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Abstract: Three Earth system models (ESMs) from the Coupled Model Intercomparison Project
phase 6 (CMIP6) were chosen to project ecosystem changes under 1.5 and 2 ◦C global warming
targets in the Shared Socioeconomic Pathway 4.5 W m−2 (SSP245) scenario. Annual terrestrial gross
primary productivity (GPP) was taken as the representative ecological indicator of the ecosystem.
Under 1.5 ◦C global warming, GPP in four climate zones—i.e., temperate continental; temperate
monsoonal; subtropical–tropical monsoonal; high-cold Tibetan Plateau—showed a marked increase,
the smallest magnitude of which was around 12.3%. The increase was greater under 2 ◦C of global
warming, which suggests that from the perspective of ecosystem productivity, global warming poses
no ecological risk in China. Specifically, in comparison with historical GPP (1986–2005), under 1.5 ◦C
global warming GPP was projected to increase by 16.1–23.8% in the temperate continental zone,
12.3–16.1% in the temperate monsoonal zone, 12.5–14.7% in the subtropical–tropical monsoonal zone,
and 20.0–37.0% on the Tibetan Plateau. Under 2 ◦C global warming, the projected GPP increase
was 23.0–34.3% in the temperate continental zone, 21.2–24.4% in the temperate monsoonal zone,
16.1–28.4% in the subtropical–tropical monsoonal zone, and 28.4–63.0% on the Tibetan Plateau.
The GPP increase contributed by climate change was further quantified and attributed. The ESM
prediction from the Max Planck Institute suggested that the climate contribution could range from
−12.8% in the temperate continental zone up to 61.1% on the Tibetan Plateau; however, the ESMs
differed markedly regarding their climate contribution to GPP change. Although precipitation
has a higher sensitivity coefficient, temperature generally plays a more important role in GPP
change, primarily because of the larger relative change in temperature in comparison with that
of precipitation.

Keywords: GPP; climate change; CMIP6; ESM

1. Introduction

Gross and net primary productivity (GPP and NPP, respectively) are representative
indicators that reflect ecosystem production capacity [1–3]. Many previous studies have
considered future GPP/NPP change. For example, Huang et al. [4] evaluated NPP varia-
tions in the 21st century under various climate scenarios using the Lund–Potsdam–Jena
dynamic global vegetation model. They found that total NPP in China is projected to
increase continuously under different scenarios, with CO2 concentration playing the dom-
inant role. Using a machine learning model to constrain the spatial uncertainty in GPP
projections, Schlund et al. [5] predicted a higher increase in GPP in northern high latitudes
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over the 21st century under the Representative Concentration Pathway [6] 8.5 W m−2

(RCP8.5) in comparison with regions closer to the equator. Under 1.5 ◦C of global warm-
ing, the GPP in China is expected to increase by 15.5% ± 5.4% on a stabilized pathway
and by 11.9% ± 4.4% on a transient pathway [7]. Zhang et al. [3] explored the trend
features of GPP/NPP in the 21st century under the Shared Socioeconomic Pathway [8]
24.5 W m−2 (SSP245) with the Beijing Climate Model. Their results predicted the overall
trends of increase in both the near-term and long-term terrestrial GPP/NPP. However, in
certain districts, the trend of GPP/NPP showed an initial increase followed by a decrease.
Wang et al. [9] investigated the variation in NPP over the 21st century using the Earth
system models (ESMs) of the Coupled Model Intercomparison Project phase 5. The results
obtained under all four RCP scenarios suggested an increasing trend of NPP over China,
especially in western areas.

In summary, GPP/NPP in China under different scenarios is expected to show a
trend of increase in the 21st century. However, large uncertainties exist in the various
ESMs [5,9]. Under the global warming targets of 1.5 and 2 ◦C above preindustrial levels set
by the Paris Agreement, many regional impacts wait to be assessed. In particular, as the
Coupled Model Intercomparison Project enters into the 6th phase (CMIP6), more and more
ESMs have distributed their latest climate simulation under the Shared Socioeconomic
Pathways (SSPs). How the latest ESMs will project the future ecosystem change in China
and the corresponding climate attribution remains to be determined and revealed. In
a recent study on performance in presenting historical terrestrial GPP in China, three
out of seven ESMs evaluated were found to perform well in terms of climatological GPP,
spatial pattern, and the ecosystem–climate relationship [10]. Consequently, these three
ESMs were chosen in this study to predict ecosystem change under the warming targets.
The ecological indicator of annual GPP was applied to measure the general state of the
ecosystem. Changes in annual GPP predicted using the different ESMs were quantified
with respect to the different climate zones in China. Furthermore, the relationship between
the ecosystem and climate variables was tested and built through linear correlation and
multiple regression. Relying on the model-specific parameters of the ecosystem response
to the climate, the climate-related GPP changes were revealed and quantified.

2. Materials and Methods
2.1. Data

In this study, three ESMs that performed well in historical GPP reproduction [10] were
chosen to project future GPP in China: (1) the Beijing Climate Center Climate System Model
(BCC-CSM2-MR) [11], (2) the Euro-Mediterranean Centre on Climate Change coupled cli-
mate model (CMCC-CM2-SR5) [12], and (3) the Max Planck Institute for Meteorology Earth
System Model version 1.2 (MPI-ESM1.2-HR) [13]. Specifically, BCC-CSM2-MR and MPI-
ESM1-2-HR, out of seven ESMs, gave the best estimation of climatological GPP in China
from 1980 to 2013. MPI-ESM1-2-HR performed best in characterizing the spatial structure.
BCC-CSM2-MR and CMCC-CM2-SR5 best captured the response of the ecosystem to the
climate [10]. The land surface models used for the three ESMs were BCC-AVIM2.0, CLM4.5,
and JSBACH3.2. Major improvements or parameterizations have been made to these
models in comparison with their predecessors; they make use of new scientific under-
standing to better simulate vegetation phenology [12–14]. These ESMs could provide not
only the monthly GPP, but also the monthly surface air temperature and precipitation. In
CMIP6, new SSPs were employed for climate modelling. The SSPs included five narratives
describing alternative socio-economic developments, such as sustainable development,
fossil-fueled development, etc. [8]. The middle of the road development—i.e., the SSP2
scenario—featured a continuation of the current fossil fuel-dominated energy mixed with
intermediate challenges for both mitigation and adaptation, which resembled the historical
pattern most [8]. SSP245, as the sole scenario of SSP2 implemented in CMIP6, was thus
chosen to represent the most possible future world. Historical data (1980–2013) were ap-
plied to determine the ecosystem–climate relationship—i.e., correlation and multiple linear
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regression. Data from the BCC-CSM2-MR, CMCC-CM2-SR5, and MPI-ESM1.2-HR ESMs
were output as 1.125◦ × 1.125◦, 0.9375◦ × 1.25◦, and 0.9375◦ × 0.9375◦ grids, respectively.
Because the grids were not uniform, they were first transformed to a 1◦ × 1◦ grid through
bilinear interpolation for comparative purposes.

A climate division map of China was applied for regional analysis. It divided the coun-
try into four climate zones—i.e., temperate continental, temperate monsoonal, subtropical–
tropical monsoonal, and high-cold Tibetan Plateau, as in He et al. [15] and Zhang et al. [16].

2.2. Methods
2.2.1. Bilinear Interpolation

Bilinear interpolation can produce a smoother interpolation than that achieved using
the nearest neighbor method [17]. Thus, it was applied to transform fields from various
grids of the ESMs into the formal 1◦ × 1◦ grid. In this approach, g (n1, n2) is defined as a
linear combination of the values of its four nearest neighbors. Given the four neighbors
with coordinates f (n10, n20), f (n11, n21), f (n12, n22), and f (n13, n23) (i.e., the four nearest
neighbors of f (n1, n2)), the geometrically transformed field g (n1, n2) is computed as:

g(n1, n2) = A0 + A1n1 + A2n2 + A3n1n2. (1)

The bilinear weights A0, A1, A2, and A3 are found by solving:
A0
A1
A2
A3

 =


1 n10 n20 n10n20
1 n11 n21 n11n21
1 n12 n22 n12n22
1 n13 n23 n13n23


−1

f (n10, n20)
f (n11, n21)
f (n12, n22)
f (n13, n23)

. (2)

2.2.2. Area Weighting

Regional and global mean variables—e.g., temperature, precipitation, and GPP—on
the 1◦ × 1◦ grid are calculated through area weighting:

Vreg =

∑
i

Vi · πR
180 · πR

180 cos(θi)

∑
i

πR
180 · πR

180 cos(θi)
=

∑
i

Vi cos(θi)

∑
i

cos(θi)
, (3)

where θ represents the latitude of the grid, R is the Earth’s radius, and V is the variable.

2.2.3. Linear Correlation and Multiple Regression

The correlation coefficient r is used to test the relationship between ecosystem produc-
tivity and climate factors. The formula can be expressed as follows:

r =
n

n
∑

i=1
EiCi −

n
∑

i=1
Ei

n
∑

i=1
Ci√

n
n
∑

i=1
E2

i − (
n
∑

i=1
Ei)

2
·

√
n

n
∑

i=1
C2

i − (
n
∑

i=1
Ci)

2
, (4)

where E and C represent ecosystem productivity and climate factors, respectively.
The interannual variation in GPP reflects year-to-year differences attributable mainly to

climate variations [18,19]; therefore, the relationship between GPP and climate—i.e., precipita-
tion and surface air temperature—was explored using a multiple regression approach [20]:

y = axT + bxP + ε, (5)

where y is the detrended anomaly of the carbon flux GPP, variable xT is the detrended
annual temperature anomaly, and xP is the detrended annual precipitation anomaly. The fit-
ted regression coefficients a and b define the apparent carbon flux sensitivity to interannual



Sustainability 2021, 13, 11744 4 of 15

variations in temperature and precipitation, and ε is the residual error term. The use of the
detrended time series instead of the original nonstationary time series in the above linear
correlation and regression analysis provides a robust estimate of their relationship [21–23].

Some definitions set 1986–2005 as a reference period when the global surface air temper-
ature was 0.61 ◦C warmer than preindustrial levels [24,25]. We adopted this definition and
defined the 1.5 and 2 ◦C warming periods as the first time when the 20-year-moving-average
global temperature was 0.89 and 1.39 ◦C warmer, respectively, than that from 1986–2005 in
the models. The corresponding changes in ecosystem and regional climate were based upon
the reference period of 1986–2005. It is also necessary to point out that 20 years is a duration
that is commonly applied to represent a climate state in the scientific world [26–28].

3. Results and Discussion
3.1. GPP Distribution and Projected Changes

The climatological GPP distribution produced by each of the three ESMs from 1986 to
2005 is shown in Figure 1. The ESMs all produce a similar spatial pattern of GPP, showing
high (low) values in the southeast (northwest) of China. Regionally, the GPP in the subtropical–
tropical monsoonal zone is largest, followed in descending order by the temperate monsoonal
zone, Tibetan Plateau, and temperate continental zone. The three ESMs produced comparable
estimates in the climate zones except in the monsoonal regions, where CMCC-CM2-SR5
produced larger estimates, especially in the subtropical–tropical monsoonal zone.
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change in addition to precipitation and temperature, such as land-use change, soil mois-
ture, wind speed, humidity, solar radiation, nitrogen deposition, etc. Thus, it is really hard 
to be conclusive. Moreover, the aggregated negative grids tend to dissipate under 2 °C 
global warming (Figure 3e). The GPP change patterns differ among the models (Figure 2). 
For example, the largest anomaly in the output of BCC-CSM2-MR appears over the south-
eastern Tibetan Plateau, whereas the largest anomalies in the output of CMCC-CM2-SR5 
and MPI-ESM1-2-HR appear in the central and southern parts of the subtropical–tropical 
monsoonal zone, respectively. The absolute GPP change is largest in the subtropical–trop-
ical monsoonal zone; however, the relative change is rather small and stable among the 
models (Figure 2 right). The absolute change is smallest in the temperate continental zone 
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Figure 1. Climatological GPP distribution (unit: gC m−2 yr−1) from 1986 to 2005 from (a) BCC-CSM2-MR, (b) CMCC-CM2-
SR5, and (c) MPI-ESM1-2-HR. The four delineated regions represent the climate zones temperate continental (TC), temperate
monsoonal (TM), subtropical–tropical monsoonal (STM), and high-cold Tibetan Plateau (TP). (d) Regional GPP from the
ESMs (PgC yr−1: petagram of carbon per year) (BCC: BCC-CSM2-MR; CMCC: CMCC-CM2-SR5; MPI: MPI-ESM1-2-HR).
The bars and lines represent the standard deviation during the 20 years.
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The GPP change under 1.5 ◦C of global warming is shown in Figure 2. Throughout
China, the GPP of all three ESMs showed a positive anomaly except over certain individual
grid points. In the subtropical–tropical monsoonal with MPI-ESM1-2-HR, the negatively
changed grids tend to concentrate (Figure 2e). The areal GPP reduction may be related to
reduced local precipitation. However, many factors could contribute to the GPP change in
addition to precipitation and temperature, such as land-use change, soil moisture, wind
speed, humidity, solar radiation, nitrogen deposition, etc. Thus, it is really hard to be
conclusive. Moreover, the aggregated negative grids tend to dissipate under 2 ◦C global
warming (Figure 3e). The GPP change patterns differ among the models (Figure 2). For
example, the largest anomaly in the output of BCC-CSM2-MR appears over the southeast-
ern Tibetan Plateau, whereas the largest anomalies in the output of CMCC-CM2-SR5 and
MPI-ESM1-2-HR appear in the central and southern parts of the subtropical–tropical mon-
soonal zone, respectively. The absolute GPP change is largest in the subtropical–tropical
monsoonal zone; however, the relative change is rather small and stable among the models
(Figure 2 right). The absolute change is smallest in the temperate continental zone owing to
its low base value in GPP. The relative change is large over the Tibetan Plateau, and there
are strong differences in the magnitude of the GPP increments among the different models.

The GPP anomaly under 2 ◦C of global warming shows a spatial pattern similar to
that found under 1.5 ◦C global warming but with a stronger intensity (Figure 3). Regional
statistics indicate that the regional GPP changes will be larger under 2 ◦C of global warming.
The projected increment of GPP in China under the different warming targets is consistent
with previous findings [5,7,29]. This suggests that from the perspective of GPP, there is
no ecological crisis in the projected future climate within the studied domain [3]. As with
1.5 ◦C warming, the subtropical–tropical monsoonal zone with the highest GPP value
contributed the most to the increment in China’s GPP under 2 ◦C of warming. However,
the increase rate does not show much difference in magnitude when compared with that
of other regions. It is worth noting that the rate of increase in GPP is substantial on the
Tibetan Plateau—i.e., the increase is nearly 63% with regard to BCC-CSM2-MR. Thus, the
Tibetan Plateau would appear to be the region most susceptible to the effects of climate
warming, although the influence could be considered positive and beneficial.

The seasonal GPP anomalies under the 1.5 and 2 ◦C warming scenarios are shown in
Figures 4 and 5, respectively. The spatial modes between the two warming scenarios are
similar, noting that the magnitude in the 2 ◦C warming is much larger than in the 1.5 ◦C
warming. In spring and summer, the GPP anomalies are the most prosperous, as they
correspond to the growing season in China, while they drop to become the weakest in
winter. In spring and winter with all ESMs, the GPP all over China generally shows a
positive anomaly, with only sporadic negative points. Some negative changes occur in
summer and autumn, especially with BCC-CSM2-MR and MPI-ESM1-2-HR. For BCC-
CSM2-MR in summer, the negative GPP anomalies concentrate in the Huaihe River, which
divides the subtropical–tropical monsoonal and temperate monsoonal regions. However,
there were no negative changes in GPP at the zone scale. For MPI-ESM1-2-HR in summer
and autumn, we observed some negative changes over the grassland in the temperate
continental, which is similar to the results of Ma et al. [30]. They found that large areas
in Northern China showed a decreasing trend in NPP under global warming, although
the overall NPP increased significantly. The fact that only one ESM obtained similar
results also indicates the large inter-model spread in representing the future GPP change.
The negative changes in the temperate continental were weakened under the 2 ◦C warming
scenario (Figure 5).
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right-hand panels represent the relative change in comparison with regional GPP from 1986 to 2005.



Sustainability 2021, 13, 11744 7 of 15Sustainability 2021, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. (Left) Spatial distribution of GPP anomaly (gC m−2 yr−1) and (right) the respective regional GPP changes under 2 
°C of global warming. (a,b) BCC-CSM2-MR, (c,d) CMCC-CM2-SR5, and (e,f) MPI-ESM1-2-HR. Numbers in the right-hand 
panels represent the relative change in comparison with regional GPP from 1986 to 2005. 

The GPP anomaly under 2 °C of global warming shows a spatial pattern similar to 
that found under 1.5 °C global warming but with a stronger intensity (Figure 3). Regional 
statistics indicate that the regional GPP changes will be larger under 2 °C of global warm-
ing. The projected increment of GPP in China under the different warming targets is con-
sistent with previous findings [5,7,29]. This suggests that from the perspective of GPP, 
there is no ecological crisis in the projected future climate within the studied domain [3]. 
As with 1.5 °C warming, the subtropical–tropical monsoonal zone with the highest GPP 
value contributed the most to the increment in China’s GPP under 2 °C of warming. How-
ever, the increase rate does not show much difference in magnitude when compared with 
that of other regions. It is worth noting that the rate of increase in GPP is substantial on 
the Tibetan Plateau—i.e., the increase is nearly 63% with regard to BCC-CSM2-MR. Thus, 

Figure 3. (Left) Spatial distribution of GPP anomaly (gC m−2 yr−1) and (right) the respective regional GPP changes under
2 ◦C of global warming. (a,b) BCC-CSM2-MR, (c,d) CMCC-CM2-SR5, and (e,f) MPI-ESM1-2-HR. Numbers in the right-hand
panels represent the relative change in comparison with regional GPP from 1986 to 2005.
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3.2. Climate Attribution

The variation in GPP is closely related to climate [20,31], and the correlation parame-
ters within the studied ESMs are provided in Table 1. It can be seen that GPP is correlated
significantly with at least one climate variable. There are cases in which GPP correlates
negatively with temperature, such as in the temperate continental zone with MPI-ESM1-
2-HR and in the temperate monsoonal zone with BCC-CSM2-MR, which imply inherent
differences in ecological modeling between the different ESMs [9,10]. On the Tibetan
Plateau, it is unanimous within the ESMs that GPP is most closely related to temperature
rather than to precipitation. Because the ESMs substantially overestimate precipitation
over the Tibetan Plateau [32–34], it is possible that precipitation is not the primary climate
factor constraining the regional ecosystem.
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The corresponding climate changes—i.e., precipitation and surface air temperature— under
the warming targets are shown in Tables 2 and 3, respectively. The mode of temperature change in
the four regions is consistent among the models. The hottest region—i.e., the subtropical–tropical
monsoonal zone—increases least under the effects of warming. Both CMCC-CM2-SR5 and
MPI-ESM1-2-HR produced similar estimates of temperature change, whereas the estimates from
BCC-CSM2-MR were larger, especially over the monsoonal regions.
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There is a greater model variety regarding the change in precipitation. Under 1.5 ◦C of
warming, there are negative changes—e.g., in the temperate monsoonal zone with CMCC-
CM2-SR5 and in the subtropical–tropical monsoonal zone with both BCC-CSM2-MR and
CMCC-CM2-SR5. Conversely, under 2 ◦C of warming, there are no negative changes, but
the incremental differences for one certain region are huge. These results indicate the large
uncertainty in the precipitation projections made by the ESMs. It is also worth noting



Sustainability 2021, 13, 11744 10 of 15

that in comparison with their variabilities, the change in temperature under the warming
scenarios is reasonably large, whereas the precipitation change is rather limited [10].

The apparent sensitivity of climate to the ecosystem of each of the ESMs is shown
in Table 4. The response of the ecosystem to climate varies strongly among the models.
For some ESM regions, climate plays a crucial role, such that the variation in climate
explains more than half of the variation in GPP. However, for certain other ESM regions,
the degree of explanation attributable to climate is rather small—e.g., MPI-ESM1-2-HR
in the subtropical–tropical monsoonal zone and BCC-CSM2-MR on the Tibetan Plateau.
For one particular region, the same climate factor might affect the ecosystem differently
in the various models. Taking the subtropical–tropical monsoonal zone as an example,
precipitation is the major influencing factor and affects the ecosystem positively with
BCC-CSM2-MR and CMCC-CM2-SR5. However, with MPI-ESM1-2-HR, the correlation
between precipitation and GPP is insignificant and negative (Tables 1 and 4). Moreover,
the overall climate contribution to ecosystem variation with MPI-ESM1-2-HR is very small
(Table 4). These features further reflect the inherent differences of ecological modeling
within the ESMs.

Table 1. Correlation parameter r between GPP and climate variables during the historical period
of 1980–2013. * denotes correlation that is significant at the 0.1 level; ** denotes correlation that is
significant at the 0.05 level; *** denotes correlation that is significant at the 0.01 level.

GPP vs. P TC TM STM TP

BCC 0.68 *** 0.74 *** 0.62 *** 0.1

CMCC 0.72 *** 0.58 *** 0.42 ** −0.01

MPI 0.81 *** 0.36 ** −0.26 0.23

GPP vs. T

BCC −0.09 −0.35 ** −0.25 0.35 **

CMCC 0.17 0.42 ** 0.34 * 0.74 ***

MPI −0.42 ** 0.13 0.33 * 0.62 ***

Table 2. Regional temperature change (◦C) in comparison with that of the reference period of
1986–2005 under 1.5 and 2 ◦C (in parentheses) of global warming.

TC TM STM TP

BCC 1.37(2.21) 1.66(2.37) 1.16(1.86) 1.37(2.10)

CMCC 1.28(1.94) 1.12(1.78) 0.81(1.27) 1.19(1.71)

MPI 1.18(1.89) 1.1(1.79) 0.83(1.69) 1.14(2.02)

Table 3. Regional precipitation change (mm yr−1) in comparison with that of the reference period of
1986–2005 under 1.5 and 2 ◦C (in parentheses) of global warming.

TC TM STM TP

BCC 12.47(28.22) 8.11(47.13) −6.18(57.36) 10.37(32.23)

CMCC 11.31(45.68) −20.08(16.22) −51.89(20.50) 30.24(94.89)

MPI 2.65(8.66) 6.91(19.23) 32.83(46.13) 11.5(9.42)
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Table 4. Sensitivity parameters of GPP to climate variables during the historical period of 1980–2013
through the multiple linear regression approach. The final row shows the explained variance of
climate to GPP through multiple regression.

Temperate Continental BCC CMCC MPI

P 0.8 0.72 0.77

T 0.26 0.14 −0.1

Var 52.20% 54.00% 66.50%

Temperate monsoonal

P 0.78 0.54 0.66

T 0.06 0.35 0.52

Var 55.40% 45.90% 30.20%

Subtropical–tropical monsoonal

P 0.64 0.51 −0.15

T 0.06 0.44 0.28

Var 38.10% 36.30% 13.10%

Tibetan Plateau

P 0.16 −0.1 0.46

T 0.38 0.75 0.75

Var 15.00% 55.70% 57.50%

Based on the ecosystem–climate relationship (Table 4) and the known climate changes
(Tables 2 and 3), the GPP change over the climate zones with the different ESMs is attributed
quantitatively in Figure 6. As mentioned before, some contributions from the climate
factors are negative, for which there are two major reasons. First, the climate change is
negative—e.g., the negative precipitation change leads to a negative contribution to GPP.
Second, the correlation between the climate factor and GPP is negative—e.g., temperature
and GPP in the temperate continental zone in MPI-ESM1-2-HR. A positive anomaly in
temperature could also lead to GPP reduction. The climate contribution to the variation
in GPP changes among the studied ESMs. Even with the same model—e.g., MPI-ESM1-
2-HR—it can be −12.8% in the temperate continental zone and 61.1% on the Tibetan
Plateau. Generally, under the effects of global warming, the influence of temperature
on the ecosystem is larger than that of precipitation. This is mainly because the relative
change in temperature is much larger than that in precipitation. On the Tibetan Plateau,
where temperature is the most constraining factor (Tables 1 and 4), temperature plays a
more dominant role than precipitation in the increase in GPP (Figure 6). In addition, it
is observed that the relative GPP increase in the Tibetan Plateau is much larger than that
in other regions. On the one hand, it is related to the low baseline value of GPP in the
Tibetan Plateau (Figure 1d). A light increase in the GPP of the Tibetan Plateau is salient in
relative values compared to the respective change in the subtropical–tropical monsoonal
region. On the other hand, this may be related to the vegetation structure on the Plateau.
Demonym plants can be divided into three types based on their photosynthesis patterns
(i.e., C3, C4, and crassulacean acid metabolism). C3 photosynthesis produces a three-
carbon compound during the Calvin cycle, while C4 photosynthesis makes an intermediate
four-carbon compound that splits into a three-carbon compound for the Calvin cycle.
They favor different conditions of nature. The conditions on the frigid Tibetan Plateau are
unsuitable for the growth of C4 plants [35]. Consequently, the plateau is dominant by C3
plants [36]. C3 plants are more efficient in vegetative growth than C4 plants in response to
the increasing air CO2 [37]. As a result, GPP increases more rapidly with increased air CO2
in the Tibetan Plateau than in other regions containing both C3 and C4 plants.
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4. Conclusions

To evaluate the GPP change under 1.5 and 2 ◦C of global warming, this study selected
three CMIP6 ESMs (i.e., BCC-CSM2-MR, CMCC-CM2-SR5, and MPI-ESM1-2-HR) that
performed well in historical GPP modeling; the principal conclusions derived are as follows:

1. Under 1.5 and 2 ◦C of global warming, the projections of the ESMs indicate that global
warming introduces no ecological risk in China. Although certain individual grid
points showed negative GPP changes, regional GPP showed a marked increase, the
smallest magnitude of which was more than 10% greater than that from 1986 to 2005.

2. Specifically under 1.5 ◦C warming, the GPP in the temperate continental zone is pro-
jected to increase by 16.1–23.8% in comparison with the historical value (1986–2005).
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Similarly, GPP is projected to increase by 12.3–16.1% in the temperate monsoonal zone,
12.5–14.7% in the subtropical–tropical monsoonal zone, and 20.0–37.0% on the Tibetan
Plateau. Under 2 ◦C warming, the increase in GPP is projected to be even greater—i.e.,
23.0–34.3% in the temperate continental zone, 21.2–24.4% in the temperate monsoonal
zone, 16.1–28.4% in the subtropical–tropical monsoonal zone, and 28.4–63.0% on the
Tibetan Plateau.

3. Climate change is projected to contribute positively to GPP change, except in the
temperate continental zone with MPI-ESM1-2-HR. Although precipitation has larger
sensitivity parameters, temperature generally plays a more important role in GPP
change because of the larger change relative to its own variability in comparison with
that of precipitation.

The output of the three studied ESMs showed a marked spread, not only in GPP
change but also in the accountability of climate to the ecosystem. In addition, the change in
climate, especially precipitation, differed strongly within the models, which indicates the
large uncertainty in the climate projections of the ESMs. All of these add to difficulties in
attributing future GPP change to climate. Moreover, this study analyzed the influence of
annual precipitation and temperature upon the ecosystem productivity. However, GPP
variation depends not only on these, but also on wind speed, humidity, solar radiation,
nitrogen deposition, etc. Future studies should be more comprehensive in building the
regressed equations between GPP and the impact factors. This study failed to analyze the
contribution of CO2 to the GPP increase. This was due to the lack of gridded/regional
CO2 concentration data. Future research should take into account the CO2 effect when
analyzing the GPP change and be more specific about vegetation of C3 and C4 types. This
study is more general in that it focuses on the general productivity of the climate zones.
Future studies should be refined to specific vegetation covers, such as forest, grass, etc.
The fact that different ESMs lack consensus in the response mechanism of the ecosystem
to climate, even over one specific climate zone, highlights that there is still a long way for
ecological modeling in China to go.
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27. Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3,

369–373. [CrossRef]
28. Kusunoki, S.; Arakawa, O. Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Clim.

2015, 28, 5601–5621. [CrossRef]
29. Mu, Q.; Zhao, M.; Running, S.W.; Liu, M.; Tian, H. Contribution of increasing CO2 and climate change to the carbon cycle in

China’s ecosystems. J. Geophys. Res. Biogeosci. 2008, 113, G01018. [CrossRef]
30. Ma, X.; Huo, T.; Zhao, C.; Yan, W.; Zhang, X. Projection of Net Primary Productivity under Global Warming Scenarios of 1.5 ◦C

and 2.0 ◦C in Northern China Sandy Areas. Atmosphere 2020, 11, 71. [CrossRef]
31. Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.;

Carvalhais, N.; et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM
approach. Biogeosciences 2020, 17, 1343–1365. [CrossRef]

32. Tong, K.; Su, F.; Yang, D.; Zhang, L.; Hao, Z. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and
satellite retrievals. Int. J. Climatol. 2014, 34, 265–285. [CrossRef]

33. Zhang, C. Moisture source assessment and the varying characteristics for the Tibetan Plateau precipitation using TRMM. Environ.
Res. Lett. 2020, 15, 104003. [CrossRef]

http://doi.org/10.5194/acp-20-2353-2020
http://doi.org/10.1016/j.gloenvcha.2016.05.009
http://doi.org/10.1002/joc.4497
http://doi.org/10.5194/gmd-12-1573-2019
http://doi.org/10.1029/2018MS001369
http://doi.org/10.1029/2018MS001400
http://doi.org/10.1007/s13351-019-9016-y
http://doi.org/10.1093/nsr/nwz021
http://doi.org/10.1088/1748-9326/aaec95
http://doi.org/10.1038/nature12434
http://doi.org/10.1111/gcb.13830
http://www.ncbi.nlm.nih.gov/pubmed/28727222
http://doi.org/10.1111/gcb.12187
http://doi.org/10.1073/pnas.0700290104
http://doi.org/10.1175/JCLI-D-16-0903.1
http://doi.org/10.1103/PhysRevLett.100.084102
http://www.ncbi.nlm.nih.gov/pubmed/18352624
http://doi.org/10.1073/pnas.1811463116
http://doi.org/10.1038/nclimate1716
http://doi.org/10.1175/JCLI-D-14-00585.1
http://doi.org/10.1029/2006JG000316
http://doi.org/10.3390/atmos11010071
http://doi.org/10.5194/bg-17-1343-2020
http://doi.org/10.1002/joc.3682
http://doi.org/10.1088/1748-9326/abac78


Sustainability 2021, 13, 11744 15 of 15

34. Pan, C.; Zhu, B.; Gao, J.; Kang, H.; Zhu, T. Quantitative identification of moisture sources over the Tibetan Plateau and the
relationship between thermal forcing and moisture transport. Clim. Dyn. 2019, 52, 181–196. [CrossRef]

35. Sage, R.F.; Wedin, D.A.; Li, M. The Biogeography of C4 Photosyn-Thesis: Patterns and Controlling Factors; Sage, R.F., Monsoon, R.K.,
Eds.; C4 Plant Biology; Academic Press: San Diego, CA, USA, 1999; pp. 313–373.

36. Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al.
Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model.
Glob. Chang. Biol. 2003, 9, 161–185. [CrossRef]

37. Wand, S.J.; Midgley, G.F.; Jones, M.H.; Curtis, P.S. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric
CO2 concentration: A meta-analytic test of current theories and perceptions. Glob. Chang. Biol. 1999, 5, 723–741. [CrossRef]

http://doi.org/10.1007/s00382-018-4130-6
http://doi.org/10.1046/j.1365-2486.2003.00569.x
http://doi.org/10.1046/j.1365-2486.1999.00265.x

	Introduction 
	Materials and Methods 
	Data 
	Methods 
	Bilinear Interpolation 
	Area Weighting 
	Linear Correlation and Multiple Regression 


	Results and Discussion 
	GPP Distribution and Projected Changes 
	Climate Attribution 

	Conclusions 
	References

