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Abstract: The rail fastening system forms an indispensable part of the rail tracks and needs to be
periodically inspected to ensure safe, reliable and sustainable rail operations. Automated visual
inspection has gained significant importance for fastener inspection in recent years. Position accuracy,
robustness, and practical limitations due to the complex environment are some of the major concerns
associated with this method. This study investigates the combined use of image processing and
deep learning algorithms for detecting missing clamps within a rail fastening system. The images
used for this study was acquired during field inspections carried out along the Borlänge-Avesta line
in Sweden. The image processing techniques proposed in this study enabled the improvement of
the fastener position and removal of redundant information from the fastener images. In addition,
image augmentation was carried out to enhance the data set, ensure experimental reliability and
replicate practical challenges associated with such visual inspection. Convolutional neural network
and ResNet-50 algorithms are used for classification purposes, and both the algorithms achieved
over 98% accuracy during training and validation and over 94% accuracy during the test stage. Both
the algorithms also maintained a good balance between the precision and recall scores during the
test stage. CNN and ResNet-50 algorithms were also tested to analyse their performances when
the clamp areas were covered. CNN was able to accurately predict the fastener state up to 70% of
clamp area occlusion, and ResNet-50 was able to achieve accurate predictions up to 75% of clamp
area occlusion.

Keywords: rail fastening system; clamps; image processing; deep learning

1. Introduction

Rail transport has emerged as a significant mode of transportation as it forms a major
contributing factor in the economic and industrial development of the society, through
mobilization and transportation of people and commodities. Rail freight transport and
passenger traffic has increased rapidly in Europe to overcome heavy congestions of road
and sky, increasing energy costs, and carbon emissions. In EU15 countries, there has
been an increase of 28% in passenger-kilometres and an increase of 15% in rail freight
ton-kilometres, between 1990 and 2007 [1]. In Sweden, between 1960 and 2010, there has
been an average annual growth of 1.1% traffic on the railway network and a further annual
increase of 1% in traffic tonnage up to 2050 is anticipated [2]. The state of the existing
infrastructure and the increase in volumes of freight and passenger traffic are the issues
that require significant attention in the field of rail transportation [3]. Capital expansion of
the infrastructure could be a possible solution to improve the rail performance, however
this is a time consuming and cost-intensive approach. An ideal solution to improve the
availability, capacity and service quality of the existing infrastructure would be to improve
the maintenance and renewal (M&R) process. An efficient M&R operation would ensure
optimization in resources, leading to smarter and more sustainable infrastructure [4].
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The quality of a given railway infrastructure and its utilisation methods plays a
significant role in determining its operational capacity [5]. The condition or the given state
of the infrastructure and its operational capacity are highly inter-dependent and forms
a crucial aspect in railway infrastructure maintenance. When the quality and condition
of the railway infrastructure is high, higher operational capacity is achieved with higher
service quality. With the increase in the operational capacity, the infrastructure is exposed
to higher traffic and load. This increase in traffic and load leads to the deterioration of the
infrastructure and deformation to its components, which results in a higher number of
M&R interventions. These M&R intervention processes demand track possession, which
in turn reduces operational capacity. The down time arising from such maintenance and
renewal of networks is responsible for nearly half of all the delays to passengers, reducing
the service quality. In Sweden, an average of 572.7 h and 670.3 h of delays are incurred due
to failure of components in track and switches and crossings (S&C), respectively [6]. The
track and its components need to be inspected periodically to avoid such delays due to
failure, and to ensure safe and reliable operation.

To control the state of the given railway infrastructure and to prevent catastrophic
accidents, track inspection has to be carried out periodically [7]. Traditionally, trained
inspectors carry out the task of rail inspection by walking along the track length to look for
visible defects and technical deviations. This mode of manual inspection poses safety issues
for maintenance staff, and are slow, labour intensive and prone to human errors, especially
in tough winter conditions. Further, such manual inspections are time consuming and
expensive for railroad companies, especially for long-term and large-scale development
projects. Recent technological enhancements have seen automated rail inspection systems
based on machine vision being widely used for inspection of the track and its components.
Moving towards autonomous visual inspection will facilitate a reduction in resource con-
sumption arising due to manual labour, thus making the railway sector more sustainable.
Such automated rail inspection systems consists of various functions such as rail profile
measurement, rail surface defect detection, gauge measurements and rail fastener detec-
tion [8]. Rail fastening systems are pivotal components in the rail infrastructure as they
clamp the rail to the sleepers, preventing the transverse and longitudinal deviations of
rails from the sleeper. They also aid in maintaining the gauge and preserving the designed
track geometry. Failures of fasteners can cause an increase in wheel flange wear, reduce
the safety of train operations, and may lead to catastrophic accidents [9]. In the last two
decades, application of automated machine vision systems for fastener inspection has
gained significant importance; however, the detection methods from these rail images have
varied over time.

Image processing and deep learning-based methods are the two widely employed
detection methods for fastener defect detection [10]. The image processing-based method
has the three following aspects: (1) locating and segmenting the fastener region; (2) extract-
ing fastener features; (3) using classification algorithm for fastener defect recognition. In
2007, Marino et al. [11] made use of a multilayer perceptron neuron classifier for detecting
missing hexagonal-headed bolts. Stella et al. [12] used wavelet transform and principal
component analysis for fastener image pre-processing and employed a neural classifier to
detect missing hook-shaped fasteners. Yang et al. [13] used the direction field as a template
to match the fastener images and obtained the weight coefficient matrix by employing
linear discriminant analysis (LDA) for matching. Ruvo et al. [14] used an error back propa-
gation algorithm on rail images to model two types of fasteners and implemented the same
on a graphical processing unit to achieve real time performance. The AdaBoost algorithm
was used by Xia et al. [15] for detecting fasteners from rail images. Li et al. [16] used
image processing techniques to detect fasteners and their various components from images
acquired during visual inspections. To model fasteners and learn from the probabilistic
representation of different components in rail images, H.Feng et al. [8] used the structure
topic model (STM) on the acquired rail images. To differentiate between normal fasteners
and broken fasteners, H.Fan et al. [17] used line local binary pattern (LLBP) on the rail
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images. Edge detection methods [18], support vector machines (SVM) [19] and Gabor
filters [20] are other commonly used techniques to detect fasteners from rail images. These
traditional methods facilitate the inspection of fasteners with reduced equipment resources
and manpower; however, the detection accuracy could easily stagnate as it becomes dif-
ficult to manually design accurate and robust features for such railway components due
to the diversity of shapes and backgrounds [21]. In recent years, the application of deep
learning methods [22–25] for fastener detection has gained significant importance due to
the increase in computing power and development of the graphical processing units (GPU).

Significant progress has been made in detecting fasteners and identifying the defects
from railway track images, however there are some underlying concerns associated with
this method. The position accuracy and robustness are the two major concerns associated
with this detection method [23]. The practical implementation of this technique is relatively
expensive to carry out, and they are difficult to mount and maintain on an in-service
train as they are integrated in the operation and are subjected to vibrations, brightness
fluctuations and motion blurring during high-speed travel, which can reduce the accuracy
of detection. The detection task also becomes complicated when the rail and fasteners are
obscured due to the presence of dust and rust. Visual inspection can also be hindered by
the presence of snow, stones (ballast occlusion) and other debris, or during heavy rain,
minimising the efficiency in detecting the rail and its components. Considering these
problems, a new method combining the image processing technique and deep learning
technique is investigated in this article for missing clamp detection. The image processing
steps aid in improving positioning of the fastener area and removing extra content from
the raw images. Deep learning algorithms such as Convolutional neural network (CNN)
and deep residual network (ResNet-50) are investigated for classification purposes. In
addition, image augmentation techniques are implemented to investigate the performance
of the detection algorithm, reciprocating the various practical limitations mentioned above.
The remainder of the paper is structured as follows. Section 2 elaborates the research
methodology used for this study. The results and analysis are explained in Section 3, and
the conclusions are discussed in Section 4.

2. Research Methodology

The most common observed fault within a rail fastening system is missing clamps.
The clamping force holding the rail on the sleeper is reduced when a clamp is missing
from the fastening system. When clamps are missing from fastening system in consecutive
sleepers, the track integrity is affected, as it may lead to slipping, excessive gage widening
and low lateral resistance, which can further lead to derailment. This study makes use of
Image processing techniques to pre-process the rail image captured during track inspection
and feed them as an input to deep learning algorithms for detecting missing clamps within
a rail fastening system. This study makes use of a standard laptop (Dell Ultrabook) with
Matlab (R2019b), Python 3.6 (with necessary packages such as Numpy, Pandas, and Keras)
and Jupyter Notebook.

2.1. Raw Data

The rail images were collected along the Borlänge-Avesta line in Sweden using a
greyscale CMOS line camera (see Figure 1). Each line is triggered by a wheel encoder
in 0.4 mm intervals at 20 km/h. Two thousand such lines are combined into one image
and compressed with JPEG. The raw images obtained are RGB images with a resolution
of 2000 × 2048 pixels. Due to the complex environment of the railway network and the
vibration of the measurement vehicle, the rail images collected from the field are prone
to noise and asymmetrical illumination. Even though sleepers should be mounted at
an equal distance, in practice the distance can vary between different lines or slightly
within the same line. Thus, the positioning of the sleeper and fastening system within the
collected images can vary during the image segmentation procedure. Hence, it becomes
necessary to incorporate image processing techniques to tackle additional noises and error
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in positioning, which can deteriorate the performance of the detection algorithm. Figure 2
depicts few examples of the typical problems associated with the raw images collected
from the field. The presence of such half sleepers and more than one sleeper in segmented
images can deteriorate the detection accuracy.

Figure 1. Image acquisition system mounted on an inspection car.

Figure 2. Raw images from the measurement car; (a) position of rail and fasteners not centred,
(b) position of sleeper with fasteners towards the bottom with presence of additional noise, (c) two
sleepers with four intact fasteners with low illumination, and (d) two sleepers with one clamp missing
in the top sleeper.
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2.2. Image Processing

To improve the detection accuracy and reduce computational cost, the fasteners need
to be positioned precisely within the images. Taking the characteristics of the raw railway
track line images and the positional relationship between the track and fasteners, the
following image processing steps were adopted to reduce the fastener positioning error:

• The raw images were merged to form a concatenated long image of the railway track
line as depicted in Figure 3a. The image is converted to gray-scale image.

• The concatenated gray-scale image was converted to a binary image (binary matrix)
by using the adaptive threshold algorithm (Otsu’s method) [26], to simplify the
positioning process of the targeted area (refer to Figure 3b).

• The binary image was filtered using adaptive noise removal filtering to de-noise the
image and improve the accuracy of the positioning result.

• The binary matrix was summed both horizontally (along the sleeper direction) and
vertically (along the rail direction) to create a column vector and a row vector. The
column vector was used to position the fasteners and the row vector was used to
position the rail. Moving average filters was then used on these vectors to smooth
them in the same way (refer to Figure 3c).

• The filtered vectors were converted to binary vectors by thresholding it to 75% of
its maximum value. The centre position of the sleepers was extracted by finding
the peaks and the width of the same within the binary column vector as shown in
Figure 3d. Similarly, the centre of the rail was identified from the binary row vector.

• The centre position of both sleeper and rail was used to cut the concatenated images,
such that the sleeper and rail was centred within a single frame and each frame
contained one sleeper with two fasteners (refer to Figure 4).

Figure 3. Image processing steps. (a) Concatenated rail images, (b) filtered binary image of the rail,
(c) the result of horizontal summation of the binary matrix to a column vector marked in black colour
and the smoothened curve using the moving average filter (marked in red), and (d) the binary matrix
after thresholding indicating the sleeper position with the centre marked in red dotted lines.
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Figure 4. Fastener image after image processing.

Figure 4 depicts the fastener image acquired after the image processing techniques
applied on the raw image. The image processing steps aid the pre-processing of the raw
images and helps to remove redundant information from the raw images and improve the
fastener positions. The image processing method presented in this study can also be used
to extract individual fasteners from images captured during high-speed travel.

2.3. Deep Learning

The fastener detection task investigated in this study is a multi-class classification
problem with three classes, i.e., healthy fastening system with both clamps intact, fastening
system with one clamp missing, and fastening system with both clamps missing. Deep
learning (DL) algorithms for image recognition and detection have gained significant
importance in the last decade as these are designed in such a way that they try to replicate
the function of the human cerebral cortex [27]. For this study, a convolutional neural
network (CNN) and residual network (ResNet-50) are used for the classification task.

2.3.1. CNN

Convolutional neural networks are deep learning algorithms that convolve the input
images with filters or kernels to extract features [27]. Subsampling, weight sharing and
local field are three main traits of a CNN that allows it to minimise the trainable parameters
as compared to a traditional artificial neural network. These traits also aid them to decrease
overfitting and achieve shift invariance property, thus increasing the model robustness [28].
A comprehensive description regarding CNN can be found in [29,30].

The CNN architecture for the classification task used in this study is depicted in
Figure 5. Three convolutional layers are used for the fastener classification purpose. The
first layer consisted of 32—3 × 3 filters, the second layer was composed of 64—3 × 3 filters
and the third convolutional layer had 128—3 × 3 filters. The pooling and fully connected
layers follow the convolutional layer, and a dropout (value of 0.25) were added after each
convolutional layer. Pooling was used to simplify the output after convolution. Max
pooling layer of size 2 × 2 was used for this study. The strides for the convolutional layer
was 1 and for max-pooling was 2. Strides defines the number of blocks to move forward
after each calculation.
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Figure 5. CNN architecture for fastener detection.

2.3.2. ResNet-50

ResNet-50 is a very deep network that stacks building blocks of the same connecting
shape called the residual units [31]. Compared to other deep networks, ResNet employs
a shortcut or skip connection that allows the gradients to be back propagated directly to
previous layers, thus protecting the network from the vanishing gradient problem. ResNet
mitigates the problem of covariate shifts by using batch normalization at its core, thus
adjusting the input layer to increase the performance of the network. A comprehensive
description about ResNet-50 can be found in [31,32].

Depending on the input/output dimensions, there are two main types of blocks used
in ResNet, the convolution block and the identity block (ID). An identity block is used
where the input activation has the same dimension as the output activation, whereas
the convolutional block is used to resize the input to another dimension, such that the
dimensions are equal in the final addition. Both the convolutional and identity block are
used in this ResNet-50 model, and both these blocks employ skipping over three hidden
layers (of kernel sizes 1 × 1, 3 × 3 and 1 × 1 respectively) rather than the traditional two
layers. Within each of these blocks, the shortcut and the input are added together and a
ReLU activation function was added afterwards. The ResNet-50 model employed for this
study had five stages, as depicted in Figure 6.

The input was zero padded (size (3, 3)) before moving on to the first stage. In stage 1,
a convolution layer with 64 filters (shape 7 × 7) and with a stride of 2 was used. Further,
batch normalisation and a max-pooling layer (size (3, 3)) with a stride of 2 was applied. In
stage two, the convolution block used three sets of filters of sizes 64, 64 and 256 respectively
for the three layers and a stride of 1. Stage 2 employed two identity blocks with three
sets of filters of size 64, 64, and 256 for the three layers within each block. Stage 2 thus
has nine layers associated with it. Similarly, stage 3 used three sets of filters of size 128,
128, and 512 respectively for the three layers within both the convolutional block (stride
value of 2) and the identity block. Stage 3 had one convolutional block and three identity
blocks, thus having 12 layers altogether. Stage 4 adopted three sets of filters of size 256,
256, and 1024 respectively for the three layers within both the convolutional block (stride
value of 2) and the identity block. Five such identity blocks were used in stage 4, along
with one convolutional block, thus having 18 layers associated with it. Stage 5 employed
three sets of filters of size 512, 512, and 2048 respectively for the three layers within both
the convolutional block (stride value of 2) and the identity block. The last stage had one
convolution block and two identity blocks, thus making it nine layers within stage 5.
Average pooling and flattening were used at the end before passing on to a dense layer
(fully connected). The dense layer reduces its input to the number of classes using the
softmax activation function.
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Figure 6. ResNet-50 architecture for fastener classification.

2.3.3. Training, Validation and Testing

After image processing and positioning of the track and fastener within the image,
three types of fastener images are retrieved from the images captured during the track
inspection, i.e., healthy fastening system with both clamps intact, fastening system with
one clamp missing, and fastening system with both clamps missing. The data set for this
study was collected during a real time track inspection carried out along the southern part
of Sweden. The data set contained over 6000 instances of healthy clamps, 116 instances
of fastening systems with one missing clamp, and 47 instances of fastening system with
both clamps missing. The data set was imbalanced as the number of healthy fasteners
were much higher than those with one and both clamps missing, as this is the expected
behaviour of an operational (in-traffic) track section. It is more challenging to detect railway
components with a limited dataset under diverse conditions, than to detect components
from a large dataset under identical conditions [22]. Image augmentation was implemented
to expand the data set and to ensure experimental reliability. The augmentation was carried
out on all three classes. The augmentation techniques employed for this study made use
of only those that are practically possible during real time measurements. Brightness,
contrast, saturation, blur, noise, and rotation of the images are the parameters that were
used for augmentation (refer Figure 7), and these parameters were selected based on expert
opinions from the field. Presence of snow on the fastener and ballast occlusion (stones
covering the fasteners) are frequently encountered problems in railway fastener inspection.
Hence, the data set used for this study also made use of instances where the fasteners were
partially or fully covered by ballast and snow. The augmentation techniques used for this
study aims to incorporate realistic practical variations that can occur during high-speed
visual inspection and not just enhance the data set with non-practical parameters.

The final data set contains 3000 images (1000 images for each class). Each class in
the final data set contains instances of both the actual, as well as the augmented, images.
The input images for both the models were resized to 224 × 224 in RGB form. The data
set made use of 2550 images for training and validation (2040 samples for training and
510 samples for validation) and 450 images for testing. The parameters of the designed
CNN and ResNet-50 algorithms were updated through the Adam stochastic optimization
algorithm (with a learning rate of 0.01) to minimize the loss function. Cross-entropy (sparse
categorical cross entropy), which estimates the divergence between the distribution of the
network output and the ground truth, was considered as the loss function for this study.

Performance indicators are used to understand and evaluate how effective the model
is. Different evaluation metrics underline different aspects of the performance of the
classification algorithm. The classification approach used in this study is a multiclass
classification model. The models were evaluated based on the performance indicators such
as accuracy and cross-entropy (loss) during the training and validation stages. Indicators
such as precision and recall were investigated during the test stage, along with accuracy
and loss.
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Figure 7. Augmentation of the fastener images; (a) original, (b) brightness, (c) contrast, (d) rotation, (e) saturation, (f) blur,
(g) noise, (h) fasteners partially covered with stones, and (i) fasteners partially covered under ice/snow.

3. Results

The training and validation performance of the two deep learning algorithms are
presented in Table 1. The CNN employed 20 epochs and ResNet had 50 epochs during
the training phase. Epochs during training represents the number of passes of the entire
training data set the algorithm has completed. The number of epochs was determined
based on the lowest validation loss achieved and when the difference between the training
and validation loss was found to be the least. The batch size was 50 for both the algorithms.
Both CNN and ResNet-50 exhibited a high accuracy during training and validation, of
over 98%. ResNet-50 exhibited the highest accuracy among the two algorithms considered,
during both training (99.02%) and validation (98.24). The loss for both the algorithms
was well below 0.05. The loss was found to be the least in ResNet-50 during both the
training and validation phase, with values of 0.0086 and 0.0205, respectively. The average
training time per epoch was lower for CNN (127 s) compared to ResNet-50 (1029 s). This is
due to the larger network structure and higher number of trainable parameters observed
in the ResNet-50 algorithm. The average training time per sample for the CNN model
was 63 milliseconds, and for the ResNet-50 model was 509 milliseconds. The average
training time per sample was low for CNN (63 S) compared to the ResNet-50 (509 s). There
were no huge variations in accuracy and loss during both training and validation for both
algorithms, indicating that the models did not over-fit or under-fit the data. Figure 8
depicts the learning curves for both the algorithms with respect to the number of epochs.
The learning curves for both accuracy and loss are depicted in the same way for the two
algorithms. For both the deep learning algorithms, the validation scores (both accuracy
and loss) tend to converge to a value close to the training score, indicating low bias and low
variance. Since the training accuracy was high with low loss, the training data was well
fitted by both the models, indicating a low bias. Furthermore, the gap between the training
and validation curves for both the algorithms was nominal, indicating a low variance.
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Table 1. Performance of the algorithms during training and validation.

Parameters CNN ResNet-50

Training Accuracy (%) 98.73 99.02
Training Loss 0.015 0.0086

Validation Accuracy (%) 98.18 98.24
Validation Loss 0.024 0.0205

Total Parameters 11,169,347 23,643,011
Trainable Parameters 11,169,347 23,589,891

Number of Epochs 20 50
Average Training Time per Epoch (seconds) 127 1039

Average Training Time per Sample (milliseconds) 63 509

Figure 8. Learning curves with respect to the number of epochs and performance indicator; (a) CNN epochs vs. accuracy,
(b) CNN epochs vs. loss, (c) ResNet-50 epochs vs. accuracy, and (d) ResNet-50 epochs vs. loss.

Table 2 depicts the performance of CNN and ResNet-50 on the testing set. In the test
set, 450 samples were used, which contained instances that correlated with the complex
situations occurring during vision-based inspections. CNN and ResNet-50 both exhibited
relatively high accuracy of 94% and 94.4% respectively, even under such circumstances.
The loss for CNN during testing was slightly higher than ResNet-50 during the testing
phase. CNN had a loss of 0.56, whereas ResNet-50 had a loss score of 0.47. The time taken
for the prediction of a sample is lower for both the CNN and ResNet-50 models. CNN
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was able to make predictions on the test set in 8 s and ResNet-50 model took 87 s. Both
the models exhibited a good balance between the precision and recall score. The precision
score on the test set was high for both the ResNet-50 model (95%) and the CNN model
(94%). The recall score on the test set was similar for both the algorithms (94%). In railway
application, it is essential to have both high precision and recall in order to balance the
risk of failure and the cost of inspection. A higher precision minimizes the false positive
rates, thus contributing to better detection of the fastener state, ensuring safe and reliable
operation of the railway. A higher recall ensures minimal false negatives, thus minimising
cost due to unwanted inspection.

Table 2. Performance of the algorithms during testing.

Parameters CNN ResNet-50

Accuracy (%) 94 94.4
Loss 0.56 0.47

Precision 94 95
Recall 94 94

Time for testing (seconds) 8 87
Time per sample

(milliseconds) 16 190

Out of 450 samples used for testing, CNN misclassified 27 samples and ResNet-
50 misclassified 25 samples. Some of the misclassified fastener images are depicted in
Figure 9. Among the six instances depicted in Figure 9, five instances (refer Figure 9a–e)
were misclassified by both the algorithms in similar manner. The instance depicted in
Figure 9f was correctly predicted by the ResNet-50, but was wrongly predicted by the CNN
algorithm. Both the algorithms performed significantly well when the fasteners in the test
images were rotated, had synthetic noise added to them, when the saturation level of the
images varied, and when the fastener images were blurred. Both CNN and ResNet-50
models performed well in detecting the fastener state when the fasteners were partially
covered with stones and snow. However, for both the deep learning algorithms, the
majority of the false predictions occurred when the fasteners in the images were obscured
heavily under snow or stones. The algorithms also had difficulties in predicting the right
class when the illumination level was poor (low level of brightness).

To further understand the performance of the deep learning algorithms on predicting
the fastener state where the clamps were covered, an additional test set was created as
depicted in Figure 10. A black box was used to cover the clamp area on one side of a healthy
fastening system and was tested for both the algorithms. The clamp area was covered
incrementally in steps of 5% of the total clamp area. A total of 30 images were created in the
new test set, such that 10 images had no clamp area covered and the remaining 20 images
had clamp areas covered (5% to 100% of the clamp areas). The CNN algorithm was able to
predict the detect fastener state precisely up to 70% of clamp area occlusion. The algorithm
misclassified the fastener state to one missing for those fasteners where the clamp areas
were covered by 75% of the total fastener areas. The ResNet-50 algorithm was slightly
better when compared to the CNN in this regard, as it was able to detect accurately up to
75% of clamp area occlusion. The prediction, however, was not accurate when the clamp
area was occluded from 80% and above.
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Figure 9. Misclassified fastener images. Labels 0, 1, and 2 represents healthy state, one missing clamp within a fastening
system, and two missing clamps within a fastening system, respectively. (a) True class ‘healthy’ predicted ‘one missing’,
(b) true class ‘two missing’ predicted ‘one missing’, (c) true class ‘healthy’ predicted ‘one missing’, (d) true class ‘one
missing’ predicted ‘two missing’, (e) true class ‘one missing’ predicted ‘two missing’, and (f) true class ‘healthy’ predicted
‘one missing’.

Figure 10. Additional test set to analyse the performance of the deep learning algorithms when the clamp areas were
covered; (a) 0% clamp area covered, (b) 25% clamp area covered, (c) 50% clamp area covered, (d) 75% clamp area covered,
and (e) 100% clamp area covered.
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4. Conclusions and Future Work

In recent years, with the development of high-speed railways, automated fastener de-
tection technologies based on machine vision have gained significant attention. Automated
visual inspection makes use of rail images for detecting fasteners. The positional accuracy,
complex railway environment, practical implementation and robustness are the major
concerns associated with this method for fastener detection. This article aims to investigate
a method combining image processing and deep learning algorithms for detecting missing
clamps within fastening systems. The images used for this study were obtained during
the field inspection along the Borlänge-Avesta line in Sweden. The image processing
technique was successfully able to improve the positional accuracy of the fastener and rail,
while removing the redundant information from the rail images. Data augmentation was
then carried out to replicate the complex scenarios associated with the visual inspections.
Two deep learning algorithms, namely CNN and ResNet-50 models, are investigated for
detecting missing clamps from the rail images.

The results of the study show that combining image processing with the deep learning
algorithms was effective in achieving high accuracy for fastener detection. The training and
validation accuracies for both CNN and ResNet-50 models were above 98% with minimal
loss. The training and testing time per epoch was found to be lesser for CNN than the
ResNet-50 algorithm, due to the larger network structure and a higher amount of trainable
parameters in ResNet-50. The training and testing time per sample was found to be lower
for CNN among the two algorithms. Both the algorithms were able to achieve over 94%
accuracy in detecting fasteners from different complex environments during the testing
phase. The models were reliable when the fasteners were rotated, had additional noise,
when the images were blurred, when the saturation level varied, and when the fasteners
were covered partially under snow or ballast. The two models, however, had difficulties in
predicting fastener state when the brightness was affected and when the fasteners where
heavily occluded by the presence of ballast and snow. An additional test set was created by
covering the clamp areas to further analyse the detection capabilities of both the algorithms,
when fasteners were covered in the images. The CNN failed to predict the fastener state
for all scenarios when the occlusion covered over 70% of the clamp area. The ResNet-50
algorithm failed to predict the fastener state when the occlusion was above 75% of the
clamp area. Further studies need to be carried out to analyse the prediction capabilities of
the algorithms where different scenarios of occlusion along the clamp area are considered
to estimate the triggering mechanism of such an algorithm. This study will be carried out in
the future research. On comparing both the algorithms, the complexity and time required
for training and testing was lesser for the CNN algorithm, which can add value for real
time application. The performance in terms of accuracy and precision was marginally
better for the ResNet-50 when compared to the CNN algorithm. The ResNet-50 algorithm
was able to detect fastener state slightly better than the CNN, even when the fasteners
were occluded by about 75% of the total fastener area. A better detection of fastener state
will ensure less disruptions or downtime arising from M&R, leading to safe, reliable and
sustainable rail transportation.

In Sweden, the tracks are covered with snow for the majority of the year and would
thus require additional rail surface treatment or a removal process that adds to the expenses
of the railroad companies. One possible solution to overcome this difficulty and ensure
safe, sustainable and reliable rail operation, is by combining automated visual inspection
with non-destructive testing such as eddy current sensors [6,33] for fastener inspection.
The presence of non-conductive materials (such as ballast and snow) in the sensor-to-target
gap do not affect the eddy current sensors. This allows their use in complex environments,
such as those involving stones, water, oil, machine fluids and snow. The differential eddy
current inspection was able to detect the fastener state with a precision and recall of 96.64%
and 95.52%, respectively [6]. The results presented in the previous studies were based
on controlled measurements carried out along the heavy haul line in the northern part
of Sweden, where the likelihood of disturbances were minimal. The measurements were
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carried out by mounting the sensor system 65 mm above the railhead on a trolley system.
A detailed comparative study between the eddy current inspections (measurements from
an actual train) and machine vision-based inspection for detecting missing clamps from a
fastening system for the same track section will be carried out in the future studies.

The future of this study will also focus on detecting different types of rail fastening
systems and other track components simultaneously from rail images. Further studies will
be carried out to investigate the performance of the deep learning algorithms for various
scenarios of occlusion. The possibility of using pre-trained weights and transfer learning
for fastener state detection will be investigated in the future study. Future research will
aim to combine automated visual inspection with eddy current inspection for improving
the fastener detection to ensure safe, reliable and sustainable rail transportation.
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