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Abstract: Understanding land-use dynamics and their impacts on ecosystem service values (ESVs) is
critical to conservation and environmental decision-making. This work used the Google Earth Engine
(GEE) platform and an adjusted value transfer method to investigate spatiotemporal ESV changes in
the Shenyang Metropolitan Area (SMA), a National Reform Pilot Zone in northeast China. First, we
obtained land-use classification maps for 2000, 2005, 2010, 2015, and 2020 using a GEE-based Landsat
dense stacking methodology. Then, we employed four spatiotemporal correction factors (net primary
productivity, fractional vegetation cover, precipitation, and crop yield) in the value transfer method,
and analyzed the ESV dynamics. The results showed that forest land and cropland were the two
dominant land-use types, jointly occupying 75–89% of the total area. The built-up areas expanded
rapidly from 2727 km2 in 2000 to 3597 km2 in 2020, while the cropland kept decreasing, and suffered
the most area loss (−1305.09 km2). The ESV of the SMA rose substantially from 814.04 hundred
million Chinese Yuan (hmCYN) in 2000 to 1546.82 hmCYN in 2005, then kept decreasing in 2005–2010
(−17.01%) and 2010–2015 (−10.75%), and finally increased to 1329.81 hmCYN in 2020. The ESVs
of forest comprised most of the total ESVs, with the percentage ranging from 72.65% to 77.18%,
followed by water bodies, ranging from 11.61% to 15.64%. The ESV changes for forest land and water
bodies were the main drivers for the total ESV dynamics. Overall, this study illustrated the feasibility
of combining the GEE platform and the spatiotemporal adjusted value transfer method into the
ESV analysis. Additionally, the results could provide essential references to future environmental
management policymaking in the SMA.

Keywords: Google Earth Engine; land use; the Shenyang Metropolitan Area; ecosystem service
values

1. Introduction

Ecosystems provide a wide range of direct or indirect services to human well-being,
called ecosystem services [1,2]. The Millennium Ecosystem Assessment classified ecosys-
tem services into four main categories: provisioning services (e.g., food and raw materials),
regulating services (e.g., climate regulation and flood regulation), supporting services (e.g.,
nutrient cycling and soil formation), and cultural services (e.g., recreation and aesthetic
appreciation) [1]. These services provide necessary guarantees and support for human
existence and good quality of life [3–6], and are recognized as a critical foundation for
achieving the United Nations Sustainable Development Goals (SDGs) [6–8]. However,
with increasingly intense human activities such as urban development and population
growth, the structure and service functions are significantly undermined and degraded
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over time and space [9–11]. For example, the Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services (IPBES) Global Assessment report noted that
human actions had altered 75% of land-based environment, and approximately 66% of
the marine environment [12]. The total global ecosystem service values in 2007 were
145 trillion/year and dropped to 125 trillion/year in 2011 [10]. Land-use changes, an
essential indicator of human activities, are the main driving forces for altering ecosystem
services [1,13,14]. Thus, evaluating land-use dynamics and their impact on ecosystem
service values (ESVs) could provide essential information for ecosystem services-based
conservation and environmental decision-making [15–17], and has attracted worldwide
attention [18,19].

Analyzing ESV changes usually requires two prerequisites: land use data and the
ESV assessment method, which links land use with ESVs. One way to obtain land use
data is to directly adopt existing databases, which are usually expensive or only available
for specific areas and periods. Another way is through remote sensing to process satel-
lite imageries. However, this method involves significant data acquisition and storage
tasks, and needs high computing costs, especially for large areas such as on the regional
and global scales [20]. Google launched a cloud-based platform named the Google Earth
Engine (GEE) [21], which provides free access to more than 40 years’ worth of world-
wide satellite images at a petabyte-scale. GEE also offers a packaged algorithm for image
preprocessing with relative ease, for example, machine learning classifiers for land use
classification [22,23]. Overall, GEE provides user-friendly and high-performance geospatial
tools to process large data sets for regional and global applications [24], and now has been
wildly adopted into various decision-making contexts, such as vegetation mapping [25,26],
agricultural productivity assessment [27,28], and land cover mapping [22,23,25,29–31]. As
for ESV assessment methods, one of the most well-known is the benefit transfer approach
proposed by Costanza et al., which covers 17 ecosystem services for 16 biomes and esti-
mates their equivalent value per unit area globally. This method is intuitive, has fewer
data requirements, is particularly suitable for assessing ESVs at the regional and global
scales [12,17,32], and, therefore, is widely adopted across the world [9,32–34]. For example,
Xie et al. [35,36] built an equivalent coefficient table based on Costanza et al. that has been
extensively used in China [7,12,37–39]. However, the value transfer methods are frequently
criticized for simply handling the complexity and spatial heterogeneity of the ecosystem
by using static and global value factors. Therefore, numerous studies have attempted to
introduce biophysical and statistical adjustment factors for spatial and temporal corrections
of the value coefficient. For example, Xie et al. adopted net primary productivity (NPP),
erosion prevention, and precipitation factors to evaluate the ESV changes in China [32].
Song et al. analyzed the spatial ESV changes in the North China Plain by introducing NPP
and soil erosion factors [40]. Sannigrahi et al. used multiple factors, including a normalized
difference vegetation index (NDVI), NPP, fractional vegetation cover (FVC), precipitation,
and crop yield for ESV evaluation of a natural reserve region [41].

For this study, we combined the advancements in land-use analysis and value transfer
methods to investigate ESV changes in the Shenyang Metropolitan Area (SMA). The SMA
is a critical National Reform Pilot Zone in northeast China, and has experienced rapid
economic development and urbanization processes, resulting in massive environmental
pressure in recent decades. However, a significant indicator of human activities—land-use
changes—and their effects on ESVs have not been systematically investigated, despite
the intense human economic activity so far. Therefore, the purpose of this paper is (1)
to propose GEE-based land-use changes and an ESV dynamic analysis framework, (2) to
analyze the land-use change characteristics using this framework, and (3) to investigate ESV
dynamics in the SMA. The result would provide helpful information to future ecosystem
management policymaking in the SMA.



Sustainability 2021, 13, 12694 3 of 20

2. Materials and Methods
2.1. Study Area

The SMA is located in central-north Liaoning Province, in the northeast of China
(122◦24′ E–125◦47′ E, 40◦00′ N–43◦02′ N), with an area of 37,280 km2 (Figure 1). The SMA
was set as one of the National Comprehensive Reform Pilot Zones by China’s State Council
in 2010. It initially consisted of eight prefecture-level cities, and was adjusted to five in
2017: Shenyang city (the capital of Liaoning Province), Benxi city, Anshan city, Fushun city,
and Liaoyang city. To the east and south of SMA are the Qianshan Mountains (a branch of
the Changbai Mountains), while to the west and north is the Liaohe Plain (a part of the
North China Plain). The SMA has a monsoon-influenced hot-summer humid continental
climate (Dwb), with four distinctive seasons. In 2019, the average annual temperature was
9.8 ◦C. The average monthly temperature extended from −7.2 ◦C in January to 26.1 ◦C
in July. The yearly precipitation was 786.5 mm [42,43]. As an important agricultural area
in Liaoning Province, the total grain output of the SMA in 2019 was 6.433 million tons,
accounting for 39% of the grain output of Liaoning Province. The grain crops are mainly
corn and rice, accounting for more than 95% of the total grain output. The SMA is also an
important political and economic center in northeast China. In recent decades, the SMA
has experienced rapid industrialization and urbanization. The population increased from
15.9 million in 2000 to 16.2 million in 2019, and the gross domestic product (GDP) rose from
2277.53 hundred million Chinese Yuan (hmCYN) to 10,674.8 hmCYN in 2019 [42,43].
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Figure 1. (a) Location of the Shenyang Metropolitan Area in China and (b) its administrative division
and topographical map. SY: Shenyang city; FS: Fushun city; LY: Liaoyang city; BX: Benxi city; AS:
Anshan city.

2.2. Overall Workflow

The study consists of two primary steps (Figure 2): land-use changes analysis based
on the GEE platform, and ESV changes evaluation based on a spatiotemporal adjusted
value transfer method. We discuss both parts briefly, in Sections 2.3 and 2.4, respectively.
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2.3. The Process of Land-Use Change Analysis in GEE
2.3.1. Data Acquisition and Processing

We classified the land use of the SMA on the GEE platform for the years 2000, 2005,
2010, 2015, and 2020. We depicted the general procedures in Figure 3. With a nomi-
nal resolution of 30 meters and a temporal granularity of 16 days, Landsat is one of the
most commonly used remote sensing data for land use classification [21,23,44]. In con-
trast, GEE has free access to decades of global coverage of Landsat dataset, including
Landsat 4–8 surface reflectance (1984–now), Landsat 5 TM (1984–2012), Landsat 7 ETM+
(1999–now), and Landsat 8 OLI/TIRS (2013–now) [20]. This study employed Landsat
7 Surface Reflectance Tier 1 from the Landsat 7 database, and Landsat 8 Surface Tier 1
from the Landsat 8 databases. We selected 11 scenes, based on the study area boundary.
Figure 4a shows the spatial ground coverage of the selected scenes, including their path
and row number. We excluded images with cloud cover greater than 20%. The time interval
of the image was from March 1st to October 31st, when the SMA is snow-free. As the
image quality usually suffers from high cloud cover, resulting in empty pixels or scenes,
we adapted the dense stacking approach [29,30,45]. We finally screened out 633 scenes of
Landsat images to composite land use data for 2000 (104 scenes), 2005 (139 scenes), 2010
(128 scenes), 2015 (162 scenes), and 2020 (100 scenes) (more details listed in Table S1). To
increase the classification accuracy, we also included the digital elevation model (DEM),
slope, normalized difference vegetation index (NDVI) [46], and normalized difference
water index (NDWI) [47] into the classification framework. The DEM data were from
NASA SRTM Digital Elevation 30m databases in GEE. The slope data were derived from
DEM, using the slope function provided by GEE. NDVI and NDWI were obtained through
band calculation in GEE.

2.3.2. Image Classification and Accuracy Assessments

We identified six land-use types: water body, forest land, built-up area, cropland,
grassland, and unused land. The land-use classification scheme was based on China’s
Multi-Period Land Use Land Cover Remote Sensing Monitoring Data Set (CNLUCC) [48].
The description for each land-use type is listed in Table S2. Next, we prepared the reference
points using visual interpretation of the high-resolution history images of Google Earth
in different years. In total, we obtained over 3600 reference points, and their spatial
distribution is shown in Figure 4b. Then, we employed the random forest algorithm as
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the land-use classification classifier. The random forest classifier is well known for its
efficiencies and accuracy, even with more substantial data noise [49,50]. We trained the
random forest classifier using 70% of the reference data, and 30% for model validation.
Finally, we employed the producer’s accuracy, user’s accuracy, and kappa coefficient [51]
to examine the accuracy of the classification results.
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2.4. Assessment of the Ecosystem Service Values Changes
2.4.1. The Equivalent Table and Standard Value Factors

We quantified the ESVs based on the equivalent table method [32,35,36]. Overall,
eleven ecosystem service functions were studied: food supply, raw material supply, water
supply, air regulation, climate regulation, purifying the environment, hydrology adjust-
ment, soil formation, nutrient cycling, biological control, and culture and amenity. The
equivalent factors of the six land-use types for the eleven ecosystem service functions are
listed in Table S3. The method took the economic value of food production per unit area of
the cropland as the standard equivalent value factor using the following equation:

Ea =
1
7
×

n
∑

i=1
mi × pi × qi

n
∑

i=1
mi

(1)

where Ea is the standard equivalent value factor (Chinese Yuan·ha-1 (CNY·ha−1)); i rep-
resents the crop type; and m, p, and q represent the sown area (ha), the average market
price (CNY·Kg−1), and the crop yield per unit (kg·ha−1), respectively. We included three
types of grain (corn, rice, and bean) for the calculation, as their output accounted for more
than 97% of the total grain output in the SMA. The prices and production of agricultural
product data were from China’s Agricultural Product Cost-benefit Data, the China Statis-
tical Yearbook, Liaoning Statistical Yearbook, and Grain Statistics Announcement by the
National Bureau of Statistics of China. We used the average price to eliminate the impact of
price inflation. Finally, the economic values of one weight factor for 2000, 2005, 2010, 2015,
and 2020 were 1247.8 CNY·ha−1, 1677.6 CNY·ha−1, 1506.6 CNY·ha−1, 1605.6 CNY·ha−1,
and 1722.8 CNY·ha−1, respectively.

2.4.2. Spatiotemporal Correction Factors

We adopted NPP, FVC, crop yield, and precipitation to adjust the equivalent coeffi-
cients based on previous work [32,40,41]. We have listed the equations, the corresponding
relationship between the correction coefficients and ecosystem service functions, and the
data sources in Table 1. The spatial distributions of correction factors for the years 2000,
2005, 2010, 2015, and 2020 are shown in Figure 5.

Table 1. Equations and the corresponding and data sources of the correction factors.

Correction Factors Equations Ecosystem Service Functions Data Sources

Net primary productivity
(NPP) EFNPP =

NPPi
NPPC

EFNPP is the correction factor
of NPP; NPPi and NPPC

represent the NPP value at
the study location and

average NPP value of China.

Raw material supply, air
regulation, climate regulation,

purifying environment,
nutrient cycling, biological

control, and culture and
amenity

NPP was from the
MOD17A3HGF V6 database

in GEE.

Fractional vegetation cover
(FVC)

EFFVC =
FVCi
FVCC

FVC =
NDVI−NDVImin

NDVImax−NDVImin

EFFVC is the correction factor
of fractional vegetation cover;

FVC is the fractional
vegetation cover; FVCi and

FVCC represent the fractional
vegetation cover at the study

location and the annual
average value of China; and

NDVI represents the
Normalized Difference

Vegetation Index.

Soil formation
NDVI was from the

MOD13A2 V6 database in
GEE.
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Table 1. Cont.

Correction Factors Equations Ecosystem Service Functions Data Sources

Crop yield EFY =
Yi
YC

EFY is the correction factor of
crop yield; Yi and Yc

represent the crop yield at the
study location and the annual

average value of China.

Food supply

The crop yield data were
from the China Statistical

Yearbook, Liaoning Statistical
Yearbook, and Grain Statistics

Announcement by the
National Bureau of Statistics

of China.

Precipitation EFP =
Pi
PC

EFP is the correction factor of
precipitation; Pi and Pc

represent the annual
precipitation at the study
location and the annual
precipitation average of

China.

Water supply and water
regulation

The precipitation data were
from National Earth System
Science Data Center, China’s

National Science and
Technology Infrastructure.
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Figure 5. Spatiotemporal correction factor maps of (a–e) net primary productivity (2000, 2005, 2010, 2015, and 2020);
(f–j) fractional vegetation cover (2000, 2005, 2010, 2015, and 2020); (k–o) precipitation (2000, 2005, 2010, 2015, and 2020); and
(p–t) crop yield (2000, 2005, 2010, 2015, and 2020).

2.4.3. ESV Calculation and Change Analysis

Finally, the total ESVs were calculated using the following equations:

ESVk = ∑
f

Ak × EFf ×VCk f (2)

ESVf = ∑
k

Ak × EFf ×VCk f (3)
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ESV = ∑
k

∑
f

Ak × EFf ×VCk f (4)

where ESVk represents the ecosystem service value of the land-use type k (CNY), ESVf is
the ecosystem service value of ecosystem service function f (CNY), and ESV is the total
of the ecosystem service values (CNY). EF is the correction factor of ecosystem service
function f. Ak is the land-use type k area (ha), and VCkf is the unit value for ecosystem
service function f of land use type k [12,41,52].

After that, the change rate of ESV was measured as follows:

∆ESVT1−T2(%) =
ESVT2 − ESVT1

ESVT1

× 100% (5)

where ∆ESVT1−T2 is the change rate of ESV from the years T1 to T2 (%), and ESVT1 and
ESVT2 are the ecosystem service values in the years T1 and T2 (Yuan) [41].

2.4.4. Coefficient Sensitivity Assessment

Finally, we used the coefficient of sensitivity (CS) to examine the uncertainties using
the following equation [53]:

CS =

(
ESVj − ESVi

)
/ESVi(

VCjk −VCik

)
/VCik

(6)

where ESVj and ESVi are the initial and adjusted ecosystem service values (CNY). k repre-
sents the land-use type. If CS is greater than one, the estimated ESV is considered elastic.
However, if CS is less than one, the estimated ESV could be treated as inelastic, indicating
the robustness and reasonability of the ESV calculation [33,53–55].

3. Results
3.1. Land-Use Changes in the Shenyang Metropolitan Area

We depicted the land-use classification results for the years 2000, 2005, 2010, 2015,
and 2020 in Figure 6, and listed the statistical summary in Table 2. Forest land, mainly
distributed in the east and south, was the predominant land-use type in the SMA in all
five periods, accounting for 45.39% (21,120 km2), 45.18% (21,019 km2), 44.92% (20,900 km2),
44.18% (20,558 km2), and 44.30% (20,604 km2) for the years 2000, 2005, 2010, 2015, and
2020, respectively. Cropland was the second largest land-use type, accounting for 45.35%
(21,101 km2), 44.33% (20,625 km2), 43.55% (20,262 km2), 43.32% (20,154 km2), and 42.56%
(19,796 km2), respectively, and was mainly concentrated in the north and west. The built-up
area was primarily located in the central area, and occupied 2727 km2 (5.86%), 3038 km2

(6.53%), 3533 km2 (7.59%), 4081 km2 (8.77%), and 4601 km2 (9.89%) in 2000, 2005, 2010,
2015, and 2020, respectively, making it the third largest land-use type. Water, grassland,
and unused land did not illustrate apparent spatial distribution characteristics, and all
covered a small proportion, with a five-period average proportion of 1.76% (817 km2),
1.58% (734 km2), and 0.32% (149 km2), respectively.

Figure 7 illustrates the area and proportion change of land use from 2000 to 2020. The
built-up area increased rapidly, and the change rates were 11.4%, 16.31%, 15.51%, and
12.74% for 2000–2005, 2005–2010, 2010–2015, and 2015–2020, respectively, resulting in the
largest area gain (1874.43 km2) (Table S4). In contrast, a significant decline trend was found
in cropland (−2.25%, −1.76%, −0.53%, and −1.78% for 2000–2005, 2005–2010, 2010–2015,
and 2015–2020, respectively), causing the largest overall area reduction (−1305.09 km2). The
forest land decreased in 2000–2005 (−0.48%), 2005–2010 (−0.57), and 2010–2015 (−1.64%),
and increased slightly in 2015–2020 (0.23%), resulting in an overall area loss of−516.32 km2.
The grassland experienced a substantial expansion in 2000–2005 (20.6%), and kept decreas-
ing in 2005–2020, resulting in an overall area loss of 201.66 km2 (−27.47%). The water body
grew significantly in 2000–2005 and 2010–2015, descended in 2005–2010 and 2015–2020,
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and finally increased by 85.85 km2 (11.74%). The unused land increased from 2000 to
2015, and substantially declined in 2015–2020, with an overall increase of 45.21 km2 from
2000 to 2020.
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Table 2. Statistical summary of land use classifications (km2).

2000 2005 2010 2015 2020 Average

Land-Use Type Area % Area % Area % Area % Area % Area %

Water 731 1.57 842 1.81 822 1.77 874 1.88 817 1.76 817 1.76
Forest 21,120 45.39 21,019 45.18 20,900 44.92 20,558 44.18 20,604 44.30 20,840 44.79

Built-up area 2727 5.86 3038 6.53 3533 7.59 4081 8.77 4601 9.89 3596 7.73
Cropland 21,101 45.35 20,625 44.33 20,262 43.55 20,154 43.32 19,796 42.56 20,388 43.82
Grassland 734 1.58 885 1.90 845 1.82 672 1.44 532 1.14 734 1.58

Unused land 114 0.25 118 0.25 166 0.36 188 0.40 160 0.34 149 0.32

The overall accuracies for classification maps for the year 2000, 2005, 2010, 2015, and
2020 were 97.8%, 94.7%, 96.1%, 97.1%, and 96.2%, respectively, and the overall kappa
coefficients for each year were 0.968, 0.966, 0.941, 0.956, and 0.939, respectively (Table 3).
In addition to the low accuracy of the grassland, all of the producer’s accuracy and the
consumer’s accuracy are higher than 90%.
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Table 3. The results of the classification accuracy assessment.

2000 2005 2010 2015 2020

Land-Use Type PA CA PA CA PA CA PA CA PA CA

Water body 0.957 0.987 0.987 0.989 0.918 0.949 0.947 0.981 0.964 0.987
Forest land 0.981 0.98 0.976 0.967 0.982 0.962 0.996 0.993 0.943 0.953

Built-up area 0.97 0.992 0.941 0.962 0.941 0.965 0.951 0.97 0.953 0.973
Cropland 0.993 0.97 0.982 0.963 0.989 0.962 0.989 0.969 0.98 0.949
Grassland 0.733 0.916 0.613 0.95 0.672 0.886 0.777 0.907 0.696 0.941

Unused land 0.971 0.943 0.98 0.981 0.924 0.973 0.969 0.984 0.963 0.987

Overall accuracy 0.978 0.947 0.961 0.971 0.962
Kappa coefficient 0.968 0.966 0.941 0.956 0.939

PA: producer’s accuracy; CA: consumer’s accuracy.

3.2. Spatiotemporal Changes in Ecosystem Service Values

Figure 8 depicts the spatial distribution of ESVs of the SMA in the years 2000, 2005,
2010, 2015, and 2020. The ESVs were high in the eastern and northern regions, and low in
the west and south. The total ESVs in 2000, 2005, 2010, 2015, and 2020 are 814.04 hmCNY,
1546.82 hmCNY, 1283.78 hmCNY, 1145.76 hmCNY, and 1329.81 hmCNY, respectively
(Figure 9a and Table S5). The ESVs of forest land comprised the largest portion (Figure 9b),
with the percentage ranging from 72.65% to 77.18%, followed by water, ranging from 11.61%
to 15.64%, and cropland, ranging from 8.45% to 9.93%. The ESVs for ecosystem service
functions are shown in Figure 9c and Table S6. ESVs for hydrology adjustment (ranging
from 22.60% to 28.86%) and ESV climate regulation (ranging from 22.12% to 24.89%) are
the two most significant contributors to the overall ESVs, followed by biological control
(ranging from 8.27% to 9.73%), gas regulation (ranging from 8.51% to 9.99%), soil formation
(ranging from 7.52% to 8.94%), and purifying the environment (6.51% to 7.63%). Ecosystem
service functions with the least ESVs were raw material supply, water supply, and nutrient
cycling, with a five-period average value of 39.26 hmCNY (3.12%), 31.60 hmCNY (2.54%),
and 12.07 hmCNY (0.99%), respectively.

We illustrate the spatial and temporal ESV changes in 2000–2005, 2005–2010, 2010–2015,
2015–2020, and 2000–2020 in Figures 10 and 11, and their statistical summary in Tables S7 and S8.
The most dynamic change areas of ESVs were located mainly in the eastern and northern
regions. The overall ESVs had a substantial increase (732.78 hmCNY, 90.02%) from 2000 to
2005, then declined by −17.01% (−263.04 hmCNY) in the period between 2005 and 2010, and
by −10.75% (−138.02 hmCNY) in 2010–2015, and finally increased significantly in 2015–2020
(184.05 hmCNY). The ESV change in forest land comprised most of the variations of the total
ESV in all four periods. ESV changes in water were the second contributor to the ESV change
in 2000–2005, 2010–2015, and 2015–2020. In contrast, from 2005 to 2010, the decrease in ESVs of
cropland (−27.22 hmCNY) contributed the second most to the loss in total ESVs. From the
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perspective of overall ESV changes from 2000 to 2020, forest land comprised the most ESV
changes (365.57 hmCNY), followed by water body (113.41 hmCNY), cropland (36.11 hmCNY),
and grassland (0.66 hmCNY). However, from the perspective of the degree of changes, the
water body ranked first (119.96%), followed by forest land (58.19%) and cropland (44.65%)
(Table S4). Hydrology adjustment and climate regulation were the primary ecosystem service
functions with the most significant ESV changes, with overall changes of 199.87 hmCNY and
101.68 hmCNY, respectively, followed by soil formation (43.95 hmCNY) and gas regulation
(38.55 hmCNY). While from the perspective of the degree of changes, ecosystem functions
with the most changes by percentage were hydrology adjustment (108.85%), followed by water
supply (107.33%), and soil formation (64.83%).
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3.3. Ecosystem Service Values in the Prefecture-Level Cities

Fushun had the highest ESVs among the five prefecture-level cities of the SMA,
with a five-period average value of 420.08 hmCNY, followed by Benxi (362.65 hmCNY),
Anshan (212.32 hmCNY), Shenyang (124.02 hmCNY), and Liaoyang (104.94 hmCNY)
(Figure 12). The ESV dynamics of the five cities were the same as that of the entire SMA
region, which increased in 2000–2005, descended in 2005–2015, and ascended finally in
2015–2020. The ESVs of forest land constituted the most significant portion of ESVs in
Anshan (ranging from 74.21%–77.65%), Fushun (89.47%–89.10%), Benxi (80.97%–85.95%),
and Liaoyang (58.77%–65.89%), while for Shenyang, the highest ESVs were associated with
water bodies (37.8%–52.09%) and cropland (38%–51.22%) (Table S9). Hydrology adjustment
and climate regulation were the primary ecosystem service functions for Anshan (jointly
accounting for 46.5%–52.5%), Fushun (47.7%–52.9%), Benxi (50.9%–57.8%), and Liaoyang
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(51.3%–59.5%) (Table S10). In contrast, for Shenyang, hydrology adjustment and food
supply together comprised 58.2%–64.6% of the total ESV (more information can be found
in Tables S9 and S10).
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environment, HA: hydrology adjustment, SF: soil formation, NC: nutrient cycling, BC: biological
control, CA: culture and amenity.
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3.4. Sensitivity Assessment

The sensitivity assessment indicates that the CS of six land-use types was less than
one in all cases (Table 4). In all five periods, the CS of forest land ranked first, with an
average value of 0.749, followed by water body (0.148), cropland (0.091), grassland (0.012),
unused land (0.000), and built-up areas (0.000).

Table 4. The coefficient of the sensitivity value of different land uses for 2000, 2005, 2010, 2015, and 2020.

Year
Coefficient of Sensitivity

Water Forest Land Built-Up Area Cropland Grassland Unused Land

2000 0.116 0.772 0.000 0.099 0.013 0.000
2005 0.147 0.751 0.000 0.088 0.014 0.000
2010 0.176 0.727 0.000 0.085 0.013 0.000
2015 0.142 0.750 0.000 0.097 0.011 0.000
2020 0.156 0.747 0.000 0.088 0.008 0.000

Average 0.148 0.749 0.000 0.091 0.012 0.000

Table 5 represents the CS of different ecosystem service functions. The CS of forest
land was highest for most of the ecosystem service functions, including food supply, raw
material supply, water supply, air regulation, climate regulation, purifying the environment,
hydrology adjustment, soil formation, nutrient cycling, biological control, and culture and
amenity. The CS of cropland was found to be highest for the food supply function, while
for hydrology adjustment in 2015, the water body was associated with the highest CS.

Table 5. The coefficient of sensitivity values of ecosystem service function for the years 2000, 2005, 2010, 2015, and 2020.

Coefficient of Sensitivity

Ecosystem
Service

Function
Years Water Body Forest Land Built-Up

Area Cropland Grassland Unused
Land

Food supply

2000 0.023 0.254 0.000 0.716 0.007 0.000
2005 0.027 0.225 0.000 0.740 0.008 0.000
2010 0.026 0.237 0.000 0.730 0.008 0.000
2015 0.029 0.251 0.000 0.714 0.006 0.000
2020 0.027 0.253 0.000 0.714 0.005 0.000

Raw material

2000 0.003 0.721 0.000 0.265 0.011 0.000
2005 0.004 0.723 0.000 0.262 0.012 0.000
2010 0.004 0.715 0.000 0.270 0.011 0.000
2015 0.004 0.715 0.000 0.271 0.009 0.000
2020 0.004 0.729 0.000 0.260 0.007 0.000

Water supply

2000 0.385 0.581 0.000 0.025 0.009 0.000
2005 0.410 0.556 0.000 0.023 0.011 0.000
2010 0.410 0.557 0.000 0.022 0.010 0.000
2015 0.432 0.537 0.000 0.023 0.008 0.000
2020 0.414 0.557 0.000 0.023 0.006 0.000

Gas
regulation

2000 0.004 0.829 0.000 0.154 0.013 0.000
2005 0.004 0.829 0.000 0.152 0.015 0.000
2010 0.004 0.825 0.000 0.158 0.013 0.000
2015 0.005 0.825 0.000 0.158 0.012 0.000
2020 0.005 0.836 0.000 0.151 0.009 0.000
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Table 5. Cont.

Coefficient of Sensitivity

Ecosystem
Service

Function
Years Water Body Forest Land Built-Up

Area Cropland Grassland Unused
Land

Climate
regulation

2000 0.004 0.950 0.000 0.032 0.014 0.000
2005 0.005 0.949 0.000 0.031 0.015 0.000
2010 0.005 0.949 0.000 0.033 0.014 0.000
2015 0.006 0.950 0.000 0.033 0.012 0.000
2020 0.005 0.955 0.000 0.031 0.009 0.000

Purifying
environment

2000 0.036 0.919 0.000 0.030 0.015 0.000
2005 0.041 0.912 0.000 0.029 0.017 0.000
2010 0.041 0.913 0.000 0.031 0.015 0.000
2015 0.046 0.910 0.000 0.031 0.013 0.000
2020 0.042 0.918 0.000 0.029 0.010 0.000

Hydrology
adjustment

2000 0.443 0.515 0.000 0.032 0.011 0.000
2005 0.469 0.490 0.000 0.028 0.013 0.000
2010 0.470 0.491 0.000 0.028 0.011 0.000
2015 0.492 0.470 0.000 0.029 0.009 0.000
2020 0.474 0.490 0.000 0.029 0.007 0.000

Soil
formation

2000 0.004 0.795 0.000 0.189 0.013 0.000
2005 0.004 0.797 0.000 0.184 0.014 0.000
2010 0.004 0.792 0.000 0.191 0.013 0.000
2015 0.005 0.792 0.000 0.192 0.011 0.000
2020 0.004 0.804 0.000 0.183 0.008 0.000

Nutrient
cycling

2000 0.003 0.727 0.000 0.259 0.011 0.000
2005 0.004 0.728 0.000 0.255 0.013 0.000
2010 0.004 0.721 0.000 0.264 0.011 0.000
2015 0.004 0.721 0.000 0.265 0.010 0.000
2020 0.004 0.735 0.000 0.254 0.008 0.000

Biological
control

2000 0.013 0.941 0.000 0.031 0.015 0.000
2005 0.015 0.938 0.000 0.030 0.017 0.000
2010 0.015 0.939 0.000 0.032 0.015 0.000
2015 0.017 0.939 0.000 0.032 0.013 0.000
2020 0.015 0.945 0.000 0.030 0.010 0.000

Culture and
amenity

2000 0.022 0.931 0.000 0.032 0.015 0.000
2005 0.025 0.927 0.000 0.031 0.017 0.000
2010 0.024 0.928 0.000 0.033 0.015 0.000
2015 0.028 0.926 0.000 0.033 0.013 0.000
2020 0.026 0.933 0.000 0.031 0.010 0.000

4. Discussion
4.1. Land Use Changes and ESV Dynamics

Accurate land-use change data are a prerequisite for ecosystem service assessments.
This study used the Landsat dense stacking methodology and the random forest supervised
classification algorithm within the GEE platform to analyze the land-use changes in a
regional-scale case study in 2000, 2005, 2010, 2015, and 2020. The overall accuracy ranged
from 94.7% to 97.8%, and the kappa coefficient ranged from 0.939 to 0.968. The results
indicate that the method accurately classified the land use, and could provide a valid
reference to analyze the characteristics of the land-use changes.

According to the classification result, the dominant land-use types in the SMA region
were forest land and cropland, which jointly occupied 75%–89% of the total area. The
forest land is mainly distributed in the eastern and southern mountain regions, while the
cropland concentrates primarily on the northern and western plains.
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This study found that the most dramatic land-use change in SMA was the rapid
expansion of the built-up area, which increased from 2727 km2 in 2000 to 3596 km2 in
2020. The growth of the built-up regions is closely related to China’s rapid economic and
urbanization development in the past two decades. The results are consistent with other
China case studies [39,56–59]. However, contrary to the rapid growth of the built-up area,
the cropland kept shrinking from 2000 to 2020. The overall reduction area of cropland
was −1305.09 km2, the most extensive loss among the six land-use types. These results
highlight the importance of cropland protection in the SMA.

This study illustrated the usage of GEE in preparing land-use change data on a
regional scale. The GEE platform enables researchers free access to large datasets on a
large scale without downloading those data to their desktops. Additionally, it provides
packaged algorithms for image preprocessing with relative ease, for example, random
forest algorithms in this study. Furthermore, all of the processes are code-based. Therefore,
extending this research to other study areas or on a denser time-series study, for example,
yearly or even monthly analysis.

The study showed great ESV dynamics in the SMA during the period 2000 to 2020.
The total ESVs in 2000, 2005, 2010, 2015, and 2020 were 814.04 hmCNY, 1546.82 hmCNY,
1283.78 hmCNY, 1145.76 hmCNY, and 1329.81 hmCNY, respectively. The ESV of forest
land comprised the largest portion of the total ESV (from 72.65% to 77.18%), followed by
water bodies (from 11.61% to 15.64%). Forest land comprised the largest proportions of
land use, and water bodies are associated with the highest equivalent factors. This result
highlights the importance of forest land and water bodies in SMA’s ecosystem service
provision. This study also found that ESVs for hydrology adjustment and ESV climate
regulation are the two primary contributors of overall ESVs, since climate regulation for
forests and hydrology adjustment for water bodies have the highest equivalent factors.

The ESV change analysis showed that the ESV change for forest land comprised most
of the variations in the total ESV, followed by water bodies and cropland. In contrast, the
water body ranked first in the perspective of the dynamic degree changes. Therefore, forest
land and water bodies should be priorities in protecting ecosystem services in SMA.

4.2. Limitations

This study successfully used the GEE and a spatiotemporal adjusted value transfer
method to assess land use and ESV changes in the SMA. However, some limitations and
uncertainties need further investigation. First, the classification accuracy assessments
indicated low grass product accuracy in 2000, 2005, 2010, 2015, and 2020, which may be
caused by small sizes of reference data for grassland, and the similar spectral characteristics
between cropland and grassland. Second, although we introduced a spatiotemporal
correction factor to improve the equivalent factor method, some shortcomings still exist.
For example, we did not consider uncertainty caused by the impact of price fluctuation
or people’s willingness to pay. Third, this study employed coefficient sensitivity to test
the uncertainty. In this method, the CS value is employed to indicate the reliability of the
results. However, we tried using ±10%, ±20%, ±30%, ±40%, and ±50% changes, and
consistently obtained the same results. The results were consistent with the findings of
Aschonitis et al. [60]. Therefore, future research is required for another robust sensitivity
assessment method.

4.3. Contribution of This Study

First, evaluating land-use dynamics and their impact on the value of ecosystem
services could provide essential information for ecosystem services-based conservation
and environmental decision-making. We addressed the issue by jointly using GEE and a
spatiotemporal-adjusted value transfer method, and applied it to a regional study. Our
study illustrated the feasibility of this proposed method framework.
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Second, the SMA is an essential economic zone in northeast China, and its ESVs have
not been systematically studied. Therefore, the results can provide valuable information
for future development in the SMA.

5. Conclusions

Ecosystem services provide necessary guarantees and support for human existence
and good quality of life, while land-use changes could significantly alter their values.
Therefore, understanding land-use dynamics and ESV changes could provide critical
information for conservation and environmental decision-making. This research proposed
a framework combining the GEE and a spatiotemporal-adjusted value transfer method to
analyze the land-use changes and ESV dynamics of an essential economic zone in northeast
China. Our main findings are as follows:

(1) forest land and cropland are the two dominant land-use types, jointly occupying
75%-89% of the total area. The built-up areas have increased rapidly, and resulted in the
most significant increase (1874.43 km2). At the same time, the cropland kept decreasing,
and had the largest area reduction (1305.09 km2), which alerts us to the need for cropland
protection in the SMA.

(2) The ESV of the SMA rose substantially from 2000 (814.04 hmCNY) to 2005 (1546.82 hm-
CNY), then kept decreasing in 2005–2010 (−17.01%) and 2010–2015 (−10.75%), and finally
increased to 1329.81 hmCNY in 2020. The ESV of forest land comprised the largest portion of
the total ESV, with the percentage ranging from 72.65% to 77.18%, followed by water body,
ranging from 11.61% to 15.64%. The ESV changes of forest land and water bodies are the most
significant contributors to the total ESV dynamics.

(3) Fushun has the highest ecosystem service value among the five prefecture-level
cities. The forest ESV of forest land comprises the largest ESV in Anshan, Fushun, Benxi,
and Liaoyang, while for Shenyang, the highest ESV was from water bodies. The results
highlight that forest land and water bodies should be priorities in protecting ecosystem
services in SMA.

All in all, our research illustrated that the combination of GEE and the adjusted value
transfer method could be helpful for the investigation of ESV changes on a regional scale.
Second, the results can provide critical references for future environmental decision-making
in the SMA region.
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