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Abstract: Land evaluation is imperative for its efficient use in agriculture. Therefore, this study aimed
at assessing the suitability of a region in West El-Minia for cultivating some of the major crops using
the geographical information system (GIS). The results focus on allocating space for cultivating sugar
beet and utilizing the free period of sugar beet in other crops. This exploitation helps to maintain
the quality of the land and increase its fertility by using crop rotation with integrated agricultural
management. A machine learning technique was implemented using the random forest algorithm
(RF) to predict soil suitability classes for sugar beet using geomorphology, terrain attribute and
remote sensing data. Fifteen major crops were evaluated using a suitability multicriteria approach
in GIS environment for crop rotation decisions. Soil parameters were determined (soil depth, pH,
texture, CaCO3, drainage, ECe, and slope) to characterize the land units for soil suitability. Soils of
the area were found to be Entisols; Typic Torrifluvents, Typic Torripsamments and Typic Torriorthents and
Aridsols; Typic Haplocacids, Calcic Haplosalids and Sodic Haplocalcids. Overall, the studied area was
classified into four suitability classes: high “S1”, moderate “S2”, marginal “S3”, and not suitable “N”.
The area of each suitability class changed depending on the crop tested. The highest two crops that
occupied S1 class were barley with 471.5 ha (representing 6.8% of the total study area) and alfalfa
with 157.4 ha (2.3%). In addition, barley, sugar beet, and sorghum occupied the highest areas in S2
class with 6415.3 ha (92.5%), 6111.3 ha (88.11%) and 6111.3 ha (88.1%), respectively. Regarding the
S3 class, three different crops (sesame, green pepper, and maize) were the most highly represented
by 6151.8 ha (88.7%), 6126.3 ha (88.3%), and 6116.7 ha (88.2%), respectively. In the end, potato and
beans occupied the highest areas in N class with 6916.9 ha (99.7%) and 6853.5 ha (98.8%), respectively.
The results revealed that the integration of GIS and soil suitability system consists of an appropriate
approach for the evaluation of suitable crop rotations for optimized land use planning and to prevent
soil degradation. The study recommends using crop rotation, as it contributes to soil sustainability
and the control of plant pests and diseases, where the succession of agricultural crops on a scientific
basis aims at maintaining the balance of nutrients and fertilizers in the soil.

Keywords: climate change; crop rotation; geostatistics; multiapproach; machine learning; suitability;
soil properties

1. Introduction

Egypt suffers from water deficit, which affects agricultural production, as well as the
growing gap between food production and consumption for most agricultural crops in
light of the continuous population increase [1]. Therefore, there is a need to set restrictions
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and determinants of agriculture and reconsider the current and proposed crop structures
in modern reclamation places, which maximizes the net return on the water unit used
to achieve the highest net return per unit of cultivated area, and of course for farmers,
which contributes to raising the standard of living. The land suitability is the efficiency
of the land with the specific soil properties along with topographic and climatic factors
to be suitable for the effective growth of a particular type of plant on a sustainable ba-
sis [2,3]. Depending on the soil properties and topographical features, the land can be
categorized into potential areas for cultivation [4]. Agricultural suitability assessment is the
evaluation of the methodological performance of land when using alternative cultivation
options [5,6]. The primary purpose of assessing the suitability of agricultural land is to
predict the potential and limitations of land for crop production [7]. Either the rotation
of large fields or within-field diversity in strip-cropping annual systems will diversify
the income stream and protect against a weak market for a single commodity. Several
researchers [8,9] have documented remote sensing and geographic information system
capabilities to assess land suitability. GIS tools and remote sensing data suggest a suitable
and influential platform to integrate spatially complex land attributes for carrying out
land suitability analysis [2,3,10,11]. A combination of GIS and multicriteria evaluation
techniques with a weighted overlay approach for land suitability analysis proves to be a
useful methodology for further research in the concept of crop suitability for the optimized
irrigation method [12]. The suitability of agricultural land for the area was not documented
previously.

Geologically, the area consists of limestone, sandstone, and air sediments method [13];
the fact that most of the region consists of limestone land is suitable for growing crops
that suit limestone land. An evaluation of the region’s cultivation of many crops was
made, and it was concluded that beet cultivation is the best high-yield agricultural use
according to soil characteristics and climatic conditions. Because the beets crop season
lasts for approximately eight months, the land is free from plantations for more than four
months. Therefore, to maximize the economic return from the land, several crops are
proposed, including tomatoes and peanuts.

The sugar beet crop is considered one of the most economically important crops for
sugar production, and its importance is due to the relaxation of sucrose, which has a high
nutritional value, which is used in human food as a source of high energy. The sugar beet
is considered a dual-purpose crop, as it is extracted from the sugar root, and the vegetative
complex is used as food for animals. Moreover, the cultivation of beets improves the
properties of the soil, especially in saline lands as well as in reclamation and limestone
lands. Beet cultivation provides many job opportunities, both in the field and in sugar
factories. Beet sugar contributes about 1.06 million tons, representing about 53% of the
total sugar production. In general, and to increase sugar production through the cane,
there are many problems and obstacles, which have increased the importance of beet sugar
in reducing the size of the sugar gap in Egypt [14].

Crop rotation is a method of growing several crops in the same field and producing
high yields without weakening the soil. It includes a group of different methods of
production in order to find the best way to use the land. Farmers must take into account
soil composition and slope, drainage, and soil erosion problems when deciding what types
of crops are suitable for their land, as well as the history of land use in the production of
previous crops. Various combinations of production methods, such as different cultivation
techniques, crop rotation and the correct use of fertilizers and pesticides, are used to assist
farmers. One of the oldest and most widespread methods of soil conservation is the use
of a crop cycle. It is the alternation of crops grown in the fields from year to year, as one
crop consumes the mineral salts and organic matter in the soil if it is grown in the same
field year after year. However, planting different types of crops in the field according to a
regular schedule provides an opportunity to replace most of the mineral salts and organic
matter, and also helps reduce plant diseases and the life cycle of insects; for example, corn
takes nitrogen from the soil, while other crops, such as alfalfa, excrete it. Corn was planted
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in the field once, so it is possible to plant alfalfa the following year. This is to replace the
nitrogen consumed by the corn. It is also possible to plow the soil with nitrogen-producing
crops so that these crops remain inside the soil, and when they decay, they replace most
of the lost organic matter and enrich the soil. On sloping lands, weeds and deep-rooted
crops are replaced with other crops in order to maintain soil cohesion and prevent erosion.
In intensive agricultural systems, the use of fertilizers is gradually replacing the crop
rotation as a method of producing crops that achieve the highest profits year after year
while keeping the soil fertile. Nitrifying and other fertilizers have been developed that help
restore lost mineral salts from the soil. When these fertilizers are added—and with the use
of appropriate tillage methods and pesticides—it becomes possible to grow the same crop
annually without damaging the soil. Other developments in the agricultural production
system include chemical pesticides that kill insects, weeds and microorganisms.

Machine learning (ML) is a sub-field of computer science, closely related to statistics,
which aims to make computers learn from data without explicit programming. ML models
are capable of discovering knowledge, important relationships, and integrating different
types of data easily by learning. These ML models include artificial neural networks, partial
least squares regressions, support vector machines, generalized additive models, genetic
programming, regression tree models, k-nearest neighbor regression, adaptive neuro-fuzzy
inference system, and random forests. Because of their high accuracy, resilience, and
ease of use, random forests and support vector machines are the most widely employed
approaches in the digital soil mapping community in recent years [15].

Instead of employing a single classifier, numerous authors attempted to improve
the efficiency of the classification process by using a set of classifiers. The “ensemble”
classification methods are those that use a set of classifiers to predict class labels. The
multiple classifier system (MCS) or ensemble approaches are rapidly growing and gaining
a lot of attention; they were shown to be more accurate and robust than a single classifier
in a variety of domains. These techniques typically function by means of firstly building
an ensemble of base classifiers by applying a given base learning algorithm to various
alternative permutated training sets, and then combining the outputs from each ensemble
member in a suitable way to create the prediction of the ensemble classifier. The combi-
nation is often performed by voting for the most popular class [16]. Examples of these
techniques include Bagging, AdaBoost, and RUSBoost. Ensemble classification using the
RUSBoost technique results in improved classification performance when training data are
imbalanced [17].

ML models are used in the digital soil mapping framework to link soil observations
and auxiliary variables in order to investigate spatial and temporal variation in soil classes
and other soil properties. These auxiliary variables can be obtained from digital elevation
models (DEM), remotely sensed data (RS), and other geo-spatial data sources [15,18].
Khaledian et al. (2020) [19] examined the strengths and disadvantages of six ML algorithms,
“k-nearest neighbors (KNN), multiple linear regression (MLR), Cubist, support vector
regression (SVR), random forest (RF), and artificial neural networks (ANN)”, for digital
soil mapping. The results demonstrated that MLR, SVR, and ANN are more prone to
overfitting, whereas RF algorithm avoids the risk of overfitting, and takes less time to
compute. Both ANN and RF perform well in predicting non-linear patterns, while the RF
is faster, and overcomes the weakness of ANN sensitivity to small datasets.

The aim of the research is to arrive at the best models for crop composition of crops
and vegetables in a manner that is compatible with the available water resources to achieve
development goals in terms of maximizing economic efficiency. More specifically, the
purpose of this paper is to (a) shed light on the suitability of the agricultural land of the
region for sugar beet as a promising crop; (b) calculate the extent of suitability of agricultural
lands; and (c) categorize each specific topic with the appropriateness of agricultural lands.
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2. Materials and Methods
2.1. Study Area

This study was conducted on soil samples collected from (27◦39′31′′ N, 30◦9′2′′ E) and
(27◦16′6′′ N, 30◦17′56′′ E), located in the newly reclaimed area of the western part of El
Minia Governorate as shown in Figure 1. The profiles were dug before the planting of the
study area. The area topography is undulating with 6935.63 ha. The most common land
use in this area includes farming sugar beet, tomato, sesame, wheat and sunflower.

Figure 1. Location of the study area.

2.2. Climate Factors

The study area climate is classified as arid to semi-arid with a dry hot summer, while
winter is mild or rainless. The annual average, mean minimum and mean maximum
temperatures are presented in Table 1.

Table 1. Climate features of El-Minia Governorate for a period of 30 years (1975–2005), according to El-Minia meteorological
station.

Month
Average Temperature ◦C

Rainfall mm
Relative Evaporation

mm/Day
Wind Speed

(Knots)Mean Temp. ◦C Min ◦C Max ◦C Humidity %

January 11.9 4.6 20.4 1.1 65 4 4.7
February 13.5 5.6 22 1.7 58.8 5.4 5.4

March 16.9 8.6 25.4 3.4 53.9 7.2 6.6
April 21.9 12.8 30.9 0.5 44.9 10.9 7.2
May 26.3 17.2 35 1.4 39.1 13.8 7.8
June 28.5 19.9 36.7 0 41.8 14.6 8.6
July 29.2 21.1 36.9 0 48.4 12.6 6.2

August 28.6 21 36.2 0 52.8 10.5 5.6
September 26.9 19.4 34.7 0 53.1 9.9 6.8

October 23.3 16.1 31.2 0 56.9 8.1 5.8
November 17.7 10.7 25.9 3.5 63.4 5.2 4.9
December 13.1 6.1 21.4 2.1 67.5 3.5 4.1

Mean 21.48 13.59 29.72 1.14 53.8 8.8 6.14

Source: Climatological Normals, El-Minia meteorological station, A.R.E., (2011).
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2.3. Experiment Design

Distances among neighboring points were 500–600 m, distributed uniformly to meet
the geostatistical interpolation requirements. The soil samples depth was based on the
difference of layers along with the profile depths. The interpolations were performed
for the surface layers of all profiles, while the interpretation of soils was described based
on the weighted average of all profile’s layers. A total of 208 soil profiles were dug and
morphologically described [20]. The total soil samples (542) from horizons and layers of
the soil profile were subjected to various physical and chemical analyses (CaCO3, ECe, pH,
Sp and soil texture).

2.4. Land Use Types and Crop Requirements

The selection of suitable land use types for each crop was determined based on
the local conditions, i.e., local food needs, crop area coverage, social acceptability and
economical sustainability. Land use requirements determine the types of data that need to
be collected for a land evaluation and described by the land properties. In determining the
requirements of the land utilization types, the main consideration was given to the physical
and chemical requirements, whereas the climatic requirements were not considered because
the whole area belongs to only one agroecological zone; therefore, the climatic conditions
are uniform. Based on the existing cropping systems in the surrounding area, fifteen land
use types were selected as indicated in Supplementary Tables S1–S15 according to Sys,
1993 [21] and Zakarya, 2009 [22].

2.5. Interpolation Methods

Thematic maps for each of the soil parameters and slope were developed using ArcGIS
10.2 software. Thematic maps of the study area were generated, using inverse distance
weighted (IDW) interpolation as recommended by [23]. IDW interpolation determines cell
values, using a linearly weighted combination of a set of sample points.

The following equation was used for IDW and kriging interpolation methods as
well-discussed by Yao et al. [24]:

Z∗(X0) =
n

∑
i=1

wiZ(xi) (1)

where the Z(xi) data value of locations is used to generate the variable Z value of X0 the
unsampled location; the Z(xi) value is assigned by the weight wi, n is the number of the
used closest neighboring data points for estimation.

wi =
1/d2

i

∑n
i=1

1/d2
i

(2)

where di is the distance between the estimated point and the observed point.

γ(h) =
1

2n

n

∑
i=1

[Z(xi)− Z(xi) + h)]2 (3)

where xi and (xi) + h are sampling locations separated by a distance h, and Z(xi) and
Z(xi) + h are the observed values of variable Z at the corresponding locations.

The least squares method, which was used to estimate the linear regression, is the
following equation:

y = B0 + (x + a)n =
n

∑
i=1

BiXi (4)
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2.6. Land Suitability Evaluation Model Steps

In order to identify a land suitability class, the following steps could be summarized
as depicted in Figure 2: (1) The features of the major physical and chemical soil properties
values (soil depth, CaCO3, soil texture (sand, silt and clay), ECe, and pH) were stored in
shapefile format. (2) The slope percent was estimated from DEM. (3) The shapefile was
converted to raster format using the IDW interpolation method in ArcGIS 10.2. Thereafter,
reclassified layers were overlaid by a raster calculator. These overlaid layers were used
to assess land suitability for these crops. Based on the above-mentioned soils, the studied
areas were categorized into four groups: S1 (highly suitable), S2 (moderately suitable),
S3 (marginally suitable) and N (not suitable). (4) The crop requirements were established
following the approach of [22,25]. The selected crops that were evaluated for this specific
study included sugar beet, wheat, barley, alfalfa, sunflower, sorghum, soybean, sesame,
groundnut, green pepper, onion, tomato, potato, beans and maize. In this particular land
suitability analysis for selected major crops, the criteria are mainly related to topography
(slope) and soil (soil depth, soil pH, soil texture and soil drainage). These are the most
important requirements needed for all crops according to opinions of agronomist experts
and literature review. Factor ratings are sets of values that indicate how well each factor is
satisfied by particular conditions of the corresponding land suitability. (5) Finally, current
suitability was calculated using the reclassify tool in ARCGIS to classify the soil properties
layer into categories (S1, S2, S3, N1 and N2) according to the crop requirements adopted
after [21,22,26].

Figure 2. Methodology flowchart; (A) flowchart for suitability process, (B) process steps for land suitability model.

2.7. Estimating Land Suitability Classes Based on Machine Learning

A set of auxiliary variables (i.e., remotely sensed data, geomorphology, and terrain
attributes) and RF as a base classifier for RUSBoost ensemble classification technique was
used to predict the spatial distribution of land suitability classes for sugar beet. The random
forest (RF) machine learning model was selected, due to its successful applications in earlier
studies [27–33] and its relatively good accuracy, robustness, and ease of use. Importantly, it
was proved that RF work well when there is no massive availability of data.

Spectral bands and indices derived from the Sentinel-2 satellite, which was acquired
on 4 March 2020, were used as auxiliary variables for predicting land suitability class:
spectral bands (SENTINEL-2 10 m spatial resolution bands: B2 (490 nm), B3 (560 nm), B4
(665 nm), and B8 (842 nm), and SENTINEL-2 20 m spatial resolution bands: B5 (705 nm),
B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 (1610 nm) and B12 (2190 nm)), normalized
deference vegetation index (NDVI, [34]), and soil adjusted vegetation index (SAVI, [35]).
The auxiliary variables are all co-registered to the same 10 m raster grid with a size of 10 m
as the main variables.
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Geomorphology maps are valuable auxiliary data since they provide information such
as soil parent material and genesis [27,31,36,37].

Terrain attributes, including elevation, slope, aspect, length–slope factor (LS factor),
valley depth, topographic wetness index (TWI), analytical hillshading, channel network
base level, channel network distance, closed depressions, convergence index, plan curva-
ture, profile curvature, relative slope position, total catchment area, the multi-resolution
index of valley bottom flatness (MrVBF), and multi-resolution ridge top flatness (MrRTF)
were extracted and computed through a digital elevation model (DEM), ALOS Global Digi-
tal Surface Model, downloaded in 17 October 2021, online from https://www.eorc.jaxa.jp/
with a 30 m grid cell resolution and resampled to 10 m spatial resolution using terrain
analysis model in SAGA GIS software (system for automated geoscientific analysis) [15].

While constructing a machine learning model, it is almost rare that all of the variables
in the dataset are relevant to build a model. Adding redundant variables decreases the
model’s generalizability and may also reduce the classifier’s overall accuracy. Identifying
only the most relevant features using “Feature selection” approaches make our model
simpler to interpret, reduce the variance of the model, and therefore overfitting, and reduce
the computational cost (and time) of training a model. In a data science workflow, RF
are frequently used for feature selection. After training an RF model, a summary of the
frequency of usage for the variables is generated and given as a measure of the variable’s
significance [19,34,38,39].

It is critical to adjust model hyperparameters while developing a machine learning
classification model. Model hyperparameters are external to the model, and users should
tune them by trial and error until they achieve a low level of error when comparing pre-
dictions to the validation dataset. Hyperparameter calibration is crucial for managing
the training process and delivering high-quality results [19]. Optimization approaches
automate the selection of model hyperparameters rather than requiring manual adjust-
ment. The optimizer uses an optimization technique to try alternative combinations of
hyperparameter values in order to reduce the model error, and then returns a model with
the optimized hyperparameters. In this paper, we deal with hyperparameters optimization
within the context of Bayesian optimization, in which the generalization performance of
a learning algorithm is treated as a sample from a Gaussian process (GP). The tractable
posterior distribution produced by the GP allows for more effective use of the data col-
lected in prior trials, allowing for better decisions regarding which parameters to attempt
next [18,34,38,39].

3. Results
3.1. Land Form of the Study Area

The landscape contains a desert arid region. The soil surface was found to be formed
in two units’ shapes; undulated topography and nearly level topography. The texture
of these units was found to be loamy sand soil, sandy soil, sandy loam soil (Table 2 and
Figure 3).

Table 2. Landform unit descriptions and statistics.

Landform Unit
Area

(Hectare) (%)

Loamy sand soil, Undulated topography 3019.22 31.63
Loamy sand soil, Nearly level topography 2058.67 21.57

Sandy soil, Nearly level topography 1224.57 12.83
Sandy loam soil, Undulated topography 3242.79 33.97

https://www.eorc.jaxa.jp/
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Figure 3. Landform of the study area associated with the soil profile location.

3.2. Soil Taxonomy

The study area elevated from 124 masl to 164 masl, undulated area with gentle
slope of <1. Soil depth ranged from 54.5 cm to 127.3 cm. Soil salinity was found in
high (4–8 dS/m) class, occupying around 30% of the total area, while very high salinity
(8–16 dS/m) occupied around 60% and the rest of the area was non-saline soil. In total, 90%
of the soil texture was loamy sand, 11% was sandy loam and 9% was sandy soil. The soil
contained a significant amount of calcium carbonate. Soil pH was particularly apparent
from 7.8 to 9 (Figure 3). Soils in the study area were classified according to the Keys to
Soil Taxonomy System [40] under two soil orders of Aridisols and Entisols. The studied
soils were classified into great group for mapping units. The soil sets of the mapping unit
(Figure 4) were the following:

(1) Aridisols: Typic Haplocalcids, Calcic Haplosalids and Sodic Haplocalcids;
(2) Entisols: Typic Torrifluvents, Typic Torripsamments and Typic Torriorthents.

Figure 4. The units of the soil taxonomy map are shown at the family level in the study area.
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3.3. Spatial Variation of Physical and Chemical Criteria
3.3.1. Spatial Variation of the Soil Depth

Deep soil shows a root penetration until below 150 cm for most crops. Soil depth refers
to the estimated depth in centimeters to which root growth is unrestricted by any physical
or chemical impediment, such as an impenetrable or toxic layer. There are five soil depth
classes in the study area namely: very shallow (<30 cm), shallow (30–50 cm), moderately
deep (50–100 cm), deep (100–150 cm) and very deep (≥150 cm). The reclassified soil depth
map reveals that 99.9% of the study area had moderately deep soil.

3.3.2. Spatial Variation of the Soil Salinity

The distribution pattern of soil salinity in the study area is shown in Table 2 and
Figure 3. As it is clear from Figure 3 the slightly saline, moderately saline and saline soils
were scattered in the study area and constituted about 12.7%, 80.5% and 6.8 %, respectively.

3.3.3. Spatial Variation of the Soil Texture

Texture is one of the most important soil properties. Most of the physical characteristics
of the soil depend upon the type of texture class. There were three textural classes in the
study area, namely, sand, loamy sand and sandy loam texture classes. The reclassified soil
texture map shows that 4.3%, 88.7% and 7.1% of the study area had sand, loamy sand and
sandy loam texture soil, respectively (Figure 5 and Table 3).

Figure 5. Soil characteristics of the study area.
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3.3.4. Spatial Variation of the Soil CaCO3

The CaCO3 content for the studied soils could be categorized into three classes, as
shown in Figure 3 and Table 2. The spatial distribution of CaCO3 shows that 2.8%, 97.1%
and 0.1% of the study area was low, slightly and moderately calcareous, respectively.

3.3.5. Spatial Variation of the Soil pH

Soil pH provides the information about the solubility and thus potential availability
or phytotoxity of elements for crops and subsequently specifies the soil suitability for a
specific crop [41]. The reclassified soil pH map shows that 43.2% and 56.7% of the study
area were slightly and medium alkaline (Figure 5 and Table 3).

Table 3. Spatial variation of the physical and chemical criteria.

ECe
(dS/m)

Area
(Hectare) (%)

2–8 872.95 12.65
8–12 5558.19 80.55
12–16 469.36 6.80
16–24 33.94 0.49

24–33.7 1.19 0.02

pH Area
(Hectare) (%)

7.8–8 2993.61 43.20
8–8.2 3926.28 56.66

8.2–8.3 10.09 0.15
8.3–9 5.64 0.08

Slope
(%)

Area
(Hectare) (%)

0–4 3319.86 47.72
4–8 3121.64 44.87

8–16 515.91 7.42
16–22.8 1.69 0.02

Soil Depth
(cm)

Area
(Hectare) (%)

54.5–60 0.06 0.00
60–75 8.78 0.13

75–100 6835.75 99.87
100–127.3 91.03 1.33

CaCO3
(%)

Area
(Hectare) (%)

3.2–5 194.30 2.80
5–10 6739.48 97.17

10–14.1 1.84 0.03

Texture
Area

(Hectare) (%)

S 295.13 4.27
LS 6127.64 88.65
SL 489.42 7.08

3.3.6. Spatial Variation of the Slope

The slope of the study area varied between 0% and 16%. The reclassified slope map
reveals that slope ranged between 0 and 4 (47.7%), 4 and 8 (44.9%), and >16 (7.4%) as
shown in Figure 5 and Table 3.
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3.4. ML-Based Land Suitability Classes

The processing workflow consists of running the RF as base learner for RUSBoost
ensemble classifier and Bayesian optimizer to obtain the best accuracy for the research
hypothesis under evaluation using all the auxiliary variables. We used the optimized
ML model to measure the importance of different input auxiliary variables as shown in
Figure 6.

Figure 6. Auxiliary variables importance for machine learning–based land suitability evaluation.

Based on Figure 6, we decided to ignore variables with an importance of less than 0.3
(slope, aspect, depression area, and catchment area). Then, we repeated the classification
process with the reduced auxiliary variables. Figure 7 shows the classification error during
the optimization process. Table 4 shows the classification accuracy of the optimized model
with the reduced auxiliary variables. The overall accuracy was 94.9%.

Figure 7. The empirical performance of the Bayesian optimization process, where the optimizer searches for the set of
hyperparameters of ensemble classifier that minimize classification error. The output is the ensemble classifier with the
minimum estimated cross-validation error.
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Table 4. The classification accuracy of the optimized model.

Predicted Class

True Class

Class N2 Class N1 Class S3 Class S2
Class N2 100.00%
Class N1 100.00%
Class S2 86.90% 7.60%
Class S2 13.10% 92.40%

Suitability maps were produced based on random forest machine learning model
(Figure 8 and Table 5), Multi-criteria approach (Figure 9 and Table 6) were examined and
proof to be a high accurate results.

Figure 8. Suitability map based on random forest machine learning model illustrates the predicted
suitability classes of the study area.

Table 5. Machine learning predicted suitability classes for sugar beet.

Suitability Class Area
(Hectare) (%)

S2 8755.47 92.15
S3 737.19 7.76
N1 8.29 0.09
N2 0.57 0.01

Table 6. Traditional suitability method for sugar beet.

Suitability Class Area
(Hectare) (%)

S1 10.77 0.16
S2 6111.27 88.11
S3 810.72 11.69
N 2.88 0.04
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Figure 9. Soil suitability of the study area.

By calculating the coefficient of variation between the two methods, it was found that
it was 0.97, which indicates the strength of the correlation between the two methods.

Considering the difference in the two units S1 (0.16%) and N2 (0.04) using the two
methods, which could be considered a negligible area, they should be ignored due to their
smallness and limitations.

3.5. Description of the Selected Land Use Types

The results indicated that the suitable crops (S2) for the whole area were barley,
sorghum, soybean, sugar beet, onion, sunflower, tomato and alfalfa, while the marginally
suitable crops (S3) were wheat, maize, green pepper, sesame and groundnut. On the other
hand, potato and beans were not suitable for the area under current soil properties as
shown in Figure 9.

The government and decision makers in the last few years constructed a new factory
in El Minia governorate for extracting sugar from sugar beet. Sugar beet is considered
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a good crop in the study area, given that it is less demanding than other crops in water
consumption, while it is also more salt tolerant, and the cultivation period is shorter than
that of sugar cane. Therefore, this land use is considered a promising option in Egypt
in general and in El Minia particularly. The total highly suitable area (S1) that could be
cultivated by sugar beet in the studied area was 10.8 hectare (0.16%). The S2 soils covered
6111.7 ha (88.1%). The S3 soils covered 810.7 ha (11.7% of the study area. About 2.9 ha
(0.04% of the study area) was considered not suitable (N) for sugar beet (Tables 7 and 8 and
Figure 9).

Table 7. Soil suitability classes area in hectare area and percent of the total area.

Crops Area
Soil Suitability Classes

S1 S2 S3 N1

Alfalfa
(Hectare) 157.39 5547.23 1229.31 1.69

(%) 2.27 79.98 17.72 0.02

Barely (Hectare) 471.45 6415.30 46.38 2.50
(%) 6.80 92.50 0.67 0.04

Beans
(Hectare) - 0.47 81.67 6853.48

(%) - 0.01 1.18 98.82

Green pepper (Hectare) 0.47 807.16 6126.31 1.69
(%) 0.01 11.64 88.33 0.02

Groundnut
(Hectare) 0.31 781.81 5646.28 507.22

(%) 0.00 11.27 81.41 7.31

Maize
(Hectare) 0.02 782.11 6116.67 36.83

(%) 0.00 11.28 88.19 0.53

Onion
(Hectare) 0.14 5704.48 1229.31 1.69

(%) 0.00 82.25 17.72 0.02

Potato
(Hectare) - 1.03 17.73 6916.86

(%) - 0.01 0.26 99.73

Sesame
(Hectare) - 782.13 6151.81 1.69

(%) - 11.28 88.70 0.02

Sorghum (Hectare) 10.77 6111.27 806.63 6.97
(%) 0.16 88.11 11.63 0.10

Soya (Hectare) 0.08 3971.08 2458.38 506.09
(%) 0.00 57.26 35.45 7.30

Sugar beet (Hectare) 10.77 6111.27 810.72 2.88
(%) 0.16 88.11 11.69 0.04

Sunflower
(Hectare) - 5699.95 1233.98 1.69

(%) - 82.18 17.79 0.02

Tomato
(Hectare) - 3967.64 2966.30 1.69

(%) - 57.21 42.77 0.02

Wheat
(Hectare) - 0.09 4503.64 2431.89

(%) - 0.00 64.93 35.06

Barley is characterized by the relative ability to resist drought and its high salt tol-
erance. Therefore, barley is considered more suitable in salty soils. Tables 7 and 8 and
Figure 9 show that the total area of S1 which can be cultivated with barley in the study
area was about 471.5 ha (6.8%). Moderately suitable (S2) covered about 6415.3 ha (92.5%).
Marginally suitable soils (S3) covered about 46.4 ha (0.67%). The non-suitable soils (N)
covered 2.5 ha (0.04%).

Alfalfa is considered a highly profitable cash crop with a high gross margin, being
also as a crop that has a preferred residual impact to soil fertility. Alfalfa could be highly
suitable (S1) in the study area for about 157.4 ha (2.3%). Moderately suitable soil (S2) was
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recorded in about 5547.2 ha (80%). Marginally suitable soil (S3) covered about 1229.3 ha
(17.7%). A total of 1.7 ha of the study area was classified as non-suitable for alfalfa
(Tables 7 and 8 and Figure 9).

Table 8. Suggested crops for agricultural rotation in the study area.

No. Crop
Name Species Planting Date

Planting
Period

(Months)

Selected
Suitability

Performance

1 Sugar beet Beta vulgaris Aug.–Sep.–Mid. Oct. 6–7 S2 > S3
2 Sorghum Sorghum bicolor Mid. Apr. 4 S2 > S3
3 Sunflower Helianthus annuus Apr.–Jun. 3 S2 > S3
4 Barley Hordeum vulgare Mid. Nov.–Mid. Dec. 5–6 S1 < S2
5 Maize Zeamais Mid Apr. 4 S2 < S3
6 Sesame Sesamum indicum Apr. 3 S2 < S3

7 Green
pepper Capsicum annuum First Aug.–Sep.

Early second Feb.–Mar. 4–6 S2 < S3

8 Soya Glycine maximum Apr. 4 S2 > S3

9 Tomato Solanum lycopersicum
esculentum

Early summer Dec.–Jan.
Summer Feb.–Mar. 3–4 S2 > S3

10 Wheat Triticum aestivum Mid. Nov. 6 S3 > N1
11 Groundnuts Arachis hypogaea Apr.–May 4–5 S2 < S3
12 Beans Phaseolus vulgare Mid. Oct. 5 N1
13 Potato Solanum tuberosum Sep.–Oct. 4 N1
14 Onion Allium cepa Oct. 3–5 S2 > S3
15 Alfalfa Medicago sativa Mid. Sep.–Mid. Oct. 4–5 S2 > S3

Wheat is the most important cash as well as staple crop in the study area. About
4503.6 ha (64.9% of the area) was found to be marginally suitable for wheat, while 2431.9 ha
(35.1% of the area) was found to be not suitable (N) for wheat crop (Tables 7 and 8 and
Figure 9).

Sunflower is considered a highly profitable cash crop with a high gross margin. The
land suitability analysis for sunflower indicated that about 5700 ha (82.2%) and 1234 ha
(17.8%) of the total area were moderately suitable and marginally suitable, respectively
(Tables 7 and 8 and Figure 9).

Sorghum and soybean are considered relatively resistant to salinity. The land suit-
ability analysis for sorghum indicated that 6111.3 ha (88.1%) and 806.6 ha (11.6%) were
moderately suitable and marginally suitable, respectively. On the other hand, 3971.1 ha of
land (57.3%) was classified as moderately suitable, 2458.4 ha (35.5%) as marginally suitable
and 506.1 ha (7.3%) as not suitable for soybean (Tables 7 and 8 and Figure 9).

Tomato, sesame and onion are considered the most famous highly profitable cash crops.
The land suitability analysis for tomato indicated that 3967.6 ha (57.2%) and 2966.3 ha
(42.8% of the total area) were moderately suitable and marginally suitable, respectively. On
the other hand, 782.1 ha (11.3%) were classified as moderately suitable, 6151.8 ha (88.7%)
as marginally suitable and 506.1 ha (7.3%) of land as not suitable for sesame. Furthermore,
5704.5 ha (82.3%) and 1229.3 ha (17.7% of land) were classified as moderately suitable and
marginally suitable for onion, respectively, as illustrated in Tables 7 and 8 and Figure 9.

The land suitability analysis for green pepper indicated that 807.2 ha (11.6%) and
6126.3 ha (88.3% of the total area) were moderately suitable and marginally suitable,
respectively. On the other hand, 781.8 ha (11.3%) was classified as moderately suitable,
while 5646.3 ha (81.4%) was marginally suitable, and 507.2 ha (7.3% of land) was not
suitable for groundnut. In the end, 782.1 ha (11.9%) and 6116.7 ha (88.2% of total land) were
classified as moderately suitable and marginally suitable for maize, respectively (Tables 7
and 8 and Figure 9).

The land suitability analysis for potato and beans indicated that the study area was
not suitable (N) for 6916.9 ha (99.7%) and 6853.5 ha (98.8%), respectively.
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4. Discussion

In land suitability studies, methods such as multi-criteria decision-making methods,
analytical hierarchy process, crop simulation models and machine learning related methods
are the most popular and dynamic [42]. Remote sensing, geostatistics and geographic
information systems were also successfully employed for determining land suitability
of important crops in other countries [43]. Land suitability mapping using geochemical
and spatial analysis methods was also used in cases of soils contaminated with toxic
elements [44]. In the present study, we determined optimized land use through integrated
land suitability and the GIS approach in the West El-Minia Governorate, Upper Egypt. The
method used is suggested as suitable for similar studies in other areas. The digital elevation
model (DEM) employed in this study had paramount importance in distinguishing between
common landscape units and their associated soil units as well [13,45–48]. The main
geomorphologic units in the study area were high terraces, medium height terraces, and
low terraces. High terraces with height of 142 to 164 m were undulating unit to gently
undulating relief and their soils were mostly deep. Soils exerted particle size classes of
gravelly sand to gravelly sandy loam with clay content ranging from 1.9% to 13.4%. Their
salinity level was mostly medium to extremely high (ECe values ranged from 12 dS/m to
33.7 dS/m). The high salinity was considered a result of aridity prevalence and deficit of
precipitation in most of the year, with the exception of some sudden flash floods which may
take place once every several years. The soils were neutral to alkaline in reaction, as the
pH values ranged between 8.2 and 9. Calcium carbonate contents varied from 5% to 14.1%
and gypsum content ranged from 2.3% to 7.8%. Medium height terraces with height of
136 to 142 m were gently undulating unit and their soils were deep to very deep. The soils
possessed particle size classes of gravelly sand to sandy loam, while clay content varied
between 2.3% and 17.4%. All salinity classes were detected from non-saline to extremely
saline (ECe values ranged from 8 dS/m to 12 dS/m). The pH values ranged between
8 and 8.2. Calcium carbonate content ranged from 5 to 10% while gypsum content ranged
from 2.1 to 13.4%. Low terraces with a height from 124 m to 136 m were almost flat units
and their soils were mostly deep and very deep. The soils exhibited particle size classes
of gravelly sandy to sandy clay loam and clay content ranged from 6.7% and 20.8%. The
salinity levels were medium to saline (ECe values ranged from 2 dS/m to 8 dS/m). The
pH values ranged between 7.8 and 8.2. Calcium carbonate contents varied from 3.2% to 5%
and gypsum content ranged from 1.3% to 11.7%.

The existence of adequate management of sustainable agriculture, through the employ-
ment of resilient commercial and agricultural practices, may play a crucial role in enhancing
the resilience of the fragile desert environment. The arid climate in the broader region
necessitates taking into consideration also non-renewable factors such as desalination and
treated sewage effluent (TSE) for efficiently assessing suitability of irrigated land [49]. Due
to the harsh environment of natural vegetation growth, the soil organic matter content is
predictably low and affects the soil structure. Therefore, it is desirable to increase OM in
soil by adding organic amendments and incorporating plant residues such as leguminous
plants into the soil [50]. With regard to soil erosion, mechanical settlement should be
avoided to mitigate the potential unfortunate consequences of compaction and soil struc-
ture degradation that may exacerbate soil erosion. Agriculture may play an important role
for climate change mitigation through storage of C in soil, above and belowground biomass
as well as litter [51]. With regard to alkaline soils, it is recommended to use ammonium or
potassium sulfate to reduce the alkalinity of the soil. Since the application of management
techniques is costly, extensive and conservative practices are recommended to maintain
high productivity. In general, the proposed framework will be considered by the research
work as a basic reference and strategic guide to identify potential flaws and increase the
possibility of progress.

In connection with the assessment of the potential of soil resources, the most severe
limitations were coarse texture, medium grain content, followed by limited depth and poor
internal drainage. While saturation with carbonate and sodium were the least influential,
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they were generally not related to the specific soil mapping unit. So, it is recommended
to design a good land management system to overcome some of the temporarily limiting
factors that may hinder optimal agricultural use.

Crop production needs to identify the soil factors that limit the cultivation process in
the study area. It was found that these factors were slope, surface rockiness, erosion, light
texture and reduced soil fertility [12,45–48]. Statistical analysis showed that the results
of the proposed model were highly consistent with the actual crop requirements. In this
regard, appropriate modeling presents a flexible technique that contributes to improving
the assessment of land suitability for crops in newly reclaimed areas, making it more
accurate and reliable, thus assisting decision makers in their selection among different
types of land use due to the ability to adjust the weights of the assessment criterion as
per the requirements of the selected crops. The proposed model provides a significant
improvement in the assessment of land suitability for the newly reclaimed desert lands,
resulting in the addition of new areas to the agricultural production sector.

The output of the research concluded that potato and beans have the lowest suitability
class N with areas of 6916.8 ha (99.73%) and 6853.4 ha (98.82%), respectively, while for S2
classes were barley, alfalfa, onion, sorghum, sugar beet, soybean, sunflower and tomato
with areas of 6415.3 ha (92.5%), 5547.2 ha (80%), 5704.5 ha (82.3%) 6111.3 ha (88.1%),
6111.3 ha (88.1%), 3971.1 ha (57.3%), 5700 ha (82.2%), and 3967.6 ha (57.2%), respectively.
Meanwhile, S3 classes occupied areas of 6126.3 ha (88.3%), 5646.3 ha (81.4%), 6116.7 ha
(88.2%), 6151.8 ha (88.7%) and 4503.6 ha (64.9%) for green pepper, groundnut, maize,
sesame and wheat, respectively. Replanting a particular crop in the same site causes an
increase in pests at that site, especially soil pests or pests that infect certain varieties and
types of vegetables [52]. So, we could easily overcome many pests if we avoid planting the
garden or field with the same crop or crops that are affected by the same pests for a period
of two to three years, as that period is sufficient to eliminate most pathogens, given the
absence of their host [53]. The absence of a host for many insects causes their elimination,
especially those that move slowly from one field to another, in search of their hosts, as
most insects cannot live for a long time in the absence of their hosts [35]. Moreover, crop
rotation reduces the incidence of viral diseases caused by viruses present in the soil, as
these diseases may be transmitted mechanically to plants [53]. In general, crop rotation
contributes to the treatment of soil and the control of pests and plant diseases, and it means
the succession of agricultural crops based on a scientific basis, by changing the type of crop
planted on a particular plot of land from one season to another, with the aim of reducing
the spread of pests, as the cycle works to interrupt the cycle of the life of the insect before
its completion, thus eliminating the pathogen [52–54]. The agricultural cycle contributes
to maintaining the balance of nutrients and fertilizer in the soil; some vegetable crops
prefer a higher percentage of nitrogen, phosphorous and potassium, so these vegetables
need animal fertilizer. While root crops do not grow well in animal manure, they remain
dwarfed and distorted. Therefore, it is preferable not to plant root crops immediately after
planting crops that need animal manure, or not plant it for one or two seasons, after a
group of crops that grow well with animal manure on the same plot of land [55–58].

In this study, while selecting this practice for the agricultural cycle, it was necessary to
pay attention to the following matters: (1) It is preferable not to reuse a particular site to
grow the same type of plants that were planted on it in the previous season or in recent
seasons, especially when growing seasonal plants, such as vegetables and medicinal herbs,
or when replanting perennial trees, such as fruit trees and shrubs [56,59–61]. (2) The ideal
practice is to plant different types and varieties of seasonal crops in different locations and
basins, and not to replant the same crop in the same location or basin until after a few
years, as this practice helps in controlling harmful and vascular insects. Crop rotation also
eliminates weeds and maintains soil fertility and good levels of organic matter [55–61].
Crops that are similar in their predisposition to the same diseases, and in their susceptibility
to harmful insects, should be planted at spaced intervals [62–65]. (3) Close alternation
between plantings is always preferred to reduce the periods of time during which the soil
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remains free of vegetation cover [66–68]. (4) Apply a short agricultural cycle in the limited
agricultural area while maintaining a healthy soil structure [69–72]. (5) If it is not possible
to practice crop rotation, for practical reasons, it should partially compensate for it through
interlacing and intercropping, provided that healthy soils are maintained [62–72]. (6) In
the framework of a crop rotation system, before replanting plants of the same species in
the same site, it must be ensured that the soil is free of germs and associated parasitic
plants [56,59–61]. The agricultural pattern of growing the same family of vegetables
annually on the same plot of land to meet market demands is a good example of poor
or non-successive crops rotations. Thus, it causes severe depletion of the land as well
as exacerbation of soil pests. Thus, many fungal, bacterial, insect and parasitic diseases
can be combated through proper agricultural rotation on the one hand and mixed and
intercropping cultivation on the other. Additionally, it will maintain soil fertility in the
short term and maintain soil quality in the long term, which will raise the production
capability and raise the degree of soil suitability for different crops.

In general, it is preferable to follow the triple cycle, that is, between three types of
crops, in one plot of land. For example, oil crops are exchanged in a three-year cycle, and
include two types of grains, such as wheat and corn, taking into account that sunflowers
are not planted in the land affected by white rot, for a period of not less than seven years.
It could be also applied a quadrilateral cycle, that is, between four types of crops, on the
same plot of land—for example, planting chickpeas and peas in the first year, and then, in
the next three years, plant leafy and flowering vegetables, such as cauliflower, cabbage and
beetroot, in the second year. In the third year, fruit crops such as tomatoes and peppers
are planted, and finally, in the fourth year, we plant root crops such as carrots, beets and
onions. All this succession between crops is in consideration of the fact that sugar beet is
the main crop in the land every year.

5. Conclusions

The study aimed to spotlight and analyze the affecting factors on the efficiency of beet
sugar economic producing and manufacturing. Our results suggested the importance of
raising the sugar beet cultivated area, as it is considered a profitable crop and favorable
to soil properties and it could be cultivated at the first stages of reclamation. The present
paper also recommends enabling and activating the role of agriculture guidance to raise the
cultivated area and acre productivity of sugar beet, encouraging and putting incentives for
investors to work and invest at the field of sugar beet manufacturing. This study aimed to
classify lands with different degrees of suitability as an index to help decision makers and
farmers, especially where crop selection is considered to be an important component of
management. The output of the research concluded that potato and beans have the lowest
suitability class N, while for S2 classes were barley, alfalfa, onion, sorghum, sugar beet,
soybean, sunflower and tomato. Meanwhile S3 classes were dominant for green pepper,
groundnut, maize, sesame and wheat. The assessment of the physical land suitability
of the study area indicates that it has huge potential for sugar beet, barley, sorghum,
soybean, sunflower and tomato production. This paper proves that GIS is a powerful
tool in highlighting the agricultural land suitability and analyzing the cross tabulation
between various thematic map classes with respect to agricultural land suitability and
can be applied at various scales. Our results also confirmed the ability of GIS as a tool for
saving time and reducing costs, which would be useful for policy makers and growers.
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