFCF-ID). This algorithm achieves a
new image filtering mode and solves the difficult problem of selecting a full-coverage remote sensing
image collection from a vast amount of data. Additionally, this is the first study to achieve full-
coverage image filtering that considers user preferences concerning spatial resolution, timeliness, and
cloud percentage. The algorithm first quantitatively models demand indicators, such as cloudiness,
timeliness, resolution, and coverage, and then coarsely filters the image collection according to the
ranking of model scores to meet the different needs of different users for images. Then, relying on
map gridding, the image collection is genetically optimized for individuals using a genetic algorithm
(GA), which can quickly remove redundant images from the image collection to produce the final
filtering result according to the fitness score. The proposed method is compared with manual filtering
and greedy retrieval to verify its computing speed and filtering effect. The experiments show that
the proposed method has great speed advantages over traditional methods and exceeds the results
of manual filtering in terms of filtering effect.

Keywords: remote sensing image; filtering algorithm; individual demand; urban planning;
genetic algorithm

1. Introduction

To meet the needs of urban planning, land surveying, and other applications for
large-scale regional observation, remote sensing with high spatial, temporal, and spectral
resolutions is rapidly developing [1] and several countries have established relatively
adequate satellites for ground observation; these satellites include the Landsat series of
satellites and the moderate-resolution imaging spectroradiometer (MODIS) sensors on
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board the Terra and Aqua satellites launched by the U.S.; the WorldView series of high-
resolution satellites; the Satellite pour l’Observation de la Terre (SPOT)-series satellites;
Japan’s Advanced Land Observing Satellite (ALOS); and China’s GaoFen-series, HuanJing-
series, and ZiYuan-series satellites. With the launch and use of various satellites, the
amount of remote sensing data available has grown exponentially. For example, the
GaoFen-2 satellite alone has collected more than two million scenes since its launch in
2014 [2]. Because of the multitude of remote sensing images, the development of efficient
organization and storage methods, especially methods for retrieval, has become an urgent
problem for remote sensing ground systems.

Remote sensing images are currently widely used in various applications for urban
study and planning, such as road planning, real-time monitoring, and landcover survey.
The general process is that users retrieve all image collections according to the delineated
area, manually select the image subset that can fully cover the area of interest, and, with
further processing, finally complete applications by mosaicking the images into a full-
coverage image [3,4]. However, with the explosive growth of remote sensing image
data, the traditional manual image selection mode has difficulty meeting the current
demands of tasks to select the optimal image collection from thousands or even hundreds
of thousands of candidate images [5]. Additionally, according to different demands from
different applications, users have different preferences for selecting image collections;
these preferences may differ in terms of timeliness, cloudiness, spatial resolution, etc. For
example, land and resource surveys of a very large urban require remote sensing images
that have high coverage, but the spatial resolution of these images does not have to be very
high [6]. However, in the task of urban detail monitoring, the spatial resolution becomes
the most important factor. When faced with problems such as global mapping or extracting
large impervious surfaces, image filtering based on image quality and coverage is usually
an unavoidable step [7,8]. In addition, image filtering is important to remote sensing
distribution websites, such as United States Geological Survey (USGS) Explorer, when the
retrieval task involves many images. Detecting illegal buildings requires images to have
relatively high timeliness and spatial resolution [9]. In summary, because of the multitude
of remote sensing data, there is an urgent need to find a method for image collection
filtering that can automatically and quickly extract a subset of remote sensing images that
meet users’ individual demands (concerning cloudiness, timeliness, and resolution) with
few redundant images, while ensuring full area coverage.

In view of the above problems, this paper proposes a large-area full-coverage remote
sensing image collection filtering algorithm for individual demands (LFCF-ID). Under
the premise of full coverage through an image collection containing a minimum number
of images, automatic filtering is accomplished by optimizing a genetic algorithm (GA)
according to different users’ needs for image quality, area coverage, image timeliness, etc.
Additionally, this method maximizes the offline loop computing processes and designs
multiple optimization methods, thereby greatly improving the algorithm’s operating speed.

The main contributions of this paper are as follows:
We propose a new mode for remote sensing image collection filtering that aims to

tackle the difficult problems faced by different urban researchers and planners when
searching for image collections that fully cover the area of interest while considering
different demands for spatial resolution, timeliness and image quality.

Focusing on the above mode, we propose the LFCF-ID, which can fully cover the
interest area by using the smallest number of remote sensing images while satisfying users’
demands concerning spatial resolution, timeliness, and image quality.

By using a greedy algorithm, we conduct a series of contrast experiments that focus
on different study areas. The experimental results show that the proposed method is
robust and, compared to existing methods, obtains better filtering results. Additionally,
this method has great speed advantages over the manual filtering method.
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2. Related Work

Current research on image filtering focuses mainly on retrieving image slices from
massive images that are similar in land cover to input images; this research includes studies
by Akshara [10], Liu [11], and Li [12]. The fundamental purpose of the abovementioned
remote sensing image retrieval work was to analyze and retrieve images containing similar
scenes. However, the above methods cannot solve the problem presented by users that
filter images according to coverage, resolution, timeliness, etc.

Other scholars have conducted some research on remote sensing data filtering based
on image attributes. Li proposed an image pyramid-oriented spatial indexing algorithm
based on a linear quadtree; this algorithm improved the efficiency of coding and retrieving
single-view images [13]. Xie designed a remote sensing image catalog data description
framework and, based on this framework, designed an efficient catalog data storage
organization scheme and positioning retrieval, qualitative retrieval, and combined retrieval
algorithms to solve the problem of achieving fast and accurate image localization under
distributed storage [14]. However, the studies by these scholars focused on parallelism
and indexing mainly at the data level. Area coverage and filtering of image collections
to meet individual demands still require manual intervention. There is still no solution
for meeting these key issues of full coverage and the satisfaction of demands. Egenhofer
studied the sketch spatial data retrieval method [15]; Lee proposed a visual query based
on topological relationships in GIS [16]; and Shekhar, Volker, Gaede, and others studied
information retrieval related to spatial information [17,18].

To date, few studies have focused on satisfying both full coverage and individual
demands in remote sensing data filtering. He proposed a single-phase full-coverage
filtering algorithm for remote sensing images [19]. Although this algorithm could complete
full coverage of a given area, the algorithm did not consider factors such as cloudiness
and resolution. Thus, it was difficult to obtain satisfactory results using this algorithm.
Zuo started from remote sensing tiled data and conducted data filtering in units of tiles. A
full-coverage retrieval model was designed, but this model still required manual review
and interactive filtering of the results, which could not avoid the problem of low efficiency
when the search area or the amount of data was large [5]. Li proposed a data set filtering
model for optimal remote sensing image area coverage [20]. This model normalized the
user-defined cloud range, time range, sensor type, and resolution. The score of each image
on a regular grid was calculated, and the image with the highest score on each grid was
selected as the filtering result. The filtering results of this model did not consider the image
overlap ratio, so the filtered image collections were very repetitive.

Currently, the public can obtain remote sensing images for free from some websites
(e.g., USGS Earth Explorer, the European Space Agency (ESA)’s sentinel mission, and the
National Aeronautics and Space Administration (NASA)’s Reverb); these websites can also
simply filter images according to cloud cover, latitude and longitude, and other conditions.
However, unlike the proposed method, inputting cloud cover and latitude and longitude
in the website for retrieval will enable hundreds, or even more, qualified images to be
obtained, and images will greatly overlap. Users who want to achieve full coverage of very
large areas by selecting multiple remote sensing images still cannot avoid the problem of
selecting spatially complementary images from many images that the website filters. Even
if several complementary images are selected to fully cover the area, there is no guarantee
that, compared with other highly overlapping images, the image at this time is of relatively
good quality.

In summary, there is currently no mature image collection filtering method that can
both achieve full-coverage and satisfy the different demands of users.

3. Proposed Method

The workflow of the LFCF-ID proposed in this study is shown in Figure 1. This
framework includes four main steps: obtaining the image collection to be filtered; fast,
coarse filtering of the image collection; executing a genetic filtering algorithm; and result
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optimization. Generally, attributes such as cloudiness, location, and time vary greatly
among remote sensing images. Most of the images that are available cannot satisfy users’
specific demands. Thus, in the first step, it is necessary to obtain an image collection that is
worth filtering by removing many redundant images according to the user’s specific preset
area, time interval, and minimum thresholds for cloudiness and resolution. The output
is used as the image collection to be filtered to ensure that any image in the collection
can meet the basic needs of users. Then, fast, coarse filtering of the image collection is
performed. In this step, a score is designed, mainly in grid units, that can represent how
well the image collections satisfy the user’s demands. Images with the top k scores in each
grid are selected as the result of coarse filtering. Next, the GA is used to further filter the
coarse filtering results according to the fitness score, which can provide a comprehensive
expression of the user’s demand satisfaction and coverage, and the optimal full-coverage
image collection result filtered to meet the individual demands is obtained. Finally, the final
image collection result is obtained by result optimization, which is conducted to slightly
change the optimal full-coverage image collection result by adding or subtracting a few
images.

The blue area in Figure 1 is the area preset by the user, and the yellow rectangles are the
boundaries of each remote sensing image. The figure shows that with the implementation
of each step, the filtered image collection becomes increasingly optimal.

Figure 1. Workflow for the LFCF-ID.
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Considering that the image collection filtering algorithm needs to meet the individual
demands of different users, mathematical modeling of the requirements is essential. The
user’s demands are reflected mainly in terms of cloudiness, resolution, and timeliness, and
this paper uses a weighted triplet to model the user demands.

Modeluser =
{

Wgsd, Wcloud, Wtime

}
(1)

Wgsd, Wcloud, and Wtime are the input weights preset by the user. Wgsd indicates the
user’s demand weight for the spatial resolution of the image. A larger value of Wgsd
indicates that the user prefers images with a higher resolution in the filtering result. Wcloud
indicates the user’s demand for image cloudiness. A larger value of Wcloud indicates that
the user prefers images with fewer clouds in the filtering result. The weight of Wtime
indicates the user’s demand for the timeliness of the image. The larger the value, the more
the user hopes to obtain images in the filtering results that are close to the deadline selected
by the user themselves.

3.1. Obtaining the Image Collection to Be Filtered

In this method, we first need to predefine several required parameters in the filtering
workflow, as shown in Table 1:

Table 1. Definition of the preset parameters.

Parameter Definition

Target_Area Specific area preset by users. The goal of the LFCF-ID is to filter and
obtain the full-coverage image collection of this area

Tstart,Tend The time interval is preset by users to obtain the images to be filtered
GSDmin The lowest image resolution that the user can accept in the filter result

Cloudmax The highest image cloudiness that the user can accept in the filtered result
Coveragemin The lowest coverage that the user can accept

Wgsd The user’s demand weight for the spatial resolution of the image
Wcloud The user’s demand weight for the image cloudiness
Wtime The user’s demand weight for the timeliness of the image

In this step, all the images available are used as the input data, which can be thousands
of scenes. We obtain the images that can satisfy the preset parameters Target_Area, Tstart,
Tend, GSDmin, and Cloudmax as the initial image collection, which will be filtered in the
next steps. The initial image collection to be filtered is denoted by I_ori = {I1, I2, . . .}. I_ori
is used as the input of the fast, coarse filtering step, which performs a further filtering
operation according to Wgsd, Wcloud, and Wtime.

3.2. Fast, Coarse Filtering of the Image Collection

In this step, we conduct a coarse filtering of I_ori by designing a series of standard
scores consisting of Wgsd, Wcloud, and Wtime. A subset of I_ori = {I1, I2, . . .} can be obtained
as the output, which will be used as the input of the GA in the next step.

3.2.1. Creation of Global Grids

In this paper, coarse filtering and genetic filtering algorithms need to calculate several
scores to rank images by using the grid as the computing unit. Large grids may cause
fineness errors due to excessively large benchmarks, and small grids will be too fragmented
and thus can result in many calculations, so the grid size should be as reasonable as
possible. In the experiment, we divide the grid according to different standards such as
0.01◦ × 0.01◦, 0.05◦ × 0.05◦, 0.1◦ × 0.1◦, 0.3◦ × 0.3◦, and 0.5◦ × 0.5◦. We find that among
these standards, 0.1◦ × 0.1◦ works best. Therefore, we use 0.1◦ × 0.1◦ in all experiments.
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3.2.2. Coarse Filtering Based on Grids

First, we calculate the grids denoted by g = {g1, g2, . . . , gi, . . . , gn}(i = 1, 2, . . . , n),
which can cover the Target_Area preset by the user. Then, we search for the images denoted
by I_orii = {I_ori ∩ gi}, which cover gi in I_ori. Because I_orii contains many images,
only a few images belong to the optimal image collection that meets the user’s demands.
It is inappropriate to use all images in I_ori as the input of the GA, as doing so can cause
data redundancy. Data redundancy may make it difficult for the GA to converge in the
next step and also reduces the calculation efficiency of the GA. Thus, to reduce the number
of images to be filtered by the GA, an image scoring formula SI is designed to calculate the
satisfaction of the user’s demands by each image in this paper. SI is calculated as

SI = Wgsd × Sgsd + Wcloud × Scloud + Wtime × Stime (2)

Wgsd + Wcloud + Wtime = 1, 0 ≤Wgsd ≤ 1, 0 ≤Wcloud ≤ 1, 0 ≤Wtime ≤ 1 (3)

where Sgsd is the resolution score of the remote sensing image, Scloud is the cloudiness score
of the remote sensing image, and Stime is the timeliness score of the remote sensing image.
Sgsd is calculated as follows:

Sgsd =
gsdmax − gsdpresent

gsdmax − gsdmin
, (4)

where gsdmax is the highest resolution of all images in I_ori, gsdmin is the lowest resolution
of all images in I_ori, and gsdpresent is the resolution of the image to be calculated.

Scloud is calculated as follows:

Scloud =
Cmax − Cpresent

Cmax − Cmin
, (5)

where Cmax represents the theoretical maximum value of the image cloudiness (this value is
actually 100%), Cmin represents the theoretical minimum value of the image cloudiness (this
value is actually 0%), and Cpresent represents the cloudiness of the image to be calculated.

Stime is calculated as follows:

Stime =
Tpresent − Tstart

Tend − Tstart
(6)

where Tstart and Tend are defined in Table 1 and Tpresent represents the image shooting,
which is calculated in days.

The formula for SI can be used to calculate the score of each image under the user’s
demands, which are modeled by Modeluser =

{
Wgsd, Wcloud, Wtime

}
. The best k images are

selected as the coarse filtering result of each grid gi by ranking the SI values of the images
in I_orii; the best k images of all grids are then merged together as the final coarse filtering
result of the Target_Area; this result is denoted by I = {I1, I2, . . . Ii, . . . , Im}, m ≤ n ∗ k,
where n is the number of grids that can fully cover the Target_Area.

The coarse filtering method above can quickly remove many images, thereby pro-
ducing a result that can satisfy the preset parameters Target_Area, Tstart, Tend, GSDmin,
and Cloudmax, but is not suitable enough for the final result of the LFCF-ID. After coarse
filtering, the number of images in the image collection is reduced to the same magnitude as
the number of grids n, thus possibly greatly improving the efficiency of the GA algorithm.

3.3. Further Filtering by the Genetic Algorithm

The ultimate purpose of the filtering task in this paper is to obtain an image collection
containing the fewest images that can exactly fully cover the Target_Area specified by
the user while best satisfying the user’s demands. Since each image usually covers more
than one grid, we select the k best images in each grid as the output of the coarse filtering;
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this selection will result in a high level of overlap between images. Many images are
unnecessary and the image collection is still redundant. Therefore, it is time to find
an optimization method to select the best combination of images as the optimal image
collection that can meet the full-coverage requirement and the lowest repeated coverage
requirement.

As a well-known search and optimization method, the GA has been successfully
applied to intelligent optimization problems in various remote sensing applications, such
as image classification [21–23], image segmentation [24], feature extraction [25–27], and
quantitative inversion [28,29]. The quasi code for a GA is Algorithm 1.

Algorithm 1 Genetic Algorithm.

Input: Pc: possibility of cross
Pm: possibility of mutation
m: the number of genes in a population
Output: optimal population
1: initialize population including m genes
2: calculate the fitness score for each gene
3: repeat
4: select m genes from population by using the roulette method
5: if(random(0,1) < Pc)
{

select two genes randomly
cross between the two selected genes

}
6: if(random(0,1) < Pm)

{
select one gene randomly
mutation for this selected gene

}
7: calculate fitness score for each gene
8: until(reaches stop condition)

Inspired by the GA, this study uses a grid as the calculation unit to calculate the
fitness score, which can model the image collection’s state of coverage and satisfaction of
personalized demands. The GA is used to continuously optimize the fitness score to obtain
the optimal filtering results. In this algorithm, the input form and fitness functions should
be defined according to the problem. The unit of the input is called the chromosome in the
GA; this input can be a solution to the problem. In this paper, the chromosome refers to an
image collection. The chromosome is composed of many genes that can be represented
in binary, and refers to the images in the image collection. At the beginning of the GA, a
population is formed by randomly generating multiple possible chromosomes. Biological
selection, crossover, and mutation operations of the population are used to simulate the
biological genetic evolution and achieve the next-generation population according to a
preset fitness function. The higher the chromosome’s fitness score, which is calculated
by the fitness function, the higher the probability of saving the chromosome for the next
generation. Therefore, the fitness score of the chromosome can improve generation-by-
generation. Eventually, the chromosome with the best fitness score is obtained as the final
optimization result.

3.3.1. Population Initialization

First, we need to define the meaning of a chromosome in the GA according to the
problem to be solved in this paper and generate an initial population. Since the final result
of the LFCF-ID is an image collection, we define the chromosome as an image collection,
which is denoted by Gj.

Gi =
{

A1, A2, . . . , Aj, . . . , Am
}
(Aj = 0 or Aj = 1) (7)
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The variable m, which denotes the number of images in the coarse filtering result,
is set to the length of Gj. The h-th gene Ah = 0 indicates that image collection Gj does
not include the h-th image in the coarse filtering result, and Ah = 1 indicates that image
collection Gj includes the h-th image in the coarse filtering result. The coding method for
an image collection is shown in Figure 2.

Figure 2. Coding method for an image collection.

After randomly generating multiple binary codes of length m, we can form the
initialization population. In this paper, we set P, which denotes the number of image
collections in the population, to an empirical value of 10.

P = {G1, G2, . . . , G10}, (8)

3.3.2. Fitness Score Function

The second important process of the GA is to design a reasonable fitness function to
describe the satisfaction of each image collection Gj in terms of coverage and user demands,
which are denoted by SGj . In this paper, we use a grid as the computing unit to calculate
the fitness score of the image collection.

To obtain SGj , we first need to define Sgi , which denotes the fitness function of the
image collection on each grid gi. Since usually more than one image can cover grid gi in Gj
in most cases, we calculate the SI (Equation (2)) of all images that can cover grid gi in Gj
and take the highest score as Sgi . The calculation formula for Sgi is as follows:

Sgi = max
Ii∩gj 6=∅

SIi × Ai (9)

where Ij ∩ gi 6= ∅ indicates that the intersection of the j-th image and the i-th grid is not
empty. Then, we need to define the fitness function SGj of the image collection. Considering
that the fitness score is related to more than the satisfaction of the user’s demands, the
coverage also has a certain impact. We define the parameter OL to represent the coverage
of image collection Gj over the Target_Area. OL is calculated as follows:

OL =


cr cr < 1
nGrids

∑
i=1

cti

nGrids
cr = 1

, cr =
nGridsO f Covered

nGrids
(10)

where cr denotes the coverage rate, nGridsO f Covered denotes the number of grids covered by
the image, cti denotes the number of times the i-th grid is covered by the image, and nGrids
denotes the number of grids in the administrative area.

A value of less than 1 for OL indicates that the Target_Area cannot be completely
covered by Gj; a value of 1 for OL indicates that the Target_Area is completely covered
by Gj; and a value larger than 1 for OL indicates the number of layers that repeatedly
cover the Target_Area. Commonsensically, when OL is equal to 1, Gj can cover only the
Target_Area without redundancy, and SGj should be the largest at this time. When OL is
greater than 1, SGj will decrease by a multiple. When OL is less than 1, Gj cannot completely
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cover the Target_Area; users cannot tolerate the lack of coverage. Considering the above
characteristics, SGj is calculated as follows:

SG =

 (
n
∑

i=1
Sgi )× 1

OL + 1 i f (OL ≥ 1)

2−
1

OL i f (OL < 1)
, (11)

The above formula shows that when OL = 1, SGj is equal to adding 1 to the scores of
all grids Sgi . Bias 1 is added to ensure that the score for full coverage is greater than the
score for incomplete coverage.

After the population is initialized by the GA, reproduction, crossover, and mutation
are carried out to simulate the inheritance process to obtain the best gene.

We iterate the selection, crossover, and mutation steps until convergence is reached.
The condition for convergence is set as the highest fitness score of the image collection
not changing for fifty iterations. In Figure 3, the red line means that although the preset
threshold is not reached, as the generation increases, the fitness score changes by less than
0.1 after 50 iterations. This means that the algorithm has converged and the current optimal
image collection can be the final result.

Figure 3. Termination condition for the GA.

3.4. Filtering Result Optimization

Through the above steps, the optimal image collection in the last population can be
obtained; this collection is denoted by Gbest. Although the GA can guarantee evolution to a
better population, there are some small flaws, which are generally caused by one or two
redundant images. Therefore, we need to optimize the structure of Gbest. The optimization
involves traversing each gene Aj in Gbest. When Aj = 1, Aj will be set to 0 to generate a
new chromosome Gbestnew . If SGbest is then increased, the new chromosome Gbestnew will be
replaced with Gbest until there is no further increase in SGbest . Gbest is then the final image
collection filtering result.

4. Implementation and Performance Analysis
4.1. Experimental Region

Different levels of government urban planning departments need to observe regions
of different scales. Provincial governments need to observe and conduct spatial statistical
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analysis on the whole province, and urban planning departments at the city level are
concerned with whole cities. In order to verify the accuracy and efficiency of the LFCF-ID
for different levels of administrative regions, the experiment used multiple administrative
regions in China as experimental regions, including Shijiazhuang (medium city), Beijing
(large city), and Hebei (province), which are shown in Figure 4.
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4.2. Data
4.2.1. Data Source

To effectively verify the ability of the LFCF-ID to filter image collections, the data used
in the experiment should be as diverse as possible. Therefore, data from multiple satellites
was selected; the main satellites selected include GaoFen, ZiYuan, and Jilin, which use
multispectral, synthetic-aperture radar (SAR), hyperspectral, and other sensor types with
spatial resolutions from sub-meter to hundreds of meters and widths from 5 km to 720 km.
Detailed information is shown in Table 2.

Table 2. Information on the images used.

Name of Satellite Sensor Type Resolution Width

GaoFen1 Multispectral 2/8 m 60 km
GaoFen2 Multispectral 1/4 m 45 km
GaoFen3 SAR 1–500 m 5–650 km
GaoFen4 Multispectral/infrared 50/400 m 400 km

ZiYuan3-02C Multispectral 5/10 m 51 km
ZiYuan3 Multispectral 2.1 m 51 km

ZiYuan-CB04 Multispectral 2.36 m 113 km
Huanjing-1A Multispectral/hyperspectral 30/100 m 360/50 km
Huanjing-1B Multispectral/infrared 30/300 m 360/720 km
TRIPLESAT1 Multispectral 0.8/3.2 m 51 km
TRIPLESAT2 Multispectral 0.8 m/3.2 m 51 km
TRIPLESAT3 Multispectral 0.8 m/3.2 m 51 km

LANDSAT8-L1TP Multispectral/infrared 15/30/100 m 185 km
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In this paper, we selected 111,414 images from the above satellites within the time
range of 2008 to 2018. We calculated the statistics of the data from the satellites and sensors;
these statistics are shown in Figure 5.

Figure 5. Statistics of the number of images for different satellites and sensors.

4.2.2. Image Data Distribution of Different Types and Regions

To more intuitively describe the distribution of data, we statistically distributed the
data in three aspects: time, resolution, and cloudiness. Figure 6a shows the statistics of
the images in terms of four levels: cloudless, low cloudiness, medium cloudiness, and
high cloudiness. The number of cloudless images is the largest, and the number of images
decreases with increasing cloudiness. Figure 6b shows the statistics of the number of
images at different spatial resolutions. Although there is a certain difference in the amount
of data in each section, there are enough images in each section. Figure 6c shows the
statistics of the amount of image data for each year from 2008 to 2018 in units of years.
This image collection covers all years and is concentrated from 2015–2017. To verify the
applicability of the proposed method in different regions, this paper selected three areas of
different sizes as experimental areas: Shijiazhuang, Beijing, and Hebei; additionally, we
statistically analyzed the data distributions of different areas. Figure 6d shows that the
number of images is proportional to the area of the region, and the image data for each area
are sufficient. In summary, the distribution of the data used in the experiment in different
types and regions is sufficient and is thus able to support the verification of this study.
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Figure 6. (a) Statistics on cloudiness, (b) Statistics on resolution, (c) Statistics on timeliness, and (d)
Statistics on study area.

4.3. Experiment and Analysis

To fully verify the accuracy, robustness, and efficiency of the proposed method, multi-
ple experiments were designed from different perspectives. First, the top k images were
selected for each grid during coarse filtering; this selection can directly affect the efficiency
of the algorithm by affecting the length of the chromosome. This paper compared ex-
periments with different k values. Then, under the optimal k value, experiments were
performed in different regions, with different numbers of images to be filtered, and differ-
ent weights of users’ demands. Designing experiments using different regions can verify
the robustness of the algorithm. Experiments using different numbers of images to be
filtered can directly verify the speed of the algorithm. Designing experiments with different
demands can verify whether the proposed method can meet the users’ individual demands.
In addition, this article also designed experiments to compare this method with manual
methods and other algorithms to verify the superiority of the proposed method.

4.3.1. Experiments in Various Situations

a. Experimental results for different k values

We take the data from Shijiazhuang in 2018 as the input and set
{

Wgsd, Wcloud, Wtime

}
to {0.333, 0.333, 0.333}. We set the k value from 1 to 6. The experimental results are shown
in Figure 7 and Table 3. The black box in Figure 7 indicates the boundary of each remote
sensing image.
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Figure 7. Filtering results with different k values.

Table 3. Information on the filtering results with different k values.

k Length of Gi Fitness Score of Gbest Image Number of Gbest

1 29 1.661959 19
2 56 1.687312 18
3 75 1.732062 17
4 101 1.728173 19
5 133 1.716126 20
6 163 1.691373 21

Figure 7 shows that regardless of the k value, the full-coverage requirements of the
filtering results are basically met, but the composition of the image collection is different.
Table 3 shows that when k = 1, SGbest can reach only 1.661959, which is far lower than the
results obtained under other k values. This result occurs because the coarse filtering in
the algorithm when k = 1 can be understood as equivalent to the greedy solution, which
roughly finds a single image that best meets the user’s demands for each grid, and the
filtering results can be obtained by combining the results of all grids. Since the size of each
remote sensing image is larger than the grid, greedy conditions will make the OL of the
image collection very large; this can result in a low fitness score.

When k gradually increases from 1 to 3, the total score continues to increase, and
the image number of Gbest gradually decreases. This result indicates that better image
collection can be achieved when the number of images participating in the GA gradually
increases.

When k continues to increase from 3 to 6, the score gradually decreases. This result
indicates that when the value of k increases to a certain level, the quality of the newly
added images will decrease compared to when k is small, and the improvement is not
obvious. When k further increases, the length of Gi will also increase exponentially, thus
affecting the results of the GA by leading to a local optimum and making it difficult to find
the optimal solution. For example, when k = 6 in Table 3, the length of Gi reaches 163 and
SGbest is reduced to 1.691373.
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b. Experimental results for different regions

To verify that the proposed method has robustness for different areas with irregular
shapes, this study performed experiments in Shijiazhuang, Beijing, and Hebei within a
fixed time interval under the premise of setting

{
Wgsd, Wcloud, Wtime

}
to {0.333, 0.333, 0.333}.

The filtering results are shown in Figure 8.

Figure 8. Filtering results in different study areas.

Figure 8 shows that when the proposed method is used for filtering in different regions,
although the area and shape may differ greatly, good coverage can be obtained for all
regions. Table 4 shows that the OL values of the image collection after filtering in different
regions are 1.320225, 1.243119, and 1.432177, all of which are below 2, and there are no
repeated overlays caused by image redundancy.

Table 4. Information on the filtering results in different study areas.

Study Area Area (km2) Coverage of Gbest Image Number of Gbest OL of Gbest
Time

Consumption (s)

Shijiazhuang 15,850 100% 23 1.320225 3.1044
Beijing 16,410 100% 22 1.243119 3.8220
Hebei 188,900 100% 21 1.432177 68.6900

c. Experimental results for algorithm robustness verification

To verify the robustness of our algorithm, we performed experiments with 50 iterations
in Beijing, Hebei, and Shijiazhuang under the same input (k set to 3, the cloud weight set
to 0.3, the timeliness weight set to 0.35, and the resolution weight set to 0.35). We produced
two boxplots of fitness scores and OL. The boxplot is a statistical graph used to display the
dispersion of a dataset and can therefore be used to verify the robustness of the algorithm.
The boxplots are shown in Figure 9.

In the boxplot, the middle line of the box is the median of the data and thus represents
the average level of the sample data. The upper and lower limits of the box are the upper
and lower quartiles of the data, thus indicating that the box contains 50% of the data, so the
broadband of the box reflects the degree of data fluctuation to a certain extent. There are
additional lines above and below the box; these lines represent the maximum and minimum
values. Sometimes, some points are outside of the upper and lower limits, and these points
are outliers. As shown by the boxplots of the fitness scores, the distance between the upper
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quartile and the lower quartile of Hebei is within 0.07, while the distances of Beijing and
Shijiazhuang are within 0.05, thus indicating that the fluctuation of the fitness score in the
50 experiments was very small. As the OL boxplot shows, the distance between the upper
quartile and the lower quartile of Hebei is within 0.18, while the distances of Beijing and
Shijiazhuang are within 0.1, thus indicating that the fluctuation of OL in the 50 experiments
was very small. The distance between the maximum and minimum values in the two
boxplots is also within the acceptable range, and there are no outliers. In summary, this
algorithm is very robust.

Figure 9. The boxplots of fitness score and OL.

d. Experimental results for different image numbers of I_ori

To verify the efficiency of this method when processing images of different orders of
magnitude, we performed experiments under the premise of fixing other conditions and
controlling the number of images processed by setting time intervals of different lengths.
The results are shown in Figure 10 and Table 5.

Figure 10. (a) Filtering effect of tens of thousands of pictures, (b) Filtering effect of thousands of
pictures, (c) Filtering effect of hundreds of pictures.

Figure 10 shows that the proposed method exhibits good filtering results for input
images of all orders of magnitude. In detail, Table 5 shows that with the gradual increase in
the amount of I_ori, the OL of I_ori increases from 14.93578 to 500.2661, and the OL of Gbest
decreases to approximately 2. The fitness score of Gbest increases steadily from 1.5579 to
1.750479. This result shows that the proposed method can obtain better results regardless
of whether the amount of data is in the hundreds, thousands, or tens of thousands. An in-
creasing amount of input data provides more choices for the filtering process and produces
better results. Table 5 shows that the time consumed by the proposed method remains
stable when the order of magnitude of the input images increases; the time consumed by
traditional methods should increase exponentially.



Sustainability 2021, 13, 13475 16 of 20

Table 5. Detailed data on the filtered results for different orders of magnitude.

Image Number of I_ori OL of I_ori Fitness Score of Gbest OL of Gbest Time Consumption (s)

243 14.93578 1.557944 1.633028 2.886000156402588
486 20 1.566519 1.394495 7.019999980926514
626 35.78899 1.584082 1.426606 3.6347999572753906
710 39.62844 1.705311 1.353211 3.5411999225616455
867 45.72477 1.600818 1.490826 4.648799896240234

1202 60.09174 1.60953 1.522936 2.683199882507324
1928 97.96789 1.682792 1.385321 2.8703999519348145
2982 146.2477 1.792568 1.224771 3.75959992408752
4094 198.2018 1.691633 1.408257 5.50679993629455
4955 240.4128 1.689813 1.40367 4.040399789810181
5975 289.156 1.735492 1.325688 5.756400108337402
6935 333.2982 1.753975 1.261468 5.30400013923645
7994 379.8945 1.762623 1.256881 4.055999994277954
9019 426.5505 1.715952 1.348624 6.910799980163574

10008 500.2661 1.750479 1.307339 8.252399921417236

e. Experimental results for individual demands

Different types of urban study and planning tasks have different demands for remote
sensing images. For example, in the task of urban road planning, planners need to master
the distribution of all roads in the city, which requires high resolution of remote sensing
images. In the urban real-time monitoring task, it is necessary to carry out high-frequency
real-time monitoring of key areas such as illegal buildings in the urban area, and high
timeliness of remote sensing images is required. In order to effectively verify whether
the proposed method can meet the demands of urban study and planning tasks, multi-
ple experiments were designed from high to low in terms of timeliness, resolution, and
cloudiness.

To quantitatively evaluate the cloudiness, resolution, and timeliness of the image col-
lection, three measures are defined: the average grid cloudiness is denoted by Aver_Cloud,
the average grid resolution is denoted by Aver_GSD, and the average grid timeliness is
denoted by Aver_Time. We obtain the gi cloudiness score, which is denoted by Scloudgi

; the
gi resolution score, which is denoted by Sgsdgi

; and the gi timeliness score, which is denoted
by calculating Sgsd (Equation (4)), Scloud (Equation (5)), and Stime (Equation (6)) of the image
with the highest score in grid gi. We obtain Aver_Cloud, Aver_GSD, and Aver_Time by
calculating the average Scloudgi

, Sgsdgi
, and Stimegi

for all the grids. The formulas are as
follows:

Aver_Cloud =
1
n

n

∑
i=1

Scloudgi
, (12)

Aver_Time =
1
n

n

∑
i=1

Stimegi
, (13)

Aver_GSD =
1
n

n

∑
i=1

Sgsdgi
, (14)

where n is the number of grids covered by the Target_Area.
In Figure 11, Wgsd in the second line of images gradually decreases from left to right

from 1 to 0.1. The color of the images in the filtered image collection gradually changes
from all green to partially red and partially pink until blue appears, thus indicating that
the image resolution in the filtered results is gradually decreasing. In the task of urban
road planning, planners can set Wgsd to a larger value such as the first figure in the second
row. Planners can obtain an image collection with a resolution better than 3 m to achieve
full coverage of the Shijiazhuang area in which the road and other small-scale landcover
can be seen.



Sustainability 2021, 13, 13475 17 of 20

Figure 11. Image collection filtering results obtained under different weights.

Wtime in the third line of the image gradually decreases from left to right from 1 to 0.1.
This figure shows that the color of the images in the filtered image collection gradually
changes from all green to partially red, and from having little blue to partial blue appearing,
thus indicating that the time of the images in the filtered result is far from the last date. In
the task of urban real-time monitoring, people can set Wtime to a larger value such as the
first figure in the third row. Then, an image collection within 10 days can be obtained to
observe buildings and other illegal landcover.

Wcloud in the first row of images gradually decreases from left to right from 1 to 0.1.
The color of the images in the filtered image collection gradually changes from all green to
partially red and partially pink until blue appears, thus indicating that the cloudiness of the
images in the filtered result is gradually increasing. For the task of a large-scale landcover
survey, people can set Wcloud to a larger value such as the first figure in the first row. Then,
an image collection without any clouds can be obtained to avoid situations in which land
is blocked.

Table 6 provides detailed information for each image in Figure 12. Figure 12 is a
visualization of the changes in Aver_Cloud, Aver_GSD, and Aver_Time according to{

Wgsd, Wcloud, Wtime

}
; these changes are also shown in Table 6. As shown in Figure 12a, as

the cloudiness increases, the Aver_Cloud score gradually increases from 0.965056 to 1, and
the scores of Aver_GSD and Aver_Time gradually decrease from 0.961545 and 0.946545
to 0.708643 and 0.225515, respectively. In Figure 12 b, as the grid resolution increases, the
Aver_GSD score gradually increases from 0.737714 to 0.986794, and the Aver_Cloud and
Aver_GSD scores gradually decrease from 0.999555 and 0.986116 to 0.958371 and 0.675474,
respectively. In Figure 12 c, as time increases, the Aver_Time score gradually increases from
0.869792 to 0.985105, and the Aver_Cloud and Aver_GSD scores gradually decrease from
0.994994 and 0.977812 to 0.99764 and 0.629191, respectively. In summary, the LFCF-ID can
filter image collections according to preset weights to meet individual demands.

4.3.2. Comparison with Other Methods

There is currently no other study similar to this paper, so the algorithm in this paper
is only compared with manual filtering and greedy methods. The manual filtering method
refers to the process by which a person selects from several images to obtain the results that
he or she feels meet the demands. The greedy method refers to traversing all the images of
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each grid to obtain the best image and combining the best images of all the grids as the
filtering result. The experimental results are shown in Table 7.

Table 6. Information on the filtering results with different weights.

Wcloud Wgsd Wtime Fitness Score Aver_Cloud Aver_GSD Aver_Time

1 0 0 1.67424 1 0.708643 0.225515
0.6 0.2 0.2 1.70223 0.995618 0.95063 0.915011
0.3 0.35 0.35 1.7221 0.980618 0.960834 0.934039
0.1 0.45 0.45 1.67466 0.965056 0.961545 0.946545
0 1 0 1.73802 0.958371 0.986794 0.675474

0.2 0.6 0.2 1.69685 0.983989 0.97199 0.915378
0.35 0.3 0.35 1.68953 0.979607 0.95591 0.945887
0.45 0.1 0.45 1.66885 0.995955 0.737714 0.986116

0 0 1 1.67702 0.99764 0.629191 0.985105
0.2 0.2 0.6 1.74005 0.988258 0.775825 0.971083

0.35 0.35 0.3 1.76462 0.999101 0.964984 0.915991
0.45 0.45 0.1 1.70676 0.999494 0.977812 0.869792

Figure 12. Changes in Aver_Cloud, Aver_GSD, and Aver_Time according to different weight values.
(a) Changes in Aver_Cloud according to Wcloud. (b) Changes in Aver_GSD according to Wgsd. (c)
Changes in Aver_Time according to Wtime.

Table 7. Comparison of the time consumption and fitness scores of different methods.

Manual Filtering Method Greedy Method LFCF-ID (k = 1) LFCF-ID (k = 3)

Study
Area

Time
Consumption

(s)

Fitness
Score

Time
Consumption

(s)

Fitness
Score

Time
Consumption

(s)

Fitness
Score

Time
Consumption

(s)

Fitness
Score

Shijiazhuang 48.986 1.7021 0.3432 1.4726 1.9032 1.6988 3.1044 1.7218
Beijing 100.738 1.6818 0.5460 1.4611 2.4336 1.7093 3.8220 1.7315
Hebei 652.584 1.6492 8.0340 1.3015 30.1704 1.6176 68.6900 1.6708
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Table 7 shows that in terms of time consumption, the greedy LFCF-ID (k = 1) and the
LFCF-ID (k = 3) outperform the manual method. The greedy algorithm lacks optimization
of the filtering results and directly uses the results of the grid retrieval as the output,
so this algorithm takes the least time. However, the fitness score of the greedy method
is poor compared to the fitness scores of the manual, LFCF-ID (k = 1), and LFCF-ID
(k = 3) methods, thus indicating that the filtering effect of the greedy method is very poor.
The LFCF-ID (k = 1) can be considered genetic optimization based on greedy retrieval.
The LFCF-ID (k = 1) is slower than the greedy algorithm, but the fitness score is greatly
improved. Compared with the LFCF-ID (k = 1), the LFCF-ID (k = 3) allows more images
to be subsequently added to genetic optimization. Due to the increase in gene length, the
time is slightly increased, and the fitness score is higher than that of other methods and is
even better than that of the manual method. In summary, the comparison indicates that
the LFCF-ID is 10 times faster than the manual method and exhibits a filtering effect that is
better than the filtering effects of all existing methods.

5. Conclusions

This paper proposed a new remote sensing image filtering method that can support
people to maximize their preferences in urban observation for study and planning tasks,
on the premise of ensuring full coverage of a region. We first designed a coarse filtering
strategy to reduce the dimensionality of the data; this reduction can save the most useful
images and save time for subsequent optimization calculations. Then, a grid was used as
the basic unit to calculate the fitness score of the image collections in terms of resolution,
cloudiness, and coverage; the score was used as the index to evaluate the performance
of the image filtering algorithm. Finally, the evaluation index was optimized by genetic
iteration to optimize the image collections. We designed different sets of experiments to
evaluate the performance of the LFCF-ID; the experimental results showed that the LFCF-
ID could quickly achieve full-coverage filtering of images and simultaneously minimize
repeated coverage as much as possible with different regions, different data volumes, and
different demand preferences. The LFCF-ID showed great potential in solving how to
automatically and quickly obtain full-coverage image collections of areas that meet the
demands of preferences, in a context where people are facing an explosive increase in
remote sensing image data. It is foreseeable that, in the future, the LFCF-ID will have wide
engineering applications in urban study and planning.
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