
sustainability

Article

Sensor Deployment Strategy and Traffic Demand Estimation
with Multisource Data

Hui Chen 1,2, Zhaoming Chu 3,* and Chao Sun 4

����������
�������

Citation: Chen, H.; Chu, Z.; Sun, C.

Sensor Deployment Strategy and

Traffic Demand Estimation with

Multisource Data. Sustainability 2021,

13, 13057. https://doi.org/10.3390/

su132313057

Academic Editors: Xiaobei Jiang,

Haixiang Lin, Fei Yan and

Qian Cheng

Received: 25 September 2021

Accepted: 19 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China;
13621092886@163.com

2 Department of Infrastructure Development, National Development and Reform Commission,
Beijing 100045, China

3 Research Institute for Road Safety of MPS, Beijing 100062, China
4 School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;

chaosun@ujs.edu.cn
* Correspondence: chuzhaoming@126.com; Tel.: +86-137-1790-6369

Abstract: Since traffic origin-destination (OD) demand is a fundamental input parameter of urban
road network planning and traffic management, multisource data are adopted to study methods of
integrated sensor deployment and traffic demand estimation. A sensor deployment model is built to
determine the optimal quantity and locations of sensors based on the principle of maximum link and
route flow coverage information. Minimum variance weighted average technology is used to fuse
the observed multisource data from the deployed sensors. Then, the bilevel maximum likelihood
traffic demand estimation model is presented, where the upper-level model uses the method of
maximum likelihood to estimate the traffic demand, and the lower-level model adopts the stochastic
user equilibrium (SUE) to derive the route choice proportion. The sequential identification of sensors
and iterative algorithms are designed to solve the sensor deployment and maximum likelihood
traffic demand estimation models, respectively. Numerical examples demonstrate that the proposed
sensor deployment model can be used to determine the optimal scheme of refitting sensors. The
values estimated by the multisource data fusion-based traffic demand estimation model are close
to the real traffic demands, and the iterative algorithm can achieve an accuracy of 10−3 in 20 s.
This research has significantly promoted the effects of applying multisource data to traffic demand
estimation problems.

Keywords: traffic demand estimation; multisource data; sensor deployment; sequential identification;
iterative algorithm

1. Introduction

Traffic demand describes the spatial distribution characteristics of travel of passengers
and goods, which reflects the basic information of motor vehicles’ movement between
traffic zones. Traffic demand is the most basic input parameter in urban long-term trans-
portation planning and short-term traffic management and control. Urban traffic route
guidance, speed limits, congestion control and other measures require an accurate origin-
destination (OD) demand matrix. Traffic demand not only provides a decision-making
basis for the balance of supply and demand of urban road networks and government
construction investment, but also provides data support for the development of urban
motorization. Only by accurately estimating the OD demand can we grasp the traffic char-
acteristics of the current road network and provide more targeted and effective strategies
to ease traffic congestion in the processes of urban planning and transportation planning.

With the development of urban traffic information acquisition technology, we can
collect observation data from a variety of traffic detectors. Detector types include loop-coil
detection, ultrasonic detection, and image recognition detection. The detection data types
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mainly include road flow, speed, density, travel time, vehicle trajectory, etc. This paper
aims to estimate traffic demand using these multisource data.

In recent years, scholars have used a variety of theories to estimate traffic demand,
and the main research methods include those listed below. (1) The generalized least square
method [1,2]. In this method, the least square sum of the errors between the observed
variables and the estimated variables is found by modifying the OD demand matrix to
be estimated. Because the mathematical formula of this method is simple and easy to
understand, it is widely used in OD estimation. (2) The OD estimation method based on
information entropy [3]. The objective function of the least square method is the minimum
distance between the observed variable and the estimated variable, while the objective
function of the information entropy model is the maximum entropy or the minimum
information to estimate the OD demand. (3) The maximum likelihood estimation [4,5].
The objective of this method is to maximize the likelihood function based on the observed
flow and the historical OD matrix to estimate the OD matrix. (4) The Bayesian estimation
method [6]. This method is the same as the classic statistical method, assuming that the
observed variables are random variables, and the Bayesian method also considers that
the parameters to be estimated are random variables. The principle is to give the prior
distribution of all the variables to be estimated and then derive the posterior distribution of
all the variables to be estimated according to the collected sample information to give the
estimated value and the corresponding confidence interval of the variables to be estimated.
The derivation of a posteriori distribution often requires some complex integral calculus.
The Monte Carlo simulation algorithm is typically used to sample and solve the estimation
and confidence interval of a posteriori distribution. For other traffic network OD estimation
models with new observation variables, we can refer to the OD estimation model based
on Smartcard data [7], cellular data [8], license plate recognition data [9] and the OD
estimation model based on mobile location data [10].

As a subproblem of traffic demand, the network detector placement problem can
be used to identify the location of detectors to determine the unique unobserved road
flow or to optimize the quality of traffic demand to be estimated. To obtain the only
unobserved link flow, He [11] used graph theory to solve the optimal detector layout
strategy. Based on algebra method, some scholars build the corresponding network detector
layout model [12] according to the link, path and node correlation matrix. To optimize
the quality of the parameters to be estimated, Simonelli et al. [13] used the trace of the
covariance of the posterior OD matrix to determine the optimal detector placement strategy
based on Bayesian statistics. Yang and Zhou [14] further proposed the maximum coverage
criterion of path flow. Salari et al. [15] analyzed the effect of sensor failure on the detector
layout strategy.

Although different methods have been used to study the detector layout strategy
and traffic demand estimation, the following deficiencies exist: (1) research on traffic
demand estimation using multisource data fusion technology has seldom been used in
the existing literature. (2) Research on the layout of traffic detectors does not consider
the coverage information of road sections and path flows. (3) The lack of an analytical
relationship between traffic demand and traffic flow from the perspective of traffic network
theory and the relationship is helpful to establish the maximum likelihood traffic demand
estimation model.

To address these deficiencies, this paper proposes an integrated model of detectors
layout and maximum likelihood traffic demand estimation. The former calculates the
optimal number and location of the detector layout by maximizing the road section and
path coverage information and uses minimum variance weighted average technology to
fuse the detected multisource data to use the maximum likelihood method to estimate the
traffic demand. The successive detector identification algorithm and iterative algorithm
are designed to solve the detector layout and traffic demand estimation model, and the
Nguyen Dupuis and Sioux Falls networks are used to test the model and algorithm [16,17].
The contributions of this paper mainly contains: (1) proposed an integrated model of
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detectors layout and maximum likelihood traffic demand estimation. (2) designed the
successive detector identification algorithm and iterative algorithm.

2. Detector Layout and Traffic Demand Estimation
2.1. Detector Layout Model

Traffic demand estimation can be regarded as the following parameter estimation
problem in mathematics: some samples (such as road flow, speed, density, travel time, etc.)
are observed to estimate parameters in the overall distribution (traffic demand). Under the
current budget, road samples are observed to estimate the most reliable or most practical
traffic demand, which is the premise scientific problem to be solved in this paper.

We determine the optimal detector layout quantity and location by studying the
detector layout model, and the existing detector layout models unilaterally maximize the
link coverage information or path coverage information. Under the given budget, this
paper maximizes the coverage information of links and paths at the same time:

max

[
α ∑

a∈A
ṽaza + (1− α) ∑

ω∈W
∑

k∈Kω

f̃ ω
k Ψω

k

]
(1)

subject to
bss ≤ bmax (2)

∑
a∈A

za = s (3)

∑
a∈A

δω
a,kza ≥ Ψω

k , ∀ω ∈W, k ∈ Kω (4)

za ∈ {0, 1}, ∀a ∈ A (5)

Ψω
k ∈ {0, 1}, ∀ω ∈W, k ∈ Kω (6)

where W is a collection of all OD pairs in the transportation network and ω is one of those
OD pairs. Kω is the collection of all paths between OD pair ω, k ∈ Kω; α is the weight
coefficient; ṽa represents the prior flow on segment a; f̃ ω

k is the prior flow on path k between
OD pair ω; Ψω

k is the coverage factor on path k between OD pair ω. The parameter is 1
if there is a road section with detectors in path k; otherwise, it is 0; s is the number of
detectors; bs is the cost of installing detectors for each road section; bmax is the general
budget; za is the coverage factor on road section a, the parameter is 1 if there is the road
section a with detectors, otherwise it is 0; A is the Section set, a ∈ A; δω

a,k is the Path link
association parameters, between OD pair ω, the parameter is 1 if the road section a is on
path k; otherwise, it is 0.

Objective function (1) maximizes the coverage information of road sections and paths,
where ∑

a∈A
ṽaza is the sum of the traffic volume of the road sections where the detectors

are deployed; that is, the detectors will be preferentially deployed on the road sections
with high traffic flow of the prior road sections. ∑

ω∈W
∑

k∈Kω
f̃ ω
k Ψω

k is the sum of the traffic

volume of the path where the detectors are deployed. The difference between the two
is that the objective function calculated by the former is larger because the former will
repeatedly stack the path flow, while the latter considers the repeatability between paths.
Equation (2) is the cost constraint of the detector layout; Equation (3) is the constraint of
the total number of road detectors; Equation (4) is the relationship between the road section
and path coverage information; and Equations (5) and (6) are the road section coverage
factor and path coverage factor, respectively.

2.2. Multisource Observation Variable Fusion

According to the detector layout model, the number and location of detectors are
calculated, and the traffic flow, speed, density and travel time are observed. Because the
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dimensions of the observed variables are not consistent, traffic flow theory is used to
transform the dimensions of the observed variables to unify the observed multisource road
information. In this paper, the green shields traffic flow speed density relation function is
used to unify the multisource observation variables into link flow:

va =
la

ta(va)

[
Mj,a

(
1− la

ta(va)S f ,a

)]
, ∀a ∈ A (7)

where va is the traffic volume on segment a, ta is the estimated travel time on segment a,
la is the length on segment a, Mj,a is the crowding density on segment a, and S f ,a is the
maximum speed on segment a. Road travel time can be derived from road length and
vehicle speed.

After the dimension is unified as the traffic volume of the road section, the method
of minimum variance weighted average is used to fuse the multisource road flow to
comprehensively reflect the traffic status of the road. The mathematical expression of the
minimum variance weighted average method is as follows:

V̂ = ∑
i∈I

eivi = eTv (8)

The flow weight coefficient ei of each type of observation section is as follows:

ei =
1

σ2
i ·∑i∈I

1
σ2

i

, ∀i ∈ I (9)

where i is the link flow type, such as speed, density, time, etc., and i ∈ I; vi is the i-th type of
road section flow; and v is its vector form, i.e., v = {· · · , vi, · · ·}; ei is the i-th type of weight
coefficient, and e is its vector form, i.e., e = {· · · , ei, · · ·}; from Formula (9), ∑i∈I ei = 1; σ2

i
is the variance of i-th type observed flow.

2.3. Maximum Likelihood Traffic Demand Estimation Model

Because the arrival of vehicles in unit time is random, this paper uses a Poisson
distribution to describe the random traffic demand qω ∼ Pois(dω). If the traffic volume
is not very low, the traffic demand is approximately in the form of a multivariate normal
distribution as follows:

q ∼ N(d, Λ) (10)

where d is the mean vector form of traffic demand, i.e., d = {· · · , dω, · · ·}. This paper
assumes that the traffic demand is independent of each other, so the covariance matrix of
traffic demand is Λ = diag(d).

In the stochastic user equilibrium model, the relationship between path flow and OD
demand is as follows:

f ω
k = qω · pω

k (c
ω) = qω · Pr(cω

k ≤ cω
l , ∀l ∈ Kω, l 6= k|cω ), ∀ω ∈W, k ∈ Kω (11)

where f ω
k is the flow on path k between OD pair ω; Pr(·) is the probability operator; cω

is the vector form of path travel time cω
k , i.e., cω =

{
· · · , cω

k , · · ·
}

; where pω
k is the route

selection probability of travel users on path k between OD pair ω and it can be obtained by
calculating the following logit formula:

pω
k =

exp
(
−θcω

k
)

∑k∈Kω exp
(
−θcω

k
) , ∀ω ∈W, k ∈ Kω (12)
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where θ is the discrete parameter used to measure the degree of perception error of road
travelers; where cω

k is the estimated route travel time on path k between OD pair ω. There-
fore, the path flow also follows the form of a multivariate normal distribution is as follows:

f ∼ N
(

pd, pΛpT
)

(13)

where p is the mean vector form of path selection probability, i.e., p =
{
· · · , pω

k , · · ·
}

.
Because the road flow is the sum of the path flow, the central limit theorem shows that the
road flow also obeys the form of a multivariate normal distribution is as follows:

V ∼ N
(

∆pd, ∆pΛpT∆T
)

(14)

where V is the mean vector form of flow of all sections, i.e., V = {· · · , va, · · ·}, va is
the traffic flow on the road section; A is the section set; ∆ =

(
δω

a,k

)
is the path link

incidence matrix.
According to the fusion of the observed link flow (Equation (8)) and the analytical

relationship between link flow and traffic demand (Equation (14)), the likelihood function
of traffic demand is established as follows:

L(d) = g(V|d) (15)

where g(·) is the probability density equation. It can be seen from the front that the road
section flow V obeys the multivariate normal distribution, and its log likelihood function is
as follows:

lnL(d) = −1
2

ln
(∣∣∣∆pΛpT∆T

∣∣∣)− 1
2

(
V̂− ∆pd

)T(
∆pΛpT∆T

)−1(
V̂− ∆pd

)
(16)

where V̂ is the fused observed link flow.
Based on the fusion technology, i.e., the link flow obtained from Equations (8) and

(9), the maximum likelihood traffic demand estimation model is established by using the
bi-level programming theory, the upper model uses the maximum likelihood method
to solve the traffic demand, and the lower model uses the SUE model to solve the path
selection probability and the upper level is as follows:

upper level:
max[lnL(d)] (17)

lower level: The SUE model (Equation (11)) is used to allocate the traffic demand to obtain
the route selection probability.

3. Algorithm Design

To identify the number and location of detectors, a successive identification detector
algorithm is designed to solve the detector layout model; that is, one optimal detector
location is identified each time and added to the detector set, and the path coverage infor-
mation is updated. This method is simple and easy to apply to practical engineering. When
solving the maximum likelihood traffic demand estimation model, the iterative algorithm
framework is used to calculate the upper and lower models repeatedly. The upper maxi-
mum likelihood model is solved by the steepest descent method, and the lower SUE model
is solved by a successive average algorithm. The algorithm is as follows (Algorithm 1):
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Algorithm 1: Successive recognition detector algorithm

step 1.1 Initialization: set the number of initial detectors s = 0; weight coefficient α; prior
traffic demand D; initial detector placement strategy Z = ∅; initial path set Y = ∅.

step 1.2 Solving SUE model with successive average algorithm, obtain road flow va, path
flow f ω

k and path link association parameters δω
a,k; according to Equation (2),

calculate the maximum number of detectors smax in the road section.
step 1.3 Link model coefficient: for each road section, the detector layout coefficient α · ṽa

based on road section flow is calculated.
step 1.4 Path model coefficient: in the whole road network, the path flow in the path set Y is

eliminated to obtain the new link flow ṽroute,a, then the detector layout coefficient
(1− α) · ṽroute,a based on path flow is calculated for each road section.

step 1.5 Identifying a new detector position Z(s) (except Z) makes the objective function

maximum, that is maxZ(s)∈A

[
α · ṽZ(s) + (1− α) · ṽroute,Z(s)

]
, and add it to the

detector layout strategy Z. In addition, add all paths through the section to the path
collection Y.

step 1.6 Convergence test: order s = s + 1, if s ≥ smax, stop the calculation, Z is the optimal
detector placement strategy; otherwise, go to step 1.4.

According to the number and location of detectors obtained by Algorithm 1, observe
traffic flow, speed, density, travel time, etc. on these sections. Then, Formulas (8) and (9) are
used to fuse these observation variables, and traffic demand is estimated by Algorithm 2.

Algorithm 2: Iterative algorithm for traffic demand estimation model

step 2.1 Initialization: set the number of iteration steps n = 0; convergence accuracy ε; mean

d(0) of traffic demand, so the covariance matrix of traffic demand is Λ = diag
(

d(0)
)

,

at the same time, the initial traffic demand is set as d(0); link flow V̂ after fusion.
step 2.2 Solving the underlying model: Using successive average algorithm to solve SUE

model, i.e., distribution demand d(n), then the path selection probability p(n) is
obtained.

step 2.3 Solving the upper model: probability of path selection in p(n), using the steepest

descent method to solve the auxiliary OD demand d(n).

step 2.4 Update traffic requirements: order d(n+1) = d(n) +
(

1
n

)
· (d(n) − d(n)).

step 2.5 Convergence test: if ‖d(n+1) − d(n)‖/‖d(n)‖ ≤ ε, stop the calculation, d(n+1) is the
optimal traffic demand; otherwise, order n = n + 1, go to step 2.2.

The designed algorithms are programmed in MATLAB R2016a and tested on the
notebook computer with Intel(R) Core(TM) i7-5600U CPU 2.60 GHz, 8 GB memory.

4. Example Analysis
4.1. Nguyen-Dupuis Network

Nguyen-Dupuis Network [16] is composed of 13 nodes, 38 road sections and 18 OD pairs.
The topology, road section attributes and traffic demand are shown in Figure 1, Tables 1 and 2,
respectively. The number near the line in Figure 1 represents road order. The section impedance

is represented by the section characteristic function ta(xa) = t0
a

[
1+ β

(
xa
Ca

)n]
of the Federal

Highway Administration (BRP), where ta, t0
a, xa and Ca represent the actual travel time,

free travel time, flow and capacity of link a, respectively, and β = 0.15 and n = 4 are the
determining parameters.
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Figure 1. Nguyen-Dupuis network topology.

Table 1. Nguyen-Dupuis network link properties.

Link t0
a Ca Link t0

a Ca Link t0
a Ca

1 7 700 14 4 700 27 4 280
2 9 560 15 9 280 28 9 700
3 12 560 16 8 560 29 4 700
4 5 375 17 7 140 30 9 700
5 12 420 18 14 560 31 4 280
6 9 420 19 11 560 32 5 700
7 5 700 20 11 560 33 9 420
8 4 280 21 14 560 34 12 420
9 9 700 22 6 140 35 5 375
10 4 700 23 9 560 36 12 560
11 9 700 24 9 280 37 9 560
12 5 280 25 4 700 38 7 700
13 9 280 26 9 280

Table 2. Nguyen-Dupuis network OD demand.

O D Demand O D Demand

1 2 210.00 2 1 210.00
1 3 430.00 2 4 320.00
1 8 320.00 2 12 50.00
4 2 320.00 3 1 430.00
4 3 110.00 3 4 110.00
4 8 210.00 3 12 40.00
12 2 50.00 8 1 320.00
12 3 40.00 8 4 210.00
12 8 60.00 8 12 60.00

First, the detector layout model is tested. The prior OD demand is shown in Table 2,
the weight coefficient is set to α = 0.5, and the maximum number of detectors (section
speed) of road section smax = 6. Figure 2 depicts the changes in the objective function
values of the three models (the objective function only considers the road section coverage
information: ∑

a∈A
ṽaza, a detector layout model in this paper, and the objective function only

considers path coverage information: ∑
ω∈W

∑
k∈Kω

f̃ ω
k Ψω

k ) after the detector layout position

is identified one by one. The target function values of the three models increase with the
increase in the number of detectors, which means that more observation information can
obtain a higher coverage information detector deployment scheme. Compared with the
traditional detector layout model, the detector layout model proposed in this paper can
obtain a more reliable detector layout scheme by using the coverage information of both
road sections and paths.
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Figure 2. Under different models, the updated objective function values are identified one by one
with the detector location.

To illustrate the robustness of the maximum likelihood traffic demand estimation
model, Figure 3 analyses the sensitivity of traffic demand. The root mean square error
(RMSE) of traffic demand is defined as follows:

RMSE =
‖dtru − dest‖√

|ω|
(18)

where dtru, dest and |ω| represent the accurate traffic demand, the estimated traffic demand
and the potential of traffic demand respectively. The average value of traffic demand is
shown in Table 2. According to the detector location calculated by the previous detector
layout model, the flow, speed, density, travel time, etc. on observation Sections 37, 2, 25,
14, 18 and 21 are obtained from the average value of traffic demand allocated by the SUE
model. These observed traffic variables are further fused according to Equation (8). To
illustrate the effectiveness of the model, d is also used as the “accurate traffic demand”
of the test network. It can be seen in the figure that the RMSE of traffic demand reaches
the minimum value of 0 when the observed link flow and speed disturbance are both 0%,
which indicates that the proposed maximum likelihood traffic demand estimation model
can estimate the traffic demand close to the actual value. RMSE increases with the increase
in link flow and speed disturbance, which means that the disturbance of input parameters
(link flow and speed) has a significant impact on the estimation of traffic demand.
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to be modified, three detectors need to be added and three detectors need to be retained. 
Therefore, the detector layout model can be used to formulate the layout strategy of refit-
ting and adding detectors with maximum coverage information under a given budget. 
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Figure 3. Influence of root mean square error of demand estimation on observed road flow and speed.
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4.2. Sioux Falls Network

Sioux Falls network [17] is used to illustrate the convergence characteristics of the
design algorithm. The network consists of 24 nodes, 76 road sections and 550 OD pairs
(as shown in Figure 4). The BPR characteristic function (β = 0.15, n = 4) is also used
to calculate the section impedance, and the link characteristics and mean OD demand
reference to [17].
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Figure 4. Sioux Falls network topology.

In the actual road network, some road sections have been equipped with detectors.
The optimal layout strategy of modified and newly installed detectors is tested in Figure 5.
Detectors have been installed on Sections 11, 34, 43, 58 and 72 with a total budget of 400. The
costs of retrofitting and installing new detectors are 50 and 100, respectively. Figure 5 shows
that the objective function value increases with the increase in the number of modified
or new detectors. Compared with the existing detectors, the modified or new detectors
produce higher objective function values, which means that the modified or new detectors
can obtain more complete coverage information to calculate more reliable traffic demand.
Figure 5 also shows that in the optimal detector layout state, two detectors need to be mod-
ified, three detectors need to be added and three detectors need to be retained. Therefore,
the detector layout model can be used to formulate the layout strategy of refitting and
adding detectors with maximum coverage information under a given budget.
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Figures 6 and 7 further describe the convergence characteristics of the design iterative
algorithm. The iterative algorithm can achieve an accuracy of 10−3 in 20 s. Similarly, the
successive average algorithm for solving the lower SUE model, the one-dimensional search
algorithm and the steepest descent algorithm for solving the upper maximum likelihood
estimation can quickly converge to the equilibrium solution. One-dimensional search is
the step search method in the steepest descent method. The solution of this process has an
oscillation phenomenon, but the convergence error shows a downward trend as a whole,
and other algorithms can converge steadily. Figure 7 tests the evolution process of traffic
demand. The initial iteration process of traffic demand changes greatly. When running for
approximately 150 s, the traffic demand can converge to the accurate value.
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5. Conclusions

To obtain the basic data of urban road network planning and traffic control, a detector
layout model and a maximum likelihood traffic demand estimation model are established
by using the multisource data observed by modern information technology. The former
provides the location and quantity of data monitoring for the latter, and the minimum vari-
ance weighted average technology is used to fuse the multisource data. Furthermore, the
bilevel programming method is used to estimate the traffic demand. We design a successive
detector recognition algorithm and an iterative algorithm to solve the two models.

We use the Nguyen Dupuis and Sioux Falls networks to test the performance of the
proposed model and algorithm. The results show that the detector placement scheme
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considering both the coverage information of road section and path is more reliable, and
the designed detector layout model can determine the optimal layout strategy for newly
installed and refitted detectors. The disturbance of input parameters has a significant
impact on traffic demand estimation, and the designed algorithm can achieve an accuracy
of 10−3 in 20 s; the traffic demand estimation method based on multisource data fusion
fully mines the observed data information to estimate the traffic demand close to the actual
value. In a follow-up study, we will estimate the dynamic traffic demand in the congestion
network and further use the estimated traffic demand to make proper traffic management
policies. And apply the proposed model in the real urban traffic network.
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