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Abstract: The deep roadway groups play an important role in transportation and ventilation in coal
mine production. Therefore, it is very important to comprehensively analyze the coupling effect
of rheological deformation and coal mining on the stability of the roadway groups. In this paper,
the disturbance effects of different stop-mining lines on roadway groups under long-term rheology
were investigated by numerical simulation, and the failure mechanism of roadway groups with
large sections and multiple disturbances in a deep well was revealed. The results show that the long
working face will lead to the collapse of key strata, and the influence range will spread to the adjacent
roadway groups. When the distance between the working face and the stop-mining line is 100 m, the
roadway groups cannot be affected by the working face mining, and the reserved width of the coal
pillar can be determined to be 100 m, which increases the stability of the roadway’s surrounding rock
and maintains the mine safety production. This paper aims to provide a reference for groups design
and control under similar conditions.

Keywords: rheological deformation; key stratum; roadway groups; roadway deformation; surrounding
rock control

1. Introduction

In recent years, with the continuous increase in mining intensity and depth, a large
number of difficult-to-support roadways have appeared, such as roadways with high
stress, strong mining-affected roadways, roadways with extremely broken surrounding
rocks, and roadways with extra-large cross-sections. Under the influence of factors such as
tectonic stress, strong mining, faults, etc., roadway section shrinkage is serious, surrounding
rock fragmentation is high, the floor experiences heave, and supporting components fail
frequently, which increases the intensity and frequency of roadway repair [1]. Therefore,
the stability of the deep roadway groups is essential for safe and efficient production.

For deep roadways, the ground stress of the environment in which the roadway is
located increases. Under the action of high ground stress, rheological deformation occurs
in the deep roadway [2,3]. The deformation of the deep soft rock roadway includes the
deformation during the roadway excavation, the rheological deformation of the roadway
during the service production period, and the deformation caused by other factors such
as support failure and stress disturbance. The theory and technology of group control,
originally applicable to shallow parts, cannot meet the requirements of the control effect in
the deep part [4]. For the control of coal roadways with rheological properties, the theory
and technology of soft rock support can be used for reference [5–9]. For soft rock roadways,
many deep soft rock roadway control technologies have been produced on the basis of
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clarifying the damage influence range of surrounding rock, such as the combined support
technology of high prestressed bolt primary support and cable reinforcement, bolt-grouting
combined support technology, and high-efficiency jet grouting (JG) techniques, etc. [10–18].
In the middle and late 20th century, Austrian engineers put forward the basic theory of
deep roadway surrounding rock control; a new Austrian tunnelling method based on
predecessors. Previous researchers [19–21] have conducted exploratory research on the
advanced support technology of rheological roadways, and have achieved fruitful results.
The shape of the underground roadway is irregular, and the positional relationship of the
roadway group is complicated, coupled with deep in-situ stress, which results in greater
complexity. A large number of researchers chose to use numerical simulation combined
with field cases to conduct research, and summarized the rheological deformation laws of
different positions of the roadway, including the side part, roof and floor, and the obtained
data from the roadway’s surrounding rock deformation are closer to the actual field [22–25].

During deep mining, the appearance of rock pressure caused by rock movement has
become increasingly serious. When mining coal seams, it will cause the redistribution of
coal and rock mass stress and form a new mining stress field [26–28], which will affect
roadway support and other projects. In the deep mine roadway, the main roadway with
a long service life forms the roadway groups. These roadways are relatively close to
each other, and the disturbance effect is large, which causes serious fragmentation and
instability of the rock surrounding the roadway [29–31]. A number of researchers [32–35]
have conducted exploratory research on the new technology of roadway deformation
control and support, and made great progress. Aiming at the disturbance of mining to
roadways, researchers have conducted a lot of work, analyzed the damage and movement
law of the overburden structure of coal roadway under the influence of mining, and
mastered the influence range after mining [36–39].

The deep mine roadway groups are continuously affected by the superposition of
rheological deformation and coal and rock mining. At present, there are few research
results of a comprehensive analysis of mining and rheology on roadway stability. Because
of this situation, this paper intends to comprehensively explore its impact on roadway
stability from the two dimensions of mining and rheology, to increase the stability of
roadway surrounding rock and maintain mine safety production.

2. Project Overview

Jining No. 2 Coal Mine is located in Jining City, China. The coal seam mined belongs
to Jining Coal Field, with an area of approximately 87.1 square kilometers. Its geographic
location is shown in Figure 1.
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Figure 1. Geographical location map of Jining No. 2 Coal Mine. Figure 1. Geographical location map of Jining No. 2 Coal Mine.

The three lower coal seams were mined at the 11th district of the No. 2 Mine of
Yankuang Groups, with a coal thickness of 3.6 to 4.8 m, with an average of 4.13 m. The
direct roof is medium sandstone with a thickness of 7.6~9.95 m and an average thickness
of 8.78 m. The main roof is siltstone with a thickness of 6.1~9.2 m and an average thickness
of 7.65 m. The floor is mudstone with a thickness of 1.5–3.0 m and an average thickness of
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2.2 m. The generalized stratigraphic column and the character description of Jining No. 2
Coal Mine is shown in Figure 2.
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Figure 2. Generalized stratigraphic column.

2.1. Position Relationship between Working Face and Roadway

Figure 3 shows the distribution of four main roadways and working faces at −740 lev-
els in the south wing of Jining No. 2 Coal Mine of Yankuang Groups. The elevation of the
track roadway is −740 m, the elevation of the ventilation roadway is −732 m, the elevation
of the belt conveyor roadway is −738 m, and the elevation of the auxiliary transport road-
way is −738 m. The horizontal distance between the track roadway and the ventilation
roadway is 30 m, the horizontal distance between the ventilation roadway and the belt
conveyor roadway is 30 m, and the horizontal distance between the belt conveyor roadway
and the auxiliary transport roadway is 50 m. The track roadway, belt conveyor roadway,
and auxiliary transport roadway are all excavated in the rock, and the ventilation roadway
is in the coal seam.
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2.2. The Influence of Working Face Rheological Coupling Mining on Roadway Stability

The mining level where the roadway is located has a large buried depth and high
stress The vertical ground stress of the −740 m roadway reaches 19.45 MPa (the ground
elevation is +38 m), which is a deep-well high-stress roadway. After the excavation
of the roadway is completed, under the action of high ground stress, the surrounding
rock stress is continuously adjusted over time, and the roadway undergoes rheological
deformation, which causes the roadway to gain instable characteristics, such as bolt failure,
roof subsidence, and floor heave.

The thickness of the coal seam in the mining area is as high as 5~6 m. When the
working face is close to the main roadway, the stress area is large. The average horizontal
distance between the four main roadways at the −740 m level is 30 m, and the stopping
line is only about 40 m away from the nearest roadway. Therefore, the main roadway
is affected by multiple strong mining operations, which makes it difficult to control the
surrounding rock of the roadway.

There are four main roadways with large deformations and a large roadway span,
averaging more than 4.5 m. The length of the supporting bolt adopted is only 2.4 m, and
the effective length is 2.3 m. Theoretically, it cannot form an effective supporting structure,
and it is difficult to reflect the effect of active support. The roof spray strata cracked
severely, floor heave was serious, there was a roof fall phenomenon, the falling height
was 3 m, and the length was 6.7 m. Recently, roadway’s surrounding rock deformation is
serious, roadway maintenance workload is large, and safety guarantee is low. The partial
destruction of the roadway is shown in Figure 4.
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Figure 4. Damage of roadway. (a) Anchor failure, (b) Roof subsidence, (c) Floor heave.

Several drill boreholes were drilled in the belt conveyor roadway, the track roadway,
the ventilation roadway, and the auxiliary transportation roadway, respectively, for moni-
toring. The roadway groups facing the 01 and 10 working faces are used as test sections.
In specific steps, three boreholes are set up in each of the four main roadways, each with
an interval of 50 m, and the drilling positions are located in the middle of the roof of the
roadway and on both shoulders. The hole diameter is 32 mm and the depth is 10 m. Among
them, the monitoring drill view of the track roadway is shown in Figure 5. The mudstone
is severely broken in the deep part of the borehole, is moderately broken in the coal seam,
and the surrounding rock is intact in the middle sandstone part.
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3. Establishment of a Numerical Simulation Model for Disturbance Effect of Roadway
Groups in a Deep Well

Through on-site measurements and theoretical analysis, the cause of the instability of
the surrounding rock in the −740 m horizontal roadway groups in Jining No. 2 Mine is ob-
tained. Further, through the combination of theoretical analysis and numerical simulation,
the instability mechanism of the roadway groups is revealed. Using Flac3D finite element
numerical simulation software, by simulating the distance from different stop-mining
lines to the roadway groups, the optimal stop-mining line position is determined. The
supporting system of the surrounding rock under the influence of deep roadway groups
disturbance is obtained.

3.1. Numerical Simulation Modeling Process

Taking the −740 m horizontal roadway groups in the south wing of Jining No. 2
Mine as the research object, the 100–200 m roadway is taken as the test section within the
roadway range of the 01 and 10 working faces. The CVISC rheological model is adopted for
the roadway [40,41]. The model works by simulating the mutual influence law of the full
excavation of the roadway, and the influence of the two wings’ working faces on the test
section roadway during the mining process. It then analyzes the damage of the roadway
and provides a theoretical basis for later determining the roadway support parameters.
Moreover, it guides the determination of the stop-mining line at the working face. The
model has a length of 529.4 m, a height of 140 m, and a width of 30 m. It contains a total of
9 rock strata. A load of 17.5 MPa is applied to the top of the model to simulate the pressure
of the overburden. Boundary conditions are imposed on the model, and the left and right
horizontal displacement of the model is limited to within ±0.1 m, and the bottom vertical
displacement is limited to within ±0.1 m. The simplified boundary model is shown in
Figure 6. The track roadway is arched with a width of 5.0 m and a clear height of 4.0 m.
The belt conveyor roadway is arched with a width of 5.0 m and a clear height of 4.8 m. The
ventilation roadway is rectangular, with a width of 4.6 m and a clear height of 3.3 m. The
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auxiliary transportation roadway is rectangular, with a width of 4.8 m and a clear height of
3.2 m. Since the inclination angle of the coal seam is only 2◦~10◦, with an average of 5◦, it
is a nearly horizontal coal seam, and the test section roadway is only 100~200 m. Within
this range, coal seams and rock strata can be regarded as horizontal rock strata. The rock
mechanics parameters are shown in Table 1. Rheological parameters are shown in Table 2.
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Table 1. Physical and mechanical parameters of rock and coal in numerical simulations.

Lithology Density kg/m3 Bulk
Modulus/GPa

Shear
Modulus/GPa Cohesion/MPa Friction

Angle/◦
Tensile

Strength/MPa

Gritstone 2450 34.37 24.71 9.81 45 10.51
Fine grained

sandstone 2600 21.7 15.6 5.72 38 7.44

Medium
sandstone 2550 30.14 21.67 7.30 41 8.21

Siltstone 2650 17.47 12.56 4.12 32 2.94
Coal 1450 0.55 0.33 2.45 22 0.24

Mudstone 2250 7.11 3.86 3.43 35 0.98
Fine siltstone 2620 19.00 14.08 4.92 34 5.19

Table 2. Parameters of the rheological model in numerical simulation.

GK/Pa GM/Pa NK/Pa.s NM/Pa.s

1.38 × 108 2.2 × 108 2 × 1018 15× 1015

3.2. Numerical Simulation Scheme

After the model stress is balanced, the four main roadways are first driven. In the
process of excavating a group of roadways (distance 30~50 m), the stress redistributes
after the roadway is excavated, and there is a mutual influence between the roadways.
The mutual disturbance between the roadways increases the difficulty of controlling the
surrounding rock of the roadways. By observing and analyzing the stress distribution,
displacement distribution, and plastic zone distribution of the surrounding rock of the
roadway after 2 years of rheological deformation, it can be judged whether there is a
mutual disturbance in the roadway groups.

During the advancing process of the working face in the test section, it is affected
by the disturbance of the 01 and 10 working faces, which belong to the multi-disturbed
roadway. The study of the influence of the working face on the surrounding rock of the
roadway during the mining process is of great significance to determine the stop line
position. According to the actual situation, there should be a wait for the roadway rheology
for two years before simulating the mining process of the working face. The simulation
analyzes the distribution law of the stress field, displacement field, and plastic zone within
the model range under the three scenarios of the stopping mining line of 50 m, 75 m, and
100 m, to obtain the best stopping line position through simulation.
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4. Results and Discussion on Coupling Disturbance of Rheology and Mining in Deep
Mine Roadway Groups
4.1. Influence of Rheological Disturbance during Roadway Excavation

In this section, by observing and analyzing the stress distribution, displacement
distribution, and plastic zone distribution of the surrounding rock of the roadway after
2 years of rheological deformation, it can be judged whether there is a mutual disturbance
in the roadway groups.

The vertical stress distribution of the surrounding rock in the roadway groups after
2 years of rheology is shown in Figure 7. It can be seen from the figure that for the four main
roadways at the level of −740 m in the south wing, there is a slight difference between the
track roadway, the ventilation roadway, and the belt conveyor roadway. There is no mutual
disturbance between the belt conveyor roadway and the auxiliary transport roadway.
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The surrounding rock displacement of the roadway groups after 2 years of rheological
deformation is shown in Figure 8. It can be seen from the figure that after the roadway
group is mined, the maximum deformation of the surrounding rock of the roadway is
about 430 mm under the conditions of the design support parameters. Under this condition,
the expansion of brush repair can realize the control of the deformation of the surrounding
rock of the roadway.
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The plastic zone distribution of the surrounding rock of the roadway after 2 years
of rheological deformation is shown in Figure 9. It can be seen from the figure that after
2 years of rheological deformation after roadway excavation, the surrounding rock of the
roadway has plastic deformation under the condition of stress concentration. For the deep
roadway groups, the surrounding rock of the roadway has a different distribution of plastic
zone under different rock strata conditions. Among them, the plastic zone of the roof and
floor of the auxiliary transportation roadway is larger. Among them, the roof and floor of
the ventilation roadway have a larger plastic zone. The depth of the floor plastic zone is
about 4.2 m, and the plastic failure range is large, which is difficult for roadway control.
In the subsequent roadway treatment process, it is necessary to ensure the quality of the
roadway roof support and ensure the stability of the surrounding rock’s roof. For the four
roadways studied, the failure range of the roof and floor plastic zone is about 2–4.2 m.
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4.2. The Influence of Rheological Coupling Mining of Working Face on Stress Disturbance of
Roadway Groups

A total of two years after the roadway was rheologically deformed, coal mining began
at the working face. The vertical stress distribution of the surrounding rock of the model is
shown in Figure 10. It can be seen from the figure that mining has disturbance effects on
the four main roadways. When the distance between the working face and the roadway
is 50 m, the disturbance effect of the track roadway and auxiliary transport roadway is
the most severe. When the distance between the working face and the roadway is 75 m,
the impact of the mining on the disturbance of the track roadway and auxiliary transport
roadway is reduced. When the distance between the working face and the roadway is
100 m, the impact of the mining on the roadway groups disturbance is minimal.

When the distance between the working face and the roadway is 50 m, 75 m, and
100 m, the maximum vertical stress of the surrounding rock of the roadway is shown
in Figure 11. After the excavation of the roadway groups, the maximum vertical stress
on the left and right sides of the track roadway is 24.2 MPa, and the maximum vertical
stress on the two sides of the auxiliary transport roadway is 20.6 MPa and 22.1 MPa,
respectively. After the coal seam is mined, the maximum vertical stress on both sides of
the roadway is increased. When the distance of the stopping line increases from 50 m to
100 m, the maximum vertical stress of the two sides of the track roadway and auxiliary
transport roadway decreases gradually. When the distance between the stopping line and
the roadway is 100 m, the change rate of the maximum vertical stress is the smallest.
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4.3. The Influence of Working Face Rheological Coupling Mining on Deformation Disturbance of
Roadway Groups

The horizontal displacement distribution of the surrounding rock of the model road-
way is shown in Figure 12, and the deformation of the two sides of the roadway changes
with the rheological time, as shown in Figure 13. It can be seen from Figures 12 and 13
that the deformation of the two sides of the roadway groups increases with the increase
in the rheological time. Within 0.2 years after the excavation of the roadway groups, the
deformation first increased rapidly, and then tended to a stable rheological state. After the
mining of the working face is completed, depending on the distance of the stop line, the
roadway groups will be affected by different degrees of disturbance and rheology within a
certain period, and they tend to a stable rheological state.

In the coal mining process of the working face, the track roadway and the auxiliary
transport roadway are the closest to the working face, and they are also most affected
by disturbance and rheology. When the mining stop line is 50 m and 75 m, respectively,
within 0.6 years after the mining of the working face, the track roadway and the auxiliary
transport roadway will have accelerated rheology. The horizontal displacement of the
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roadway groups is rapidly increased by the impact of mining, and by when it reaches a
stable rheological state.

When the stop line is 100 m, the mining face has almost no effect on the roadway
groups, and the roadway is always in a stable rheological state. When the mining stop line
is 50 m, the maximum deformation of the track main roadway is 1.22 m, and the maximum
deformation of the auxiliary transportation main roadway is 1.49 m. When the mining
stop line is 100 m, the maximum deformation of the track main roadway is 0.98 m, and the
auxiliary transportation main roadway The maximum deformation is 1.26 m.

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 19 
 

In the coal mining process of the working face, the track roadway and the auxiliary 
transport roadway are the closest to the working face, and they are also most affected by 
disturbance and rheology. When the mining stop line is 50 m and 75 m, respectively, 
within 0.6 years after the mining of the working face, the track roadway and the auxiliary 
transport roadway will have accelerated rheology. The horizontal displacement of the 
roadway groups is rapidly increased by the impact of mining, and by when it reaches a 
stable rheological state. 

When the stop line is 100 m, the mining face has almost no effect on the roadway 
groups, and the roadway is always in a stable rheological state. When the mining stop line 
is 50 m, the maximum deformation of the track main roadway is 1.22 m, and the maximum 
deformation of the auxiliary transportation main roadway is 1.49 m. When the mining 
stop line is 100 m, the maximum deformation of the track main roadway is 0.98 m, and 
the auxiliary transportation main roadway The maximum deformation is 1.26 m. 

 
(a) 

 
(b) 

 
(c) 

Figure 12. Cloud map of horizontal displacement distribution. (a) The stop line is 50 m away from 
the roadway. (b) The stop line is 75 m away from the roadway. (c) The stop line is 100 m away from 
the roadway. 

Figure 12. Cloud map of horizontal displacement distribution. (a) The stop line is 50 m away from
the roadway. (b) The stop line is 75 m away from the roadway. (c) The stop line is 100 m away from
the roadway.



Sustainability 2021, 13, 12300 12 of 18
Sustainability 2021, 13, x FOR PEER REVIEW 13 of 19 
 

  
(a) (b) 

 
(c) 

Figure 13. The deformation of the two sides of the roadway groups changed with the rheological time. (a) The stop line is 
50 m away from the roadway. (b) The stop line is 75 m away from the roadway. (c) The stop line is 100 m away from the 
roadway. 

The vertical displacement distribution of the surrounding rock of the model roadway 
is shown in Figure 14, and the deformation of the roof and floor of the roadway changes 
with the rheological time as shown in Figure 15. It can be seen from Figure 14 and Figure 
15 that the deformation trend of the roof and floor of the roadway is similar to that of the 
two gangs, and will not be repeated here. 

When the mining stop line is 50 m and 75 m, the roadway groups have an obvious 
accelerated rheological phenomenon within 0.6 years after mining at the working face, 
and then it enters a stable rheological state; when the mining stop line is 100 m, the road-
way is always stable rheological state. When the mining stop line is 50 m, the maximum 
deformation of the track roadway is 0.96 m, and the maximum deformation of the auxil-
iary transport roadway is 1.32 m. When the mining stop line is 100 m, the maximum de-
formation of the track roadway is 0.77 m, and the maximum deformation of the auxiliary 
transport roadway is 1.06 m. 

Figure 13. The deformation of the two sides of the roadway groups changed with the rheological time. (a) The stop line is
50 m away from the roadway. (b) The stop line is 75 m away from the roadway. (c) The stop line is 100 m away from the
roadway.

The vertical displacement distribution of the surrounding rock of the model roadway
is shown in Figure 14, and the deformation of the roof and floor of the roadway changes
with the rheological time as shown in Figure 15. It can be seen from Figures 14 and 15 that
the deformation trend of the roof and floor of the roadway is similar to that of the two
gangs, and will not be repeated here.

When the mining stop line is 50 m and 75 m, the roadway groups have an obvious
accelerated rheological phenomenon within 0.6 years after mining at the working face, and
then it enters a stable rheological state; when the mining stop line is 100 m, the roadway
is always stable rheological state. When the mining stop line is 50 m, the maximum de-
formation of the track roadway is 0.96 m, and the maximum deformation of the auxiliary
transport roadway is 1.32 m. When the mining stop line is 100 m, the maximum defor-
mation of the track roadway is 0.77 m, and the maximum deformation of the auxiliary
transport roadway is 1.06 m.

From the above analysis, it can be seen that the stop line of 100 m is compared with
the stop line of 50 m. When the stop line is 100 m, the maximum displacement of the
two sides of the track roadway and the maximum displacement of the roof and floor are
reduced by 20.0% and 18.8%, respectively. The maximum displacement of the two sides
of the auxiliary transport roadway and the maximum displacement of the roof and floor
decreased by 15.4% and 19.7%, respectively. Moreover, when the mining stop line is 100
m, the roadway deformation has been in a stable rheological state, which proves that the
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roadway groups are not affected by mining. Therefore, the stop line of 100 m is beneficial
to the long-term stability of the roadway.
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4.4. The Influence of Rheological Coupling Mining of Working Face on Disturbance of Plastic Zone
of Roadway Groups

The plastic zone distribution of the surrounding rock of the model roadway is shown
in Figure 16. Tables 3 and 4 show the expansion depth of the plastic zone of the roof and
floor of the roadway and the two sides of the roadway under the conditions of different
mining stop lines. It can be seen that after 5 years of rheological deformation of the roadway
groups, the plastic areas of the four main roadways under different stop-line conditions
have become larger than that when they were not mined. When the mining stop line is
50 m, the plastic zone change of the four main roadways is the largest. When the stop
line is 75 m, the plastic area of the return airway and belt roadway will be less affected by
the mining, while the plastic area of the track and auxiliary transportation roadway will
change greatly.

When the mining stop line is 50 m, the depth of the plastic zone has been expanded
under the influence of long-term rheological deformation and mining. Compared with the
time when the working face is not mined, the total expansion depth of the plastic zone of
the roadway groups at this time has increased by 8.6%. When the mining stop line is 100 m,
the disturbance to the roadway groups is very small, and the total expansion depth of the
plastic zone of the roadway groups only increases by 3.5% compared with the case of no
mining, and the roadway groups are hardly affected by mining.



Sustainability 2021, 13, 12300 15 of 18Sustainability 2021, 13, x FOR PEER REVIEW 16 of 19 
 

 
(a) 

 
(b) 

 
(c) 

Figure 16. Distribution of plastic zone in the roadway. (a) The stop line is 50 m away from the road-
way. (b) The stop line is 75 m away from the roadway. (c) The stop line is 100 m away from the 
roadway. 

Table 3. The expansion depth of the roof and floor plastic zone. 

 Expansion Depth 
Distance from 
Stoping Line 

/m 
Track Roadway 

Ventilation 
Roadway 

Belt Conveyor 
Roadway 

Auxiliary 
Transportation 

Roadway 
Unmined 4524 6026 6149 7234 

50 4718 6282 6391 7760 
75 4670 6211 6366 7569 
100 4655 6209 6373 7390 

Table 4. The expansion depth of the plastic zone of both sides. 

Figure 16. Distribution of plastic zone in the roadway. (a) The stop line is 50 m away from the
roadway. (b) The stop line is 75 m away from the roadway. (c) The stop line is 100 m away from the
roadway.

Table 3. The expansion depth of the roof and floor plastic zone.

Expansion Depth

Distance from
Stoping Line

/m
Track Roadway Ventilation

Roadway
Belt Conveyor

Roadway

Auxiliary
Transportation

Roadway

Unmined 4524 6026 6149 7234
50 4718 6282 6391 7760
75 4670 6211 6366 7569

100 4655 6209 6373 7390



Sustainability 2021, 13, 12300 16 of 18

Table 4. The expansion depth of the plastic zone of both sides.

Expansion Depth

Distance from
Stoping Line

/m
Track Roadway Ventilation

Roadway
Belt Conveyor

Roadway

Auxiliary
Transportation

Roadway

Unmined 3839 6294 4097 3239
50 4628 6345 4259 4578
75 4108 6337 4244 3410

100 4077 6336 4251 3392

In summary, when the stop line is 100 m, the mining face has little effect on the stress
distribution, displacement distribution, and plastic zone of the surrounding rock of the
roadway. The key layer theory and the theory of surface subsidence can be verified. When
the width of the coal pillar exceeds the subsidence range of the rock layer, it will not affect
the roadway. Therefore, it can be considered that leaving coal pillars of more than 100 m is
beneficial to the stability control of the surrounding rock of the roadway.

5. Conclusions

In order to study the influence of rheological coupling mining disturbance on roadway
stability, through numerical simulation, first the roadway has undergone two years of
rheology, and secondly, the research on the influence of mining coupling rheology on the
roadway is carried out. The rheological time is 5 years. The deformation and plastic zone
conditions of the roadway when the working face is mined to the position of 50 m, 75 m
and 100 m from the roadway group, respectively, are analyzed. The following conclusions
can be drawn from the present study.

(1) After two years of rheological deformation of the excavation roadway groups,
there is a slight mutual disturbance among the track roadway, ventilation roadway, and
belt conveyor roadway; there is no mutual disturbance between the belt conveyor roadway
and auxiliary transport roadway.

(2) After the coal seam is mined, the maximum vertical stress on both sides of the
roadway is increased. In the process of increasing the stop line from 50 m to 100 m, the
maximum vertical stress of the two sides of the track roadway and auxiliary transport
roadway is gradually reduced. When the stop line is 100 m, the change rate of the maximum
vertical stress is the smallest.

(3) Mining at the working face mainly has a disturbing effect on the track roadway
and auxiliary transport roadway. As the distance from the mining stop line increases,
the amount of surrounding rock deformation of the roadway groups gradually decreases.
When the mining stop line is 100 m, mining has no obvious disturbing influence on the
ventilation roadway and belt conveyor roadway, and the disturbance influence on the track
roadway and auxiliary transport roadway is greatly reduced.

(4) The expansion depth of the plastic zone of the roadway groups decreases with the
increase in the stop-mining line distance. When the stop-mining line distance is 100 m,
the total expansion depth of the plastic zone of the roadway groups only increases by
3.5% compared with the case of no mining, and the roadway groups are hardly affected
by mining.
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