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Abstract: In geotechnical engineering, there is a need to propose a practical, reliable and accurate
way for the estimation of pile bearing capacity. A direct measure of this parameter is difficult and
expensive to achieve on-site, and needs a series of machine settings. This study aims to introduce a
process for selecting the most important parameters in the area of pile capacity and to propose several
tree-based techniques for forecasting the pile bearing capacity, all of which are fully intelligent. In
terms of the first objective, pile length, hammer drop height, pile diameter, hammer weight, and N
values of the standard penetration test were selected as the most important factors for estimating pile
capacity. These were then used as model inputs in different tree-based techniques, i.e., decision tree
(DT), random forest (RF), and gradient boosted tree (GBT) in order to predict pile friction bearing
capacity. This was implemented with the help of 130 High Strain Dynamic Load tests which were
conducted in the Kepong area, Malaysia. The developed tree-based models were assessed using
various statistical indices and the best performance with the lowest system error was obtained by the
GBT technique. The coefficient of determination (R2) values of 0.901 and 0.816 for the train and test
parts of the GBT model, respectively, showed the power and capability of this tree-based model in
estimating pile friction bearing capacity. The GBT model and the input selection process proposed
in this research can be introduced as a new, powerful, and practical methodology to predict pile
capacity in real projects.

Keywords: tree-based techniques; feature selection; pile bearing capacity; gradient boosted tree;
random forest

1. Introduction

There are several types of deep foundations, for instance, piles and caissons, which
are required in situations where the soil is not able to support structural loads at a shallow
depth. The main objective of the pile foundation is to transmit the structural load to deeper
bearing strata in order to withstand the axial, lateral, and uplift load and to minimize the
settlement. The load applied at the top of the pile head is transferred to the soil where the
load is partially taken by normal stress at the pile base and the remaining load is taken
by the lateral pile-soil interface via shear stress [1]. Thus, the piles can be classified into
two types, which are end bearing pile and friction pile. The end bearing pile is a pile that
transmits the structural load to a hard and incompressible stratum where the required
bearing capacity is derived from end bearing at the pile base [2]. As for the friction pile, the
pile-bearing capacity is derived from skin friction and cohesion between the pile surface and
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the shaft that is encompassed by soil or rock along a pile [3]. Hence, the base and friction
capacity of piles are crucial for carrying the axial loading. In the event of no stiff stratum at
a reasonable depth, the loads are required to transfer by friction through the pile shafts [4].

The pile-bearing capacity can be governed by soil and pile properties [5,6]. The
contribution of soil typically consists of cohesion and friction between the pile and the shaft
of a pile at a depth. The pile friction capacity is calculated by a combination of the interface
shear strength (τm) along the pile length and the pile surface area to compute the shaft
resistance (Qsu) [7]. In addition, during the installation of driven piles, which are usually
prefabricated, the loose deposit soil that encompasses the pile can be locally densified due
to soil displacement and, thus, the pile capacity can be increased [7]. As such, it can be
stated that the installation method of piles can be one of the factors that contributes to the
pile capacity [8].

The pile-bearing capacity can be determined using several techniques, such as empiri-
cal, semi-empirical and finite element (FE). The extent of the FE model and computation
time is limited with model boundaries in contexts where this can be done by redoing the
model boundaries by taking the boundaries to be further away from the modeling object
and comparing the results. This process can be more time consuming [9]. In industry
practice, the Standard Penetration Test (SPT)-N is widely-used to determine the pile capac-
ity [8,10–12]. There are many empirical formulas of pile friction bearing correlated with
SPT-N in a general form of equation, as shown below:

qs = ns N (1)

where, qs is the limit skin friction stress at a given depth, which is proportional to the N
value at the particular depth, and ns is the skin friction factor proposed by researchers as
presented in Table 1. However, according to previous studies, these empirical equations
are not reliable in terms of accuracy [13,14]. This is because some of the pile’s empirical
analysis relationships are made by simplification in contexts where a large factor of safety
is applied. This factor reduces the accuracy of the predictions and the deprivation of
resources [15]. Other than this, there is a simple correlation between the pile bearing
capacity and in-situ tests, for instance, the Cone Penetration Test (CPT) or SPT. However,
this correlation method overestimates the pile bearing capacity [16].

Table 1. Some of empirical equations for determining the pile friction bearing capacity using ns results.

No References Equation ns (kPa) Type of
Installation Pile

1
Bazaraa and
Kurkur [17]

qs = 0.67 N if D ≤ 0.5 m.
0.67 if D ≤ 0.5 m,

1.34 for the other D
values (where D is
pile diameter in m)

Boredelse
qs = 1.34 N

2 Decourt [18] qs =10 (N/3+1) - Bored

3
Lopes and

Laprovitera [19]
qs = 1.62 N 1.62 in sand

Boredqs = 1.94 N 1.94 in silty sand

4 Meyerhof [20] qs = 1 N 1 Bored
qs = 2 N 2 Driven

5
Shioi and Fukui

[21]
qs = 1 N 1 Bored
qs = 2 N 2 Driven

6
Aoki and Veloso

[22]
qs = 2 N 2.00 in sand

Boredqs = 2.28 N 2.28 in silty sand

7 Reese and
O’Neill [23] qs = 3.3 N 3.3 Bored

8 Robert [24] qs = 1.9 N 1.90 Bored
1.90 Driven
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Pile tests are required during the construction process to reassure the design calcu-
lation, because the estimation of axial pile capacity at various soil types will never be
more accurate than approximately 30% [25]. There are a few methods of pile tests used
to calculate the axial capacity of the piles. The typical methods are Static Load Test (SLT)
and High Strain Dynamic Testing (HSDT) [26]. SLT is considered as the most reliable
predictor of long term pile performance. However, this testing is expensive and time
consuming [27–29]. Other than the SLT test, HSDT is one of the methods used to determine
the pile bearing capacity. In comparison with SLT, HSDT is quick and economical [26]. This
test is carried out based on the theory of one-dimensional wave propagation and is given by
a Pile Driving Analyzer (PDA). PDA has proven that the predicted bearing capacity values
are closely related to SLT results [30]. Nevertheless, all pile tests are, basically, expensive
and time consuming to set up at the site [31,32]. Due to the aforementioned situation, it is
important to predict pile bearing capacity using new and effective calculation approaches,
such as Machine Learning (ML) and Artificial Intelligence (AI).

AI, ML and data mining techniques have been used widely to solve many civil
engineering and more specifically geotechnical problems [33–45]. In terms of piling related
issues, such as pile bearing capacity, there are several studies that have applied and
proposed AI and ML techniques [12,46–50]. One of the most-used models in this regard
is the Artificial Neural Networks (ANN). These approaches demonstrated a number of
successful predictions [29,50]. As discussed before, pile driving formulae were used to
provide an approximate estimation of the driven pile capacity. This formula is derived
from impulse-momentum principles. However, the accuracy of neural network predictions
are significantly higher compared to the conventional pile driving formulae [51]. In another
study, Pal [52] stated that the General Regression Neural Network (GRNN) model has
shown higher accuracy of the pile load bearing capacity prediction in comparison to
empirical approaches, but slightly lower accuracy than the ANN technique. In addition,
the Gene Expression Programming (GEP) model was in good agreement with the results
of the experiment, indicating that pile capacity has a good relationship with some inputs,
such as pile geometry [53]. Alavi et al. [54] concluded that Linear Genetic Programming
(LGP) model is the best behavior in modelling uplift capacity of suction caissons, followed
by the GEP and tree-based genetic programming models in comparison with regression
and FE models. A Gaussian Process Regression (GPR) approach was suggested by Momeni
et al. [55] in the area of pile capacity after comparison with other ANN-based models.
Another group of scholars applied and proposed a combination of at least two AI techniques
for prediction of pile bearing capacity [26–28,31,47]. Actually, these combined techniques
enjoyed the advantages of all the used AI models for prediction purposes and, due to that,
they achieved higher performance compared to the single AI models. Table 2 presents the
most important AI and ML studies for predicting the pile capacity, together with their soil
types, number of data, model performance, and input parameters.

According to Table 2, many studies used ANN, ANN-based and genetic-based models
for estimating pile capacity. In addition, several studies applied and proposed neuro-fuzzy
and Support Vector Machine (SVM) models for the same purpose. However, there are
very few approaches using tree-based techniques, like Random Forest (RF), to predict the
pile capacity as far as the authors know. Due to this, this paper is aimed at applying and
proposing the full applications of tree-based models only, i.e., Decision Tree (DT), RF and
Gradient Boosted Tree (GBT) for the prediction of pile friction bearing capacity. To do this,
a feature selection (i.e., input selection) will be conducted to select the most crucial input
variables for pile friction bearing capacity. The mentioned models will then be constructed
and the model with the highest accuracy will be selected and introduced for estimating the
pile friction bearing capacity.
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Table 2. Summary of important AI and ML studies to predict pile capacity.

No Reference Input Model Soil Type Datasets Performance

1 Goh [56] and
Goh [51]

Pile length and diameter, effective overburden stress and undrained
shear strength ANN Clay 65 driven piles (timber

and steel) R = 0.956

2 Lee and Lee [29]

Model pile load test:
penetration depth ratio, mean normal stress of calibration chamber, number of
hammer blows
In-situ pile load test:
penetration depth ratio, average SPT-N value with the pile shaft depth and
close to the end of pile, pile set, final penetration depth/blow, hammer energy

ANN Sand

Model pile load test:
28 steel tube
In-situ pile load test:
24 piles

Maximum error of
prediction < 25%

3 Goh [57] Pile elastic modulus, pile length and cross sectional area, weight of pile,
hammer drop height and weight, pile set and type of hammer ANN Sand

116 piles (timber
precast concrete
and steel)

R = 0.965

4 Kiefa [58] Soil shear resistance encompassing the pile shaft, soil shear resistance at the tip
of pile, effective overburden stress, pile length and pile area GRNN Sand

59 load tests on
different type of
driven pile

R2 = 0.912

5 Das and
Basudhar [59] Pile diameter, pile length, eccentricity of load and undrained shear strength MFPNN Clay 38 short and rigid piles R = 0.947

6 Pal and
Deswal [60]

Force, velocity multiplied by impedance, hollow pipes piles diameter, wall
thickness, and pile depth

SVM and
GRNN - 105 pre-stressed

precast spun piles

R
SVM = 0.964

GRNN = 0.977

7 Pal and
Deswal [61] Pile diameter, pile length, eccentricity of load and undrained shear strength GPR Non-cohesive

soil

94 load tests piles
(timber, precast
concrete and
steel piles)

R = 0.950

8 Alavi et al. [54]
Pile length/pile diameter, lateral force point of application distance/pile
length, chain force angle with the horizontal, undrained shear strength at pile
tip, and soil permeability

LGP All soil types 62 suction caissons R2 = 0.994

9 Gandomi et al.
[62]

Pile diameter and length, eccentricity of load, and pile tip undrained
shear strength

Multi-Gene
GP Clay 38 short and rigid piles R = 0.985

10 Alkroosh and
Nikraz [53]

Pile diameter and length, CPT pile tip resistance, cone sleeve friction along pile
length, CPT resistance along pile shaft, elastic modulus of pile and type of pile GEP Non-cohesive

soil

25 driven piles
(concrete
and steel)

R = 0.94
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Table 2. Cont.

No Reference Input Model Soil Type Datasets Performance

11 Kordjazi et al.
[63]

Cross section area of the tip, perimeter of pile, embedded pile length, average
cone tip resistance, average cone sleeve friction, and average cone tip
resistance below the pile tip

Different
SVM kernels

Sands, clays
and silts 108 pile tests R = range from

0.966–0.982

12 Momeni et al.
[26] Pile set, pile length and cross-sectional area, hammer drop height and weight GA-ANN - 50 pre-cast

concrete piles R2 = 0.990

13 Ghorbani et al.
[64]

Area of the pile at tip, unit shaft resistance of the soil, average of cone tip
resistance for shaft and tip, and average of sleeve friction value along the pile
embedded length

ANFIS All soil types 108 concrete, steel and
composite piles R = 0.96

14 Harandizadeh
et al. [27]

Pile length, cross-section shape and material, cone tip resistance and sleeve
friction of cone

ANFIS-
GMDH-PSO

Sand, silty
sand, clay,

sandy clay, and
silty clay

41 Concrete and
31 Steel piles R = 0.96

15 Dehghanbanadaki
et al. [65]

Pile area, pile length, flap number, average soil cohesion and friction angle,
average soil specific weight and average pile-soil friction angle ANFIS-GWO - 100 steel and concrete

driven piles R = 0.930

16 Momeni et al.
[55] Pile length and diameter, pile set, ram weight, and hammer drop height GPR - 296 precast

driven piles R2 = 0.81

17 Pham et al. [66]
Pile diameter, pile tip segment length, second pile segment length, pile top
segment length, natural ground elevation, pile top elevation, guide pile
segment sop driving elevation, pile tip elevation, and average SPT

RF and ANN - 2314 reinforced
concrete piles

R2

RF = 0.861
ANN = 0.811

Gray wolf optimization (GWO); Correlation coefficient (R); Determination coefficient (R2); Genetic algorithm (GA); Adaptive neuro-fuzzy inference system (ANFIS); Group method of data handling (GMDH);
Particle swarm optimization (PSO); Random forest (RF); Multilayer feedback propagation neural network (MFPNN); Support vector machine (SVM).
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2. Methods and Material
2.1. Case Study and Established Database

In order to predict the pile friction bearing capacity values, there is a need to prepare
a series of experiments on site. The case study in this research was located at Kepong,
Malaysia and the area was about 4.4 acres in size. This site was located in the Limestone
formation, as indicated in Figure 1. In Kuala Lumpur, there are many commercial centers
that are built on heavily karstified limestone formations [67]. The study area was ex-mining
land, a swampy area and a pond, as shown in Figure 2.

• Zone (1): Fresh water (Swamps)—The region is continuously or seasonally submerged
by freshwater and commonly seen in the lower sections of rivers and near freshwater.

• Zone (2): Vegetation—The region is covered by plants.
• Zone (3): Mining Land—The region that used for the extraction of valuable minerals.
• Zone (4): Pond and Lake—The region that comprise of freshwater and living creatures.
• Zone (5): Building—The area covered by building.
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The topography of the site is relatively flat ground, with the level of the ground
ranging from about RL 55 m to RL 57.5 m. The site was proposed for the construction of
high-rise buildings, with two towers of approximately 150 m in height and an eight-story
car park. Therefore, deep foundations are necessary to withstand the structural load. The
Jack-in installation method of pre-cast spun piles was the foundation of this development.
Therefore, subsurface investigations have been carried out at the site to identify the ground
condition. A total of 26 boreholes were investigated in order to determine the subsoil
condition of the site. From the boreholes, the overburden of the site is mostly silt and clay
material, with the SPT-N in the range of generally less than 10, as displayed in Figure 3.
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SLT tests were carried out on the first installed piles to verify the pile design capacity.
However, since SLT tests are expensive and time-consuming, the number of these tests
is limited. Nevertheless, a total of 130 piles were selected to carry out HSDT. During
the process of HSDT, a hydraulic hammer is dropped on the pile head with cushion and
the force with velocity at the upper end of the pile are measured followed by a signal
matching procedure. The HSDT is carried out on-site by testers who use a PDA system
for data collection. Prior to the test, the soil around the test pile was excavated to ease
the installation of transducers at about 1.5-3 times the pile’s diameter from the pile head.
A total of two strain and two accelerometer transducers were attached to opposite sides of
each other close to the pile top, as shown in Figure 4. The applied load from the hammer
drop was derived from the Strain transducers which act as strain measurements when the
load is applied from a hammer drop on the pile head, whereas the movement of the pile
head is measured by accelerometers during the impact.
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When evaluating a model, the importance and contribution of parameters on the pile
bearing capacity are significant. This can be extracted from the empirical equations or
the statistical-based techniques. For example, as shown in Table 1, the SPT-N parameter
is considered as an important factor in this regard. Apart from the empirical equations,
several researchers have carried out sensitivity analyses on the influential parameters on
the pile bearing capacity. Momeni et al. [26] stated that the weight of the hammer and
pile geometrical properties, such as pile length and cross sectional area, have the highest
impact on the pile bearing capacity. Ghorbani et al. [64] performed the sensitivity index of
each parameter (pile shaft and tip area, the average cone tip resistance along the embedded
length of the pile, the average cone tip resistance over the influence zone and the average
sleeve friction along the embedded length of the pile which are obtained from CPT data)
and found that pile soil surface area is the most contributing parameter. In another study,
Pham et al. [66] found that average value of SPT-N number along the embedded pile length
is the most crucial parameter in terms of pile capacity. Pile cross sectional area and length
parameters were introduced as the most effective variables in another interesting study in
the pile capacity estimation conducted by Momeni et al. [8].

According to the above discussion, and the available data for collection on the site,
a total of six parameters, including pile diameter, hammer weight, pile length, hammer
drop height, SPT-N average and pile friction bearing capacity (shaft friction) were measured
on the site while conducting pile tests and from the borehole data. In order to calculate the
SPT-N average for each pile, the zoning of the nearest SI to the pile test was considered.
Subsequently, the SPT-N average of each pile was calculated based on the nearest SI work
and varied according to the pile length. The mentioned parameters were collected for a
total of 130 piles, which resulted in 130 data samples comprised of all six parameters. The
next step is the identification and removal of outliers where outliers can be known as data
that were significantly different from the observed data. This process is considered as a
mandatory step when the data quantity is large, which is the case with the data in this
study. With the presence of outliers, the database of variability will be increased, which can
cause possible modeling errors. In this study, the statistical approach, which is based on
the interquartile range rule, was used to identify outliers and these outliers were removed
from the database. The interquartile range is the range between the first and third quartiles,
namely Q1 and Q3. Any of the data that are smaller than Q1-1.5x interquartile range or
higher than Q3 + 1.5 x interquartile range are considered outliers.

Eventually, five data samples were reduced from the whole 130 datasets and the used
data samples reached 125 data samples. More information about these parameters can be
found in Table 3. Among these factors, as highlighted in this study, the pile friction bearing
capacity was considered as model output and the remaining factors were set as predictors.
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However, the model predictors will be analyzed to select the most effective ones later in
this paper.

Table 3. The parameters measured during conducting pile tests and from the boreholes data.

Parameter Unit Range

Pile Length m 18.5–47

Hammer Drop Height m 0.55–1.1

Pile Diameter mm 400–450

Hammer Weight Kg 7000

SPT-N Average - 4–17

Pile Friction Bearing Capacity kN 2028–4844

2.2. Decision Tree (DT)

ML involves algorithms that use historical data with independent and target variables
to learn and produce decisions by referring to a certain objective. One of the advantages of
ML techniques, in comparison with conventional statistical approaches, such as regression,
is that they are applicable for more than two-dimensional data. Many researchers have
used tree-based techniques for data-driven prediction analysis for various geotechnical
problems [68,69]. Thus, in this study, tree-based ML algorithms, such as DT, were applied
to construct models and identify the crucial predictors of pile soil friction. DT can be
represented graphically, displaying certain decision conditions with the complex branching
that happens in a constructed decision. This approach is one of the top and most widely
used supervised learning algorithms for predicting the accuracy of a model.

DT is able to carry out all tasks related to recognition, classification and prediction
issues. DT is a “tree” shaped model that comprises of a series questions, with each question
being described by various variables. A real tree consists of roots, branches and leaves.
Similarly, the graph for DT is comprised of nodes, which are leaves, and branches that
represent connections between nodes [70]. During the process of DT, a variable is selected
as a root, which is known as the first node. The first node is separated into multiple
internal nodes by referring to the appointed features. DT is a top-down tree, with the roots
is located at the top. The final product of the branches consists of roots, branches and
nodes [71]. Every node can be separated into two branches and each node has a relation to
a certain characteristic and branches that have been described by a specific range of input.
A flowchart related to DT technique is shown in Figure 5.

2.3. Random Forest (RF)

RF is a method that based on several DTs with boostrap aggregation and is one of the
supervised ensembles ML approaches. It is also a part of ensemble learning that is based
on a bagging algorithm. RF comprises of three (3) main attributes, which are presented as
follows [72,73].

1. Automatically provide estimation of missing value.
2. Weight data to balance the errors found in imbalanced data.
3. Determine the crucial variables by estimation for classification.

In comparison with bagging, during the process of constructing each tree, RF utilizes
random sample prediction before each node segmentation in order to reduce bias. Every DT
is generated in parallel by RF and these trees can be classification or regression trees. At each
constructed DT, each note is separated using the best features that can generate the most
optimal solution among all of the attributes. The RF algorithm is a well-known method used
to extract useful but hidden information within huge amounts of data. Figure 6 shows the
process of the RF algorithm in modeling an output parameter.
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2.4. Gradient Boosted Tree (GBT)

A GBT is one of the tree-based methods that works on the principle of boosting. The
models with low variance errors and high bias are combined with the purpose of lowering
the bias and, at the same time, maintaining low variance [74]. Boosting is the process by
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which it learns several classifiers by altering the sample weight for every process of training.
All of the classifiers are combined linearly to enhance the classification performance. Unlike
other tree-based methods, this approach uses similar training datasets in boosting. Similar
datasets are trained and constructed as shallow trees in boosting trees but every tree has a
different specific feature of the relationships between inputs and outputs. The objectives of
the (n)th shallow tree are trained in series to reduce the prediction errors from the previous
(n−1)th trees. The objective of GBT is to form a supplementary model that reduces the loss
function. The process of the GBT method is described as follows:

1. A constant value is begun in the model to lower down the loss function.
2. During the iteration of training process, the residual value of the model is estimated

from the negative gradient of the loss function.
3. The current residual value is fit by newly trained regression tree.
4. The combination of final regression with past models and residual is updated.
5. When the maximum number of iterations set by the user is achieved, the iteration in

the algorithm is ceased.

Overall, the GBT model is able to improve the previous poorly executed data by
continuously using a regression tree to fit the residual. The applications of this technique
have been highlighted in several problems related to geotechnical engineering [74–77].
A GBT flowchart in modeling a predictive technique is displayed in Figure 7.
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2.5. Performance Indices

Evaluation of the models in ML is a way of assessing the size effect in conventional
statistics [78]. The ability of a model to predict for an unknown sample is a critical step in
ML that increases trust in the model for use on other datasets. The accuracy, in terms of
percentage, is the measurement for model evaluation. The authors of this study decided to
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use several important performance indices, including root mean square error (RMSE), R2,
and absolute error. Willmott and Matsuura [79] stated that the total square error is affected
by the larger error, rather than the minor error. When the variances associated with the
frequency distribution of error magnitudes increase, the error values will be increased. The
mentioned performance indices were utilized and computed in different studies and their
formulas and process of calculation can be found in the literature [80–83]. In this study, the
mentioned performance indices will be used to evaluate the model’s prediction capacity.

2.6. Study Steps

This study was planned to introduce a process of modeling and a superior tree-based
model for solving a problem related to piling technology. The prediction of the pile capacity
is always important for geotechnical engineers right after pile installation, because the
measurement of this parameter needs specific equipment and its setting in the site, which is
not easy to do. In addition, conducting such tests are costly and sometimes includes human
and machine errors [26]. The modeling process of this study was started by identifying and
removing the outliers. The next step is related to feature selection or input selection so that
the most effective parameters will be selected. In this way, the supervised and unsupervised
feature selection methods will be utilized. After selecting the model predictors, three model
trees, i.e., DT, RF and GBT, will be conducted to predict friction pile bearing capacity. These
models’ trees and their performance capacities will be assessed and discussed. The best
tree model will be selected and introduced based on both model development and model
assessment. A schematic diagram of the study steps is presented in Figure 8.
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3. Input Selection

Feature/input selection is an alternative to identifying significant factors in con-
ventional statistics using measures of confidence interval and hypothesis testing. After
performing model evaluation, the elements (independent variables) need to be explored
further in terms of how they contribute to the accuracy measure. This technique removes
variables that are insignificant or highly correlated with any other variable. The rank
of variables based on importance score can be visualized to understand the prediction
accuracy. The supervised and unsupervised feature selection methods differ in terms of the
target variables. The supervised learning model needs a target variable to determine the
important variables, while unsupervised learning ignores the target variable and selects
important variables based on correlation. In the following sub-sections, supervised and
unsupervised feature selection methods will be applied and their results will be discussed.

3.1. Correlation

Table 4 presents the correlations between the used input variables. Since the purpose
of this study is to predict the shaft friction or pile friction bearing capacity, variables with
strong positive correlation were considered for developing the final model. According to
correlation analysis, pile capacity and pile length are highly positively correlated (0.794).
The correlation of hammer weight with other variables is not reported in Table 4, which
indicates no correlation between this variable and other variables. It should be noted that,
in the database, there is only one value for the hammer weight and, because of this issue,
this parameter was removed from the analysis of the correlation technique.

Table 4. Correlations between the independent variables.

Attributes Hammer Drop
Height Test

Pile
Diameter

Pile
Length

Shaft
Friction

SPT-N
Average

Hammer Drop
Height Test 1 0.358 0.504 0.476 −0.025

Pile Diameter 0.358 1 0.103 0.436 0.207

Pile Length 0.504 0.103 1 0.794 −0.030

Shaft Friction 0.476 0.436 0.794 1 0.036

SPT-N Average −0.025 0.207 −0.030 0.036 1

3.2. Supervised Feature Selection

This study adopts different feature selection methods to select only important vari-
ables and develop a prediction model based on the selected variables. The main reason
behind reducing the number of variables (based on their level of importance and corre-
lations) is to decrease the complexity and improve the applicability of the final model.
Armaghani et al. [84] stated that a lower number of model inputs is considered as an ad-
vantage for the developed models, since the model complexity cannot be minimized. After
conducting unsupervised clustering and understanding the correlation of the variables, it
was compared the variables’ importance based on three different tree-based supervised ML
techniques. The importance of variables based on GBT, RF and DT results are shown and
compared in Table 5. According to this table, pile length is indicated as the most important
variable based on all three techniques. On the other hand, hammer weight does not have
any impact on pile capacity. These results are in line with correlation analysis results, too.
In addition, in order to make a better conclusion out of three feature selection methods,
weight values of each variable were summed up and compared, as shown in Figure 9. The
accumulated weight values were then sorted out from highest to lowest values. It can be
concluded from Figure 9 that pile diameter and hammer weight is not significant enough
to be considered as model inputs. Therefore, the authors decided to not consider these
two attributes for developing the final predictive models in this research. However, it is
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necessary to note that there are only two values of pile diameters in the provided database.
Therefore, the impact of this parameter is not significant in our database (Figure 9). In
general, pile geometry is considered as a significant predictor category for prediction of the
pile capacity, as suggested in the literature [28,85] and it is suggested to use pile diameter
as a model input with various values in future studies.

Table 5. Importance score (weight) of variables based on three supervised ML methods.

GB RF DT

Attribute Weight Attribute Weight Attribute Weight

Pile Length 0.75 Pile Length 0.80 Pile Length 0.35

SPT-N Average 0.125 SPT-N Average 0.17 Pile Dimeter 0.04

Hammer drop
height test 0.031 Hammer drop

height test 0.11 Hammer drop
height test 0.037

Pile Dimeter 0.030 Pile Dimeter 0.025 SPT-N Average 0.018

Hammer Weight 0.00 Hammer Weight 0.00 Hammer Weight 0.00
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4. Modeling and Results

In order to have an accurate model proposal, both model development and model
evaluation parts should be at an acceptable level. In the first stage of modeling all data
samples were normalized using the following equation in the range of [0–1]:

Z =
X − min(X)

max(X)− min(X)
(2)

where, X presents each parameter that needs to be normalized (i.e., each input and output),
min(X) and max(X) are the minimum and maximum values of whole data of that specific
parameter, respectively.

For this purpose, there is a need to divide the whole database into two groups:
train and test. In this study, among all of the available suggestions in the literature, the
authors decided to use a combination of 80–20% for train and test phases, respectively.
Therefore, before starting the modeling, all 125 data samples were divided to 25 and
100 data samples for model evaluation and model development, respectively. As discussed
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before, three tree-based ML techniques were employed to determine the most accurate
model for predicting the pile friction bearing capacity. To do this, several parametric
investigations were performed for different parameters of DT, RF and GBT techniques. In
these analyses, three and five model inputs were utilized. Finally, the model performance
results with three and five input variables are presented in Tables 6 and 7, respectively.
In these tables, train and test results of R2, RMSE and absolute error were presented.
According to the results, GBT technique achieved the highest accuracy rate for both models
with five and three variables, with R2 equal to 0.911 and 0.901, respectively, for training
datasets in predicting pile friction bearing capacity. In addition, the GBT model achieved
the lowest RMSE and absolute error compared to the RF and DT models. The next best
model after GBT is related to RF for three and five input variables, followed by the DT
model. The R values of (0.813 and 0.761) and (0.773 and 0.712) were obtained for testing
data samples of RF and DT techniques for three and five model inputs, respectively. It is
obvious that the results obtained by the GBT technique are more accurate compared to the
RF and DT models for both three and five input parameters.

Table 6. Models evaluation results using five input variables.

Technique
Train Test

R2 RMSE Absolute Error R2 RMSE Absolute Error

GBT 0.911 0.073 0.052 0.841 0.089 0.098

RF 0.892 0.082 0.073 0.813 0.071 0.100

DT 0.861 0.135 0.121 0.773 0.121 0.167

Table 7. Models evaluation results using three important input variables.

Technique
Train Test

R2 RMSE Absolute Error R2 RMSE Absolute Error

GBT 0.901 0.094 0.077 0.816 0.127 0.098

RF 0.881 0.095 0.081 0.761 0.081 0.100

DT 0.853 0.170 0.152 0.712 0.130 0.167

As was expected, the accuracy of the models decreased by decreasing the number
of variables after feature selection. However, considering the train results of the GBT
technique, the accuracy reduction is not significant (only 1%). For testing data, the GBT
results based on R2 are 0.841 and 0.816 for three and five models, respectively, which show
a close model accuracy when three input parameters are used. Therefore, as discussed
before, proposing a new predictive model with a lower number of model predictors is
of importance in the area of piling and geotechnical engineering. The other researchers
and designers can easily use a simpler model because they need a lower number of
parameters to be measured. Therefore, in this study, the authors decided to propose
and introduce a predictive model with lower model inputs, even though it has lower
performance prediction results. Hence, the results presented in Table 7 will be considered
in this study and, as such, the GBT model for three inputs will be discussed in more detail
in the following paragraphs.

After reducing the number of variables through the feature selection process, the
GBT model was conducted using three important selected variables. Table 8 presents the
importance of input variables using the GBT technique with the final three variables. The
importance values of 0.81, 0.21 and 0.075 were obtained, respectively, for pile length, SPT-N
average, and hammer drop height. According to the results, pile length, with an importance
of 0.81, plays the most important role in predicating pile friction bearing capacity using
the GBT technique. On the other hand, hammer drop height has the lowest impact on the
model output, which is the pile capacity.
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Table 8. GBT importance of variables.

Attribute Weight

Pile Length 0.81

SPT-N Average 0.21

Hammer drop height 0.075

In modelling GBT, there were many models constructed in order to see the difference
between different parameters of GBT on the system performance. As presented in Table 9,
27 GBT models were built in this study with different properties in order to predict pile
bearing capacity. In these 27 models, the authors considered different values for the number
of trees, maximum depth and learning rate in the modeling. In addition, error results are
presented in Table 9 for each GBT model. As a result, the optimal/best model is achieved
when the number of trees is 90 with a maximum depth of two and 0.1 learning rate (i.e., GBT
model number 20). The lowest error rate of 0.1889 and the highest accuracy (R values of
0.901 and 0.816 according to Table 7) were observed at the described point. Figure 10 shows
the schematic tree generated by the proposed GBT model. More discussions regarding this
technique will be given in the next section.

Table 9. Different GBT models to predict pile friction bearing capacity.

GBT Model No. No. of Trees Maximal Depth Learning Rate Error Rate

1 30 2.0 0.001 0.2891

2 90 2.0 0.001 0.2814

3 150 2.0 0.001 0.2745

4 30 4.0 0.001 0.2891

5 90 4.0 0.001 0.2814

6 150 4.0 0.001 0.2745

7 30 7.0 0.001 0.2891

8 90 7.0 0.001 0.2814

9 150 7.0 0.001 0.2745

10 30 2.0 0.01 0.2597

11 90 2.0 0.01 0.2366

12 150 2.0 0.01 0.2189

13 30 4.0 0.01 0.2597

14 90 4.0 0.01 0.2370

15 150 4.0 0.01 0.2209

16 30 7.0 0.01 0.2597

17 90 7.0 0.01 0.2370

18 150 7.0 0.01 0.2209

19 30 2.0 0.1 0.1986

20 90 2.0 0.1 0.1889

21 150 2.0 0.1 0.1953

22 30 4.0 0.1 0.1985

23 90 4.0 0.1 0.1912

24 150 4.0 0.1 0.1955

25 30 7.0 0.1 0.1985

26 90 7.0 0.1 0.1912

27 150 7.0 0.1 0.1955
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5. Discussion

In this study, a series of experimental data were measured and recorded during
SLT tests, and the capacity values of friction piles, together with some other important
parameters on them, were collected. The idea was to propose a series of fully tree-based
techniques, i.e., DT, RF and GBT, for estimation of the pile bearing capacity. Through
feature selection, in order to propose a simpler model, the three most important parameters
were identified as pile length, SPT-N average and hammer drop height. The mentioned tree-
based models were then built to predict pile friction bearing capacity. In order to construct
DT, RF and GBT models, many attempts have been made to achieve higher performance
capacities based on the used statistical indices. These attempts were performed by setting
different values for the most influential DT, RF and GBT parameters. As expected, the
developed GBT model was able to provide a better performance capacity in estimating
the actual results of pile friction bearing capacity. The training and testing results of the
proposed GBT model are presented in Figures 11 and 12, respectively. It is important to
note that the pile capacity values presented in these figures are normalized between [0–1],
as described previously. The R2 and other statistical indices are presented in these figures,
which confirms that the GBT is a powerful tree-base technique in both phases of model
development and model evaluation. RMSE results and absolute error results of (0.094, and
0.077) and (1.27, and 0.098) for train and test data samples, respectively, reveal that the
GBT tree model is applicable in the field of piling and deep foundation. It is able to predict
pile bearing capacity values with a low level of system error, which is of importance and
advantage in the geotechnical engineering field.
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Compared to the previous ML related studies, this study focuses on only tree-based
ML techniques. To date, only a few researchers have proposed similar techniques in this
regard. The developed GBT model in this study was based on only three input parameters,
and based on these three inputs, the GBT model provided R2 values of 0.901 and 0.816 for
the train and test phases, respectively. The results of the GBT model are not better than
many of the relevant studies presented in Table 2. However, as presented in Table 2, most
of the studies used five or more input parameters to predict the pile bearing capacity. This
makes them complicated models for further use by other researchers. This is because they
have to provide the related values for all inputs if they want to use the proposed models.
Nevertheless, in this study, the presented results were constructed based on only three
model inputs/predictors. In other words, the proposed GBT technique in this study is
easier to implement by other researchers, designers, or engineers. Hence, the modelling
process and the proposed GBT model in this study can be suggested as a reliable and
applicable technique/process with a high level of accuracy in forecasting pile bearing
capacity.

It is good to know that the GBT model can depict the promising accuracy of the pre-
diction, provided that this study is carried out for different types of soils, piles, installation
methods, and types of hammers. This study was carried out with limited data with one
hammer weight, two types of pile dimension, an SPT-N value of generally about 10, and
one installation method. Thus, it is highly recommended to further carry out this study
with more variables in order to provide higher accuracy of the prediction.

6. Optimum Parameters Based on Simulation Model

In order to gain deeper insight into the factors affecting pile capacity, sensitivity analy-
sis was conducted based on a desirable scenario: what is the optimal value of independent
variables in order to gain the maximum pile friction bearing capacity? The simulation-
based sensitivity analysis was conducted using RapidMiner Studio Educational Software
version 9.8.001. The graphical results in this section are the outputs of the RapidMiner Soft-
ware. The RapidMiner software conducts the tree-based models under the Python software
environment. The optimization was run and determined the best input variables to meet
our target under the specified constraints. In addition, the simulation-based sensitivity
analysis is suitable for assessing and answering "what if" questions. Table 10 presents the
optimal values of attributes based on the described scenario.
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Table 10. Optimized value of attributes based on maximum scenario.

Attribute Optimum Value
(Normalized)

Optimum Value
(Actual) Maximum Pile Capacity

Pile Length 0.90 44

4844Hammer Drop Height 0.419 1.1

SPT-N Average 0.702 6

According to the simulation-based optimization results, pile friction bearing capacity
will be equal to 4844, when pile length, hammer drop height and SPT-N average are
equal to 44, 1.1 and 6, respectively (Figure 13). These values are the optimum values
(not maximum) of independent variables in order to achieve the maximum pile capacity
values. For example, the optimum value for pile length is 44, which is almost equal to the
maximum value (0.90 as normalized). Therefore, pile capacity will be decreased after this
amount of pile length.
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7. Summary and Conclusions

The purpose of this research is to propose a more accurate and applicable model/
approach for predicting pile friction bearing capacity, which is fully tree-based with a
limited number of model inputs/predictors. To achieve this aim, first, among the initial
five input variables, the three most effective ones, i.e., pile length, SPT-N average, and
hammer drop height, were selected for the modelling part, based on a comprehensive
feature selection process. Three tree-based techniques, i.e., DT, RF and GBT, were then built
to estimate pile friction bearing capacity. In building these models, a series of parametric
investigations based on their effective variables were planned and performed in order to
obtain the best model in each category. In the next step, model assessment has been done
using different performance prediction indices, and their results have been compared to
each other. Overall, the findings demonstrated the successful application of tree-based
techniques for the purpose of this paper. However, the best tree model was related to GBT
with R2 values of 0.901 and 0.816 for model development and model assessment parts,
respectively. It should be noted that the other tree-based models received acceptable and
applicable results for prediction of pile friction bearing capacity. The parametric study
results showed that the optimum values of pile length, hammer drop height and SPT-N
average are 44, 1.1, and 6, respectively, in order to get the maximal pile capacity values.
The proposed tree-based techniques and their processes are easy to implement and can be
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used by other researchers and designers to obtain very accurate pile capacity values for
similar conditions. However, other researchers can prepare a larger database for the same
problem and develop more comprehensive tree-based techniques, or even a combination of
these techniques with new optimization techniques, such as the sparrow search algorithm,
in order to achieve a higher accuracy level.
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