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Abstract: Taking into consideration the overlapped influences of multiple rail transit stations upon
land use characteristics, this study newly develops a multi-objective land use allocation optimization
model to decide the land use type and intensity of every undeveloped land block of an urban area.
The new model is solved by successively utilizing the non-dominated sorting genetic algorithm
and the technique for order performance by similarity to ideal solution to obtain the least biased
Pareto-optimal land development scheme. The study area is an urban region around two metro
stations in Beijing of China. The influencing scopes of these two stations are overlapped in part,
and many of the land blocks in the study area are not yet developed. It is shown that the newly
developed land use allocation optimization model is able to rationally achieve multi-objectives in
coordination to the most extents for the sustainable urban development in view of the integrated
effect of multiple rail transit stations.

Keywords: land use allocation design; multi-objective optimization modeling; multiple rail transit
stations; non-dominated sorting genetic algorithm; Pareto-optimal solution set; the least biased solution

1. Introduction

One of major urban transport planning goals is to establish a much attractive and
highly accessible public transport system that is able to meet requirements of travelers [1]
for the realization of sustainable mobility in a large scale. Mass rail transits have played and
will continue to play the key role in safe, efficient and environment-friendly operation of
such a public transport system, especially for a big city. Travel preferences of people in the
influencing scopes of rail transit stations are directly affected by land uses around the sta-
tions. From the transit-oriented development perspective, diversifying the land use types,
strengthening the land development intensities, etc. contribute to reducing comprehensive
connection costs of rail transit trips and increasing rail transit utilizations [2,3], which will
certainly decrease car trips. At the same time, factors on other aspects including social
equality promotion, life quality improvement, environmental protection, etc. cannot be
ignored in the Land Use Allocation Design (LUAD) of an urban area for the establishment
of its sustainable rail transit system.

Therefore, a LUAD problem is always transformed into a multi-objective optimization
issue [4] solved by developing a mathematical programming model to decide the scheme
about locations, sizes and intensities of various land use types in a certain region [5]. It
is believed that within the distance scope of usually 1200.00 meters around a rail transit
station [6–8], the land use characteristics of each land block influence the amount of rail
transit trips to and from the station. If the influencing scopes of more than one rail transit
stations are partially overlapped, a rail transit traveler sometimes has to choose one of the
stations, taking into account not only the impedances such as walking distances to the
stations but also the land use allocations around them [9,10]. People prefer to use a rail
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transit station surrounded by diverse types of land blocks which are approximately equal
in scale [11,12] especially within its 500.00 meter-radius distance [13,14] regarded usually
as the standard rail transit walking connection service distance [15]. However, these facts
are seldom considered together in the allocation design of land uses around at least two
rail transit stations whose influencing scopes are partly overlapped to obtain the optimal
land development scheme for the most achievement of each of multi-objectives.

Having the integrated consideration of the effect of various elements based on these
facts, this study newly develops a Multi-Objective Land Use Allocation Optimization
(MOLUAO) model to have the LUAD of an urban area with its land blocks affected by
multiple rail transit stations. Rail transit trip amount and connection cost, road travel time
expense, land use compactness and conflict, and environmental impact are determined
as the multi-objectives of the MOLUAO model by types and intensities of different land
blocks for the optimal land development scheme from an overall perspective. Because it
is impossible to improve the function value of any objective without weakening at least
that of another one, a solution to a multi-objective optimization problem is in fact non-
dominated [16]. Meanwhile, genetic algorithms are identified as effective in obtaining
non-dominated solutions to multi-objective programming problems [17]. Therefore, in
view of its favorable searching speed and reliable local and global searching abilities, the
non-dominated sorting Genetic Algorithm (GA) proposed by Deb et al. [18] is referred
to the design the GA utilized in this study to obtain the set of Pareto-optimal solutions
to the MOLUAO model. Thereafter, according to the Technique for Order Performance
by Similarity to Ideal Solution (TOPSIS) [19], the least biased Pareto-optimal solution is
selected as the optimal land development scheme. The urban region around two metro
stations named Shahe and Shahe University Park in Beijing is selected as the study area
where many land blocks are undeveloped.

The rest of this paper is organized as follows. The existing studies on the multi-
objective LUAD problem are reviewed in Section 2. Section 3 introduces the land use
status of the study area. The MOLUAO model is established in Section 4, and its solution
program is explained in Section 5. Section 6 optimizes the land development allocation
of the study area by applying the MOLUAO model solved with the GA designed in this
research and the TOPSIS. The conclusions of this study are offered in Section 7.

2. Literature Review

Focusing on achieving the multi-objectives, continuous studies have been made on the
allocation optimizations of land uses from different perspectives. Taking a certain urban
region in Changsha of China as an example, Yu et al. [20] develop a two-step interactive
approach to adjust scales and intensities of various land use types around a rail transit
station according to its passenger transport demand which is affected by the land uses
within its service area. In order to directly forecast rail transit passenger flows at station-
level, geographically weighted regression is applied in the research of Cardozo et al. [21]
to evaluate the land use allocation effect. Paying close attention to the land use type
diversification, Jun et al. [11] analyze the influence of the land use characteristics upon
the metro trips in Seoul. In consideration of the trade-off among economic development,
environmental and ecological benefit and social equity, Cao et al. [22] propose a heuristic
method named as the boundary-based fast GA to solve a multi-objective land use allocation
optimization model established according to a reference point method. Also based on a
reference point method, a land use allocation optimization model with a spatial component
is put forward by Stewart and Janssen [23] for the achievements of additive and spatial
objectives in a geographical information system.

With system dynamics integrated into the particle swam optimization which incorpo-
rates the genetic operators, the land use allocation in discrete geographic space is rationally
achieved in the work of Liu et al. [24] to reflect the complex behaviors of land use sys-
tems at different scales. Regarding land use pattern distribution as a sequence of the
spatial competitions between different land use types, a loosely coupled model utilizing
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multi-stakeholder games is proposed by Liu et al. [25] to coordinate the land use types of
the competition zones for globally optimal allocation of various land use types. In order
to maximize economic, ecological and social benefits, Zhang et al. [26] integrate particle
swarm optimization into a multi-agent system to develop a land use allocation optimiza-
tion model by simulating the decision-making processes and human-environment adaptive
interactions at different levels. Different from ordinarily applying a single algorithm
to search for the optimal solution(s) to a LUAD problem, hybridizing Tabu search, GA,
greedy randomized adaptive search problem and simulated annealing is recommended by
Mohammadi et al. [27] to improve the problem-solving efficiency and quality in practice.

As the premise of the optimal land use allocation especially in a rural area, ratio-
nal land partitioning is significant for the prevention of land fragmentation. Hakli and
Uğuz [28] propose an automated land partitioning method that is capable of processing
multi-criteria simultaneously and evaluating different solutions in a short time. Taking
into account the spatially explicit effect of historical land use transition and policy interven-
tions, Liu et al. [29] utilize both a spatial discrete particle swarm optimization and cellular
automata-Markov simulation approach to optimize future land use pattern in the context
of rural land use development. From a regional development perspective, four cellular au-
tomata models incorporating logistic regression, particle swarm optimization, generalized
simulated annealing and GA, respectively, are developed in the work of Feng et al. [30] and
applied in comparison to simulate the land use change in the Yangtze River Delta of China
from 2005 to 2015. Considering stakeholder preferences on conflicting objectives, a new
simulated annealing algorithm is suggested by Li and Ma [31] to solve a goal programming
model for the determination of an agreeable land use scheme with ideal land use benefit
and compactness.

In consideration of rail transit ridership, transport accessibility, environmental condi-
tion and land use characteristics including compactness and conflict degree, Ma et al. [32]
develop a multi-objective programming model for the optimal station-level transit-oriented
development planning. Gradient boosting decision trees are used by Ding et al. [33] to
highlight the roles of mixed and compact land development, car ownership and quantity
of rail transit stations in an urban area in determining rail transit travel demand. In ac-
cordance with the principle that activity location choices decide urban land use patterns,
an agent-based model based on mixed utility function, discrete location choice modeling
and land use transformation modeling is developed in the study of Li et al. [34] to explain
the urban residential land use increase. In the viewpoint of regional environmental con-
servation assessment and planning, Mirghaed et al. [35] apply ecosystem services into
the land use allocation decision process to improve the land use pattern regarding land
use integrity and habitat fragmentation. Taking natural environment, population change
and policy planning as indicators, Bayesian belief network is adopted in the research
of Zeng et al. [36] to obtain the optimal land use scheme according to the efficiencies of
different ecosystem services.

In the review study of Rahman and Szabó [37], it has been found that the most
common three objectives used in urban land use allocation optimization are maximizations
of compactness, compatibility and suitability. Moreover, there is no generalized method to
measure the economic, environmental and social benefits from land use planning activities.
Despite many valuable research findings, the existing studies considering the influences
of rail transit stations upon the optimal land use schemes concentrate on the land use
allocation around a single rail transit station. In these studies, the passenger flows around
a rail transit station are mainly determined by the travel demands in the walking service
area of the station.

3. Study Area

Represented by the stars in Figure 1, the two metro stations are located at the central
part of the study area divided into 40 × 80 two-dimensional grid cells and each of these
cells has the equal size of 50.00 × 50.00 square meters. Every land cell in the study area is
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within the influencing scope of at least one of the two metro stations. As shown in Figure 1,
all the 3200 land cells of the study area are classified with the numbers from 0 to 7 into the
undeveloped, residential, economic, commercial, industrial, public, road and unavailable
types in correspondence. The public land uses refer to schools, parks, medical facilities, etc.
The economic land use type means that the land cells are utilized by economic enterprises.
The commercial land uses include department stores, hotels, restaurants, retails and so on.
None of the 296 land cells for nature conservation or agriculture at this time is available for
the land development of the study area.

Figure 1. Current allocation of different land use types.

The land use intensity of a land cell in the study area is denoted by its floor area ratio,
as illustrated in Figure 2. The land use intensities of the 296 unavailable land cells are too
low and all treated as 0.00 in this work. The land use intensities of the 926 undeveloped
land cells are 0.00 indeed now. These undeveloped land cells require the optimal land
development scheme about their types and intensities in consideration of their spatial
correlations to achieve multi-objectives to the most extents for the sustainable development
of the study area. Moreover, the influences of the land cells utilized at present in the study
area by the residential, economic, commercial, industrial, public and road infrastructures
upon the undeveloped land cells in neighborhood also need to be considered in searching
for the optimal land development scheme.
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Figure 2. Current allocation of different land use intensities.

4. Modeling Work

In order to reduce rail transit connection costs, increase rail transit utilizations, improve
traffic accessibility, promote social equality, ameliorate life quality and protect environment,
six interrelated objectives are established in Equations (1), (2), (6) and (7)–(9), respectively,
for the development of the MOLUAO model. As shown in Equation (1), the first objective
is to maximize the metro trips (i.e., f1) owing to developing the undeveloped land cells
into those with various types and different intensities in the study area, according to the
research of Ma et al. [32] and Cervero and Kockelman [3]. As the second objective, the
minimization of the total comprehensive connection cost of all the metro trips resulting
from the developments of all the undeveloped land cells (i.e., f2) is shown in Equation (2),
together with Equations (3)–(5) which provide further detailed descriptions for the variables
involved. The normalized Euclidean distance explained in Equation (3) is utilized to
evaluate the impedance between an undeveloped land cell and a metro station. Based on
the work of Yin et al. [38], Equations (4) and (5) improve the traditional land use entropy
model to reflect the ratios of the undeveloped land cells with different land development
types and their spatial correlations. In this way, the mixture degree of various land
development types around a metro station is indicated more rationally.

Max f 1 = Max ∑
i∈Iu

∑
k∈Kd

(
oMt

k +dMt
k

)
Di,kBi,kSi (1)

where Iu is the set of all the undeveloped land cells in the study area, Kd denotes the set of
all the land development types, oMt

k and dMt
k represent metro trips generated and attracted

per unit intensity of the land development type k in the peak commuting hours [39],
Di,k represents the intensity of the land development type k in the land cell i after its
development, Bi,k is 0–1 variable representing if the land cell i is developed into the land
development type k (i.e., by taking the value of 1) or not (i.e., by taking the value of 0), and
Si denotes size of the land cell i.

Min f 2 = Min ∑
i∈Iu

∑
k∈Kd

∑
m∈M

(
oMt

k +dMt
k

)
Di,kBi,kSi

Li,m

Mixm
Qi,m (2)
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Li,m =

√
(Ri − Rm)

2 + (Ci − Cm)
2

∑
j∈Iu

√(
Rj − Rm

)2
+
(
Cj − Cm

)2
(3)

Mixm = −
(

∑
k∈Kd

∑
im∈Im

u

Bim ,k

Im ln

( ∑
im∈Im

u

Bim ,k

Im

)/
ln(K)

)
×
(

2
1 + e−2Bk

− 1

)
(4)

Bk = Min

{
∑

im∈Im
u

Bi,k, ∀k ∈ Kd

}
(5)

where M represents the set of the metro stations in the study area, Ri and Ci are row and
column coordinates of the land cell i, Rm and Cm denote row and column coordinates
of the metro station m, Im

u is the set of all the undeveloped land cells within a certain
distance (which is 500.00 meters in this study) around the metro station m, Bim ,k stands
for 0–1 variable representing if the land cell im is developed into the land development
type k (i.e., by taking the value of 1) or not (i.e., by taking the value of 0), Im represents the
amount of all the land cells in Im

u , K is the amount of all the types in Kd, and Qi,m denotes
0–1 variable denoting if the metro trips from and to the land cell i after its development
utilize the metro station m (i.e., by taking the value of 1) or not (i.e., by taking the value of 0).

The road trips generated from and attracted to every land cell in the study area
are allocated to each road link through the free assignment technique based on the first
principle of Wardrop [40]. The third objective is to minimize the total time cost of all
the road trips (i.e., f3), as given in Equation (6), according to the travel time function
developed by U.S. Bureau of Public Roads [41]. In other words, it is the maximization of
the traffic accessibility of the study area [42]. In order to maximize the land use allocation
compactness (i.e., f4) which affects sustainable urban development and social equality
promotion [22] and is evaluated by the number of adjacent cells with the same land use
type [43], Equation (7) is put forward to clarify the fourth objective for all the land cells
in the study area. Because different conflicts between adjacent land cells with various
land use types do unequal harms to life quality of people [32], the fifth objective is to
minimize the total degree of all the conflicts between the adjacent land cells in the study
area (i.e., f5), as shown in Equation (8). The degrees of the conflicts between every two land
use/development types are shown in Table 1 with reference to the work of Ma et al. [32].

Table 1. Degrees of conflicts between various land use/development types.

Land Use Types Residential Economic Commercial Industrial Public Road

Residential 0.00 5.00 4.00 8.00 0.00 2.50
Economic 5.00 0.00 2.00 4.00 5.00 0.00

Commercial 4.00 2.00 0.00 6.00 2.00 0.00
Industrial 8.00 4.00 6.00 0.00 7.00 0.00

Public 0.00 5.00 2.00 7.00 0.00 0.00
Road 2.50 0.00 0.00 0.00 0.00 0.00

Relatively bigger numerical values provided in Table 1 represent more serious land
use conflicts. The fourth and fifth objectives take into consideration the spatial correla-
tions between the land use/development types of all the land cells in the multi-objective
allocation optimization. In addition, it has been widely identified that a sustainable land
development allocation strategy must consider environmental protection, so the sixth ob-
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jective interpreted in Equation (9) focuses on reducing the negative environmental impact
caused by the land cell developments (i.e., f6).

Min f 3 = Min∑
r

(
∑

i∈Iu

(
VG

i,r + VA
i,r

))
tr

1 + α

 ∑
i∈Iu

(
VG

i,r + VA
i,r

)
Capacityr


γ (6)

where VG
i,r and VA

i,r are traffic flows generated from and attracted to the land cell i in the peak
commuting hours on the road link r, tris time cost of free flow on the road link r, Capacityr
represents traffic capacity of the road link r, and α and γ are parameters determined
according to the type of a road link.

Max f 4 = Max ∑
i∈Iu

∑
k∈Kd

Ai,kBi,k (7)

where Ai,k denotes the amount of the land cells which are adjacent to the land cell i and
have the land use/development type k.

Min f 5 = Min ∑
i∈Iu

∑
j∈As

i

∑
k∈Kd

∑
l∈Kd

Bi,kBj,lConf k,l (8)

where As
i represents the set of all the land cells adjacent to the land cell i, Bj,l is 0–1 variable

denoting if the land use/development type of the land cell j is l (i.e., by taking the value
of 1) or not (i.e., by taking the value of 0), and Conf k,l denotes degree of the conflict between
the land use/development type k and the land use/development type l.

Min f 6 = Min ∑
i∈Iu

∑
k∈Kd

pkDi,kSi (9)

where pk is the pollution treatment cost per unit intensity of the land development type k.
Besides the afore-explained six objective functions, the MOLUAO model also includes

a number of constraints, as shown in the equations from (10) to (19). It is shown in
Equation (10) that each undeveloped land cell in the study area will be developed into
one of the land development types in Kd. At the same time, the metro trips resulting
from each of the land cells choose one of the metro stations in the study area, as clarified
in Equation (11). Moreover, all the land development types in Kd are found within a
certain distance (i.e., 500.00 meters in this research) around every metro station in the
study area, as indicated in Equation (12). Furthermore, Equation (13) decides the upper
and lower limits to the metro trips utilizing a station. It is shown in Equation (14) that
the development intensity of each undeveloped land cell in the study area should have
an upper limit for any of the land development types in Kd. The development scales
of commercial and residential land blocks have their own upper limits proportional to
the land development scale of the whole study area, as explained in Equations (15) and
(16), respectively. In addition, based on the upper and lower limits to the economic land
development floor area ratio, the constraints on the economic land development scale of
the study area are interpreted in Equation (17). For the conservations of the traffic flows,
Equations (18) and (19) are indispensable.

∑
k∈Kd

Bi,k = 1, ∀i ∈ Iu (10)

∑
m∈M

Qi,m = 1, ∀i ∈ Iu (11)

1 ≤ ∑
im∈Im

u

Bim ,k< Im, ∀k ∈ Kd (12)
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UL ≤ ∑
i∈Iu

∑
k∈Kd

(
oMt

k +dMt
k

)
Di,kBi,kQi,m ≤ UU , ∀m ∈ M (13)

0 ≤ Di,k ≤ DkBi,k, ∀i ∈ Iu, ∀k ∈ Kd (14)

∑
i∈Iu

Di,ComBi,ComSi

∑
i∈Iu

∑
k∈Kd

Di,kBi,kSi
≤ propU

Com (15)

∑
i∈Iu

Di,ResBi,ResSi

∑
i∈Iu

∑
k∈Kd

Di,kBi,kSi
≤ propU

Res (16)

FU
Eco − 1
FU

Eco
×

∑
i∈Iu

Di,ResBi,ResSi

∑
i∈Iu

∑
k∈Kd

Di,kBi,kSi
≤

∑
i∈Iu

Di,EcoBi,EcoSi

∑
i∈Iu

∑
k∈Kd

Di,kBi,kSi
≤

FL
Eco − 1
FL

Eco
×

∑
i∈Iu

Di,ResBi,ResSi

∑
i∈Iu

∑
k∈Kd

Di,kBi,kSi
(17)

∑
r

VG
i,r = ∑

k∈Kd

oRt
k Di,kBi,kSi, ∀i ∈ Iu (18)

∑
r

VA
i,r = ∑

k∈Kd

dRt
k Di,kBi,kSi, ∀i ∈ Iu (19)

where UL and UU are lower and upper limits of the trips utilizing each metro station
in the study area, Dk is intensity upper limit of the land development type k for every
undeveloped land cell, Di,Com, Di,Res and Di,Eco represent the intensity of the commercial,
residential and economic land developments in the land cell i after its development, Bi,Com,
Bi,Res and Bi,Eco denote 0–1 variables representing if the land cell i has the commercial,
residential or economic land development (i.e., by taking the value of 1) or not (i.e., by
taking the value of 0), propU

Com and propU
Res are proportion upper limits of the commercial

and residential land development scales of the study area, FU
Ecoand FL

Eco stand for upper
and lower limits of the floor area ratio of the economic land development in the study
area, and oRt

k and dRt
k are road trips generated and attracted per unit intensity of the land

use/development type k in the peak commuting hours [39].

5. Solution Program

The solutions to a multi-objective optimization problem are non-dominated [16] and a
GA is able to effectively find them [17]. In consideration of its superior searching speed and
ability, a non-dominated sorting GA is designed in the first place to solve the MOLUAO
model, with reference to the work of Deb et al. [18]. An individual in the designed GA
represents a land development allocation solution and has three chromosomes which are
land development type, land development intensity and metro trip station choice. The
genes of each chromosome are the corresponding details of all the undeveloped land cells
in the study area after their developments. The process of the designed GA is illustrated in
Figure 3 and explained step by step below for obtaining the Pareto-optimal solution set.

Step 1: Decide the maximum iteration number and set the iteration number e = 0. Generate in-
dividuals randomly until the individuals satisfying all the afore-explained constraints
of the MOLUAO model reach an adequate quantity (i.e., PS). Initialize the population
(i.e., PopPS) with all the generated individuals. Have all the genes in a chromosome
of an individual encoded as their gene types denoted by the integers from 1 to the
number of all the gene types of the category this chromosome belongs to.

Step 2: Have e = e + 1. Abandon every invalid individual unable to satisfy all the constraints
of the MOLUAO model. Calculate the values of all the objectives interpreted in the
modeling work of this study for each individual in PopPS after converting all the
maximum objectives into the minimum objectives by employing a negative sign.

Step 3: Randomly choose an individual (i.e., x1
0). Compare all the objective values of x1

0 with
those of another randomly chosen individual (i.e., x1

s ). If each objective value of x1
s is
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no bigger than the corresponding one of x1
0 and at least one objective value of x1

s is
smaller than that of x1

0, x1
s is classified as Rank 1. If none of the other individuals is

classified as Rank 1 after comparing x1
0 with every other individual, change x1

0 and
make the same comparisons until Rank 1 has all its individual(s). Repeat these actions
to select the individual(s) for each next rank from the unclassified individuals until
only one individual is left finally, and the left individual is classified as the last rank.
The non-dominated sorting of all the individuals in PopPS is made in this way.

Step 4: If more than two individuals are classified as the same rank, based on the ascending
sequence of their values for each objective, their crowding distances are computed
by Equation (20). If an individual classified as a rank with at least two individuals,
takes the first or last order in any of the ascending sequences of the values of all the
individuals classified as this rank for different objectives, its crowding distance is
set to infinity. If all the individuals classified as a rank have their maximum and
minimum objective values equal to each other for any one of the objectives, each
of the individuals has an infinite crowding distance. The crowding distances of the
individuals in PopPS are determined by these rules.

δz(x) = ∑
j

f z
j (x + 1)− f z

j (x− 1)

f z
j (Max)− f z

j (Min)
(20)

where δz(x) denotes crowding distance of the individual x classified as rank z,
f z
j (x + 1) represents value of the individual immediately after the individual x in

the ascending order of the values of all the individuals classified as rank z for the
objective j, f z

j (x− 1) is value of the individual immediately before the individual x
in the ascending order of the values of all the individuals classified as rank z for the
objective j, f z

j (Max) stands for maximum value of every individual classified as rank
z for the objective j, and f z

j (Min) is minimum value of all the individuals classified as
rank z for the objective j.

Step 5: If the size of PopPS is bigger than PS, remove the individual classified as the last rank
from PopPS, mark PS individuals in PopPS at random, and delete the unmarked ones.
All the individuals in PopPS are paired up randomly. The individual left over after the
others are paired up is selected directly. The ranks of two individuals in each pair are
compared. If their ranks are different, select the individual which has the relatively
small rank. If their ranks are the same, compare their crowding distances and select
the one with the bigger crowding distance. If their crowding distances are also the
same, select one of them at random. If the maximum iteration number is reached,
output PopPS as the Pareto-optimal solution set. Otherwise, go to Step 6.

Step 6: Owing to its superiority in searching sparse high-dimensional solutions to multi-
objective optimization problems [44], simulated binary crossover is carried out. The
individuals selected in Step 5 are paired up randomly. The unpaired individual keeps
unchanged. The code changes caused by the crossover operation of two individuals
in a pair (i.e., x1 and x2) at a gene site of their two offspring individuals (i.e., x1c and
x2c) are explained in Equations (21) and (22).

Gx1c
w = Round

((
(1 + θ)Gx1

w + (1− θ)Gx2
w
)
/2
)

Gx2c
w = Round

((
(1− θ)Gx1

w + (1 + θ)Gx2
w
)
/2
) (21)

θ =

{
(2τ)(1/λ+1) τ ∈ [0, 0.5)
(1/2(1− τ))(1/λ+1) τ ∈ [0.5, 1)

(22)

where Gx1c
w and Gx2c

w represent codes at the gene site w of x1c and x2c, Round(Y) is
the rounded value of Y, Gx1

w and Gx2
w are codes at the gene site w of x1 and x2, τ denotes

random variable, and λ is non-negative parameter (decided as 20.00 in this study).
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Step 7: Because of its relatively better performance in a real-coded GA [45], polynomial
mutation is executed here. Every individual selected in Step 5 and generated in Step
6 is mutated by changing the code of its every gene, according to Equations (23) and
(24). Add all the new individuals obtained in last and this step into PopPS and go back
to Step 2.

GAM
w =


1 GBM

w + ω < 0.5
NCw GBM

w + ω > NCw

Round
(
GBM

w + ω
)

Otherwise

(23)

ω =

{
(2σ)(1/η+1) − 1 σ ∈ (0, 0.5)
1− (2(1− σ))(1/η+1) σ ∈ [0.5, 1)

(24)

where GAM
w is code at the gene site w after the mutation, GBM

w represents code at the
gene site w before the mutation, NCw denotes gene type amount of the category of
the chromosome covering the gene site w, σ is random variable, and η represents
non-negative parameter (set as 20.00 in this research).

Equation (25) explains the Euclidean distance from the Rth solution to every minimum
value of all the objectives of a multi-objective optimization problem after converting its
maximum objectives into the corresponding minimum objectives. On the basis of the
TOPSIS, the Pareto-optimal solution with the minimum Euclidean distance is selected in
the Pareto-optimal solution set obtained by applying the proposed GA as the final solution
to the MOLUAO model.

µR =

∑
Col

 ObjCol(ParSR)

∑
RR

ObjCol(ParSRR)
−Min

 ObjCol(ParSRow)

∑
RR

ObjCol(ParSRR)
, ∀Row


2


1
2

(25)

where µR is Euclidean distance from the Rth solution to each minimum objective value,
and ObjCol(ParSRow) stands for the value of the Rowth solution for the Colth objective.

Figure 3. Flowchart of the GA designed in this work.
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6. Results and Discussion

The MOLUAO model solved by successively applying the designed GA and the TOP-
SIS is used to get the optimal land use scheme which decides the development types and
intensities of all the undeveloped land cells in the study area for the most achievement of ev-
ery afore-established objective in coordination. Each of the undeveloped land cell is utilized
by the residential, economic, commercial, industrial, public or road infrastructure. Solid
wastes and sewage are considered as the main factors of the impact on the environment in
the land use allocation optimization of all the undeveloped land cells. The Pareto-optimal
solution set consisting of 80 solutions is obtained after 2000 iterative computations of the
GA designed in this research. As shown in Table 2, in comparison to the other solutions in
the Pareto-optimal solution set, Opt − µR has the minimum µR and is able to coordinately
achieve all the six interrelated objectives of the MOLUAO model to the most extents. As a
result, Opt − µR is selected as the optimal land development scheme of the study area in
this work. Obviously different from those shown in Figures 1 and 2, the land use type and
intensity allocations of Opt − µR are illustrated in Figures 4 and 5, respectively.

Table 2. Values of different solutions.

Solutions µR f1 f2 f3 f4 f5 f6

Opt − µR 4.21 × 10−2 42,734 15,321.03 2.70 × 1010 1677 17,059.00 6.26 × 107

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Opt − f1 9.81 × 10−2 53,271 19,084.11 1.51 × 1011 1318 21,524.00 7.50 × 107

Opt − f2 6.08 × 10−2 33,962 12,180.62 1.04 × 1010 1461 20,986.50 5.19 × 107

Opt − f3 6.84 × 10−2 36,651 13,336.74 9.24 × 109 1282 22,775.50 5.10 × 107

Opt − f4 4.51 × 10−2 41,454 15,038.94 3.24 × 1010 1824 18,889.50 6.24 × 107

Opt − f5 4.65 × 10−2 42,740 15,586.92 1.86 × 1010 1667 16,821.00 6.27 × 107

Opt − f6 6.65 × 10−2 36,498 13,300.68 1.39 × 1010 1288 22,795.50 5.07 × 107

Footer: The minimum Euclidean distance and the optimal values of different objectives.

Figure 4. Land use type of every land cell in the optimal scheme.
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Figure 5. Land use intensity of each land cell in the optimal scheme.

Of course, the land use planners are also able to make different choices in the entire
set of the Pareto-optimal solutions in accordance with their specific land development
planning focuses. For example, it is indicated in Table 2 that, for the most achievement of
a certain objective, Opt − f1, Opt − f2, Opt − f3, Opt − f4, Opt − f5 and Opt − f6
focus on the optimums of f1, f2, f3, f4, f5 and f6, respectively. In order to increase the rail
transit utilizations to the greatest extent in the study area, Opt − f1 is the most suitable
choice. At this time, µR increases to some extent, as shown in Table 2. In other words, for
the sake of stressing the achievement of f1, Opt − f1 has to ignore achieving the other
objectives in a certain degree. If the emphasis of the land use allocation optimization is
put on minimizing the total connection cost of all the metro trips utilizing the two stations
in the study area, Opt − f2 is selected from the Pareto-optimal solution set. Supposing
the land development scheme is heavily weighted in favor of improving the road traffic
accessibility, Opt − f3 is the most effective way which juggles the other objectives at the
same time. For the purpose of improving the land use allocation compactness to the utmost,
Opt − f4 provides the most practicable avenue. If the land development in the study area
concentrates on reducing all the conflicts between the adjacent land cells, Opt − f5 tells
the answer to the LUAD problem. By contrast, the most rational land development scheme
focusing primarily on the environment protection is explained by Opt − f6.

7. Conclusions

In consideration of overlapped influences of multiple rail transit stations upon charac-
teristics of land uses around them, the multi-objective land use allocation optimization is
made with the MOLUAO model developed in this study for the sustainable development
of an urban area from an integrated viewpoint. The designed GA and the TOPSIS are
successively utilized to find the least biased Pareto-optimal solution to the MOLUAO
model to provide the optimal land development scheme determining the land use type
and intensity of each undeveloped land block. The urban region in which two metro
stations have their partly overlapped influencing scopes and many of the land blocks are
undeveloped is selected in Beijing as the study area of this work. It is proved that the
MOLUAO model solved with the GA designed in this research, and the TOPSIS is able to
make the rational multi-objective LUAD to obtain the optimal land development scheme
in view of the overlapped effect of multiple rail transit stations for the sustainable urban
development. Furthermore, if the study area is an entire city, the effect of the urban rail
transit network configuration on the optimal multi-objective land development of the city
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can be interpreted by utilizing the MOLUAO model, the designed GA and the TOPSIS,
according to the locations of different rail transit stations with the overlapped influences.

In future research, the impacts of more factors such as economic activity, weather
condition, travel time period in a day, etc. on the LUAD ought to be considered in the
modeling work to validate the research findings in more detail. Moreover, the correlations
between characteristics of land uses, choices of travel modes, influences of rail transit
stations, etc. also need to be further analyzed in the multi-objective land use allocation
optimization study. Finally, it would be worthwhile to explore some hybrid algorithms
for the improvements of both computation efficiency and solution quality of the multi-
objective optimization.
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