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Abstract: Investigating soil and climate variability is critical to defining environments for field
crops, understanding yield-limiting factors, and contributing to the sustainability and resilience
of agro-ecosystems. Following this rationale, the aim of this study was to develop a soil–climate
characterization to describe environmental constraints in the Senegal summer-crops region. For
the soil database, 825 soil samples were collected characterizing pH, electrical conductivity (EC),
phosphorus (P), potassium (K), cation exchange capacity (CEC), and total carbon (C) and nitrogen (N).
For the climate, monthly temperature, precipitation, and evapotranspiration layers were retrieved
from WorldClim 2.1, CHIRPS and TERRACLIMATE. The same analysis was applied individually
to both databases. Briefly, a principal component analysis (PCA) was executed to summarize the
spatial variability. The outcomes from the PCA were subjected to a spatial fuzzy c-means algorithm,
delineating five soil and three climate homogeneous areas, accounting for 73% of the soil and
88% of the climate variation. To our knowledge, no previous studies were done with large soil
databases since availability field data is often limited. The use of soil and climate data allowed the
characterization of different areas and their main drivers. The use of this classification will assist in
developing strategic planning for future land use and capability classifications.

Keywords: geospatial analysis; environmental classification; spatial; temporal; variability

1. Introduction

Senegal current population of 17.2 million [1] is projected to double by 2050, requiring
greater food production to meet the increasing demand [2]. In this context, improving our
understanding of the impact of climate drivers on the crop production and their effects on
food security [3–5], especially in the developing countries in the West Africa region [2] is a
critical need. The effect of climate shocks and their impact on the community is one of the
most relevant questions in agriculture for the next decades.

Quantifying the impact of climate shocks is even more critical in countries such as
Senegal that rely heavily on rainfed agriculture and livestock systems [6]. Food security has
been a top priority over the last several decades, even more due to the reported variability
in precipitation distribution and its seasonal patterns [7]. Climate drivers such as erratic
precipitation and more extreme events represent a serious threat to food security [8]. This
is especially relevant to smallholder farmers based on their specific environments due to a
lack of access to timely information and limited resources to adapt to climate variability.
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This clearly demonstrates that spatial variability plays a critical role in the vulnerability to
food security in the country and region.

Studying the variability of the environment, focusing on soil and climate, is a critical
step forward to understanding the potential effects of these stressors on crop production
and food security. From a soil perspective, little is known about the long-term impact of soil
changes on crops [9]. Teluguntla et al. [10] showed a clear linkage between soil degradation
and its impact on crop production in major crop-producing regions around the globe.
Further, efforts to reduce soil degradation represent a challenge to ensure soil and food
security [9]. Koch et al. [11] defined the concept of “soil security” as the maintenance and
improvement of soils worldwide to achieve continued availability of the soil resources so
that they can continue to provide food and other environmental services. Its relation to food
security is critical to establishing a more sustainable pathway maintaining future gains in
crop productivity while reducing the impact of this process on the continuous degradation
of soils (i.e., loss of soil structure, nutrients, and erosion; [12]). For resource-constrained
farmers, the improvement of soil health is critical to providing economic return to fertilizer
inputs [13]. A recent large survey highlighted key biophysical and socio-economic barriers
and potential opportunities and solutions to address soil fertility issues in Africa [14].
They clearly indicated the soil fertility should be viewed as a means not just to improve
productivity but also to provide nutritious food and improve the livelihoods and wellbeing
of people. In the last decade, the AfSIS (Africa Soil Information Service) project aimed to
compile datasets to improve soil characterization in Africa [15,16]. By collecting new topsoil
data, this project was able to finalize a soil mapping of relevant soil properties (e.g., organic
carbon, pH, total nitrogen, exchangeable bases) of Africa at 250 m resolution [17]. This is a
clear step forward to improve soil characterization and understanding the impact of crop
production on short- and long-term soil security. However, the current resolution is still
large to represent conditions of smallholder farmers and suffers from greater uncertainty
in zones with low validation data density. Therefore, soil information at finer scales to
better address localized food and soil security issues, especially in relation to climate
shocks, is lacking [3,18,19]. Such soil fertility mapping and characterizing could be a good
step for better understanding soil fertility challenges and opportunities and consequent
fertilizer application accuracy since Senegal has, for cereals and legumes, a flat fertilizer
recommendation applied across the country regardless of climate and soil variability.

The effect of climate variation (mainly described as changes in temperatures and
precipitation patterns) and its impact on food security and smallholder farmer income is a
research priority [3,20]. Higher temperature (projected to rise faster in West Africa; [21])
and water-deficit threatens global crop productivity and food security [22]. Most of the
food grain crops are highly sensitive to short periods of high temperature stress events
during flowering and early grain periods leading to lower crop yields [20]. Thus, a regional
climate classification based on both spatial and temporal climate variability is important to
understand the impact of climate shocks on crop yields [23]. An initial and needed step
is to obtain a more automated process to classify the most relevant agricultural regions
and therefore understand the main factors driving changes and limitations related to crop
suitability. Moreover, sensitivity to climate shocks is severely impacted by soil security,
with land degradation more rapidly exposing the vulnerability of crop production and
its spatio-temporal variation [24]. The lack of a soil–climate classification implies that
potentially much of the crop selection and practices implemented in one region are over-
looking the heterogeneity of these relevant classification factors. In the face of increasing
extreme climate conditions and soil degradation, improving both spatial and temporal
classifications of soil and climate variabilities is a critical step for land use planning [25]. In
addition, this soil and climate classification is relevant to delineate homogeneous zones
with similar environmental effects on the crops, assisting in developing strategic planning
and improving future land capability classifications [26].

This study focuses on Senegal, as a case study, to develop a useful environmental
classification based on soil and climate datasets, focused on the main region for the summer
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field crops. The overall goal was to describe the main environmental constraints to crop
productivity in this region, counting with a large soil sampling dataset (825 soil samples) to
achieve it. The specific goals of this project were to (i) map the soil variation and identify the
main factors driving changes in the classification process and following a similar approach
and (ii) describe the climate variation and identify the most relevant climate driving factors
defining homogeneous zones for adaptation of field crops in the region.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Senegalese Sudano-Sahelian region between latitudes
16.13◦ N and 12.62◦ N and the longitudes −17.55◦ W and −12.47◦ W. This zone has an
area of 75,283 km2 and includes 10 administrative regions (Saint Louis, Louga, Thies,
Dakar, Diourbel, Fatick, Kaolack, Kaffrine, Tambacounda, and Kolda). The climate of the
country is characterized as dry tropical in the south and semi-arid with sparse vegetation
towards the north [27,28]. Precipitation has a high spatio-temporal variability [29], spatially
characterized by a north–south gradient from 300 to 1300 mm, respectively [30], and
temporally concentrated during the rainy season (from June to October) with greatest
volumes in August. The distribution of the precipitations defines the potential for the crop-
growing season during the summer period. The historical average annual temperature
is between 24.5 and 29 ◦C [31]. The dominant soil order in the region corresponds to
Lixisols [32], described as sandy and ferruginous [33]. The landscape is plain within a low
altitude topography (overall not greater than 130 m.a.s.l), except in the southeast region
where the topography rises up to 581 m.a.s.l. [34].

The land use is dominated largely by livestock on rangeland and extensive agricul-
ture [27]. The foremost management practices applied to the livestock production systems
are pastoral, agro-pastoral, and off-land systems [35]. Coupled with these less-intensive
input production systems, summer crops prevail in the extensive agriculture during the
rainy season and forage during the dry season. In the studied region, the most relevant
crops are pearl millet (Pennisetum glaucum L.), rice (Oryza sativa L.), sorghum ( Sorghum bi-
color L.), groundnut (Arachis hypogaea L.), and cotton (Gossypium hirsutum L.) [27,36], with
millet as the most frequently grown (Figure 1A) (Table 1).
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2.2. Data Sources and Processing
2.2.1. Soil Data

Soil data were obtained from soil samples collected across the study area, from the
upper 10 cm, during the 2019 crop season (825 soil samples total, Figure 1B). Soil samples
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were analyzed for pH-water (potentiometric, CN-TM-S02), electrical conductivity (EC,
potentiometric, CN-TM-S01), phosphorus (P), potassium (K), and cation exchange capacity
(CEC)—all these elements via Mehlich-3 using ICP-OES (CN-TM-S07), total carbon (Ctot),
and total nitrogen (Ntot) (CN analyzer, combustion, CN-TM-S54). These variables have
been defined as the most relevant for characterizing the chemical soil properties and
explaining variations in millet yields [38], which is one of the most relevant crops in the
region [37]. The spatial distribution of each soil variable over study area is presented in
Figure 2.

Table 1. Main summer crops in Senegal, planting and harvesting date, and productivity and total production (2020–2021) [39].

Summer Crop Planting Date Harvesting Date Planting Area (ha) Productivity (Mg ha−1) Total Production
(Mg)

Peanut Feb–Apr/May–Jul Jun–Jul/Sep–Nov 1,225,000 1.47 1,797,000
Maize Jun–Jul Sep–Nov 260,000 1.35 350,000
Millet Jun–Jul Sep–Nov 880,000 1.02 900,000
Cotton Jun–Jul Dec 18,000 0.46 17,230

Sorghum Jun–Jul Sep–Nov 240,000 1.15 275,000
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The collected soils data were compared with Africa SoilGrids [17] to better understand
the importance of the current soil dataset and overall variations, through (i) the ratio
between the density of collected samples within the region, and (ii) the overall range of
variation of each soil parameters between datasets using a qualitative approach. The depths
selected from the Africa SoilGrids layers were pH-EC-CEC-Ctot: 0–5 cm, K-P: 0–30, and
Ntot: 0–20 cm. All soil data layers were obtained from: Africa SoilGrids, Afsis250m, and
Afsis250m nutrient [16,17].

Data cleaning is a key step for spatial analysis, with geospatial datasets often con-
taining anomalies that are not representative of the global dataset [40]. Thus, we detected
outliers (observations that are outside a statistical distribution or that do not follow a gen-
eral pattern in a data set [41]) and spatial outliers (observations within the general range of
variation, which differ significantly from data that is close to their spatial location). Firstly,
we detected outliers using the interquartile interval method [42]. Briefly, this method uses
the 25th quartile (q1) and the 75th quartile (q3) (defining the interquartile-range; IQR) as
upper and lower limits to define values outside of this range as outliers [43,44].

IQR = q3 − q1 (1)

Upper threshold = q3 + 1.5 × IQR (2)

Lower threshold = q1 − 1.5 × IQR (3)

Secondly, we identified spatial outliers via utilization of Moran’s local index [45–47].
The outliers represented 3.6% and the spatial outliers 7.3% of all observations in the soil
dataset. Lastly, several methods have been developed for dealing with outliers. An
approach widely used for masking spatial data is the use of disk smoothing through
a moving median window [48]. In our study, outliers were not removed but spatial
smoothing was implemented, determining the locally weighted median using a neighbor
set and masking the data classified as outlier or spatial outlier [49]. The neighbor set can be
based in different ways. For this work, we used k-nearest neighbors, taking into account
that k = 6.

2.2.2. Climate Data

Three main climate descriptors were retrieved: average air temperature (WorldClim
1.2; [50]), precipitation (CHIRPS; [51]), and potential evapotranspiration (TERRACLI-
MATE; [52]). These variables represent some of the most important variables for character-
izing the climate effect on crops [4,53–56]. Main details on data sources can be accessed
in Table 2.

Table 2. Descriptions of climate data sources used in the overall analysis.

Product Variable Temporal Resolution Spatial Resolution Source

CHIRPS Precipitation Daily 0.05◦
http://www.chc.ucsb.edu/
data/chirps---via, Google
Earth Engine, accessed on

14 September 2021

TERRACLIMATE Monthly potential
evapotranspiration

Average monthly
cumulative 1/24◦

http://www.climatologylab.
org/terraclimate.html---via,

Google Earth Engine, accessed
on 14 September 2021

WorldClim 2.1 Monthly Temperature Average monthly
cumulative 2.5◦

https://www.worldclim.org/
data/index.html, accessed on

14 September 2021

Climate data were downloaded for the period from 2010 to 2020 (10 years) and
further filtered to include only the growing season relevant to summer crops (from May
to November). The CHIRPS (Climate Hazards Group InfraRed Precipitation with Station
Data) and TERRACLIMATE data sources were accessed via Google Earth Engine (GEE)

http://www.chc.ucsb.edu/data/chirps---via
http://www.chc.ucsb.edu/data/chirps---via
http://www.climatologylab.org/terraclimate.html---via
http://www.climatologylab.org/terraclimate.html---via
https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
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platform, application programming interface (API) with Python using the geemap [57] and
the GEE library [58]. Unlike the rest of the data sources, CHIRPS provides the precipitation
layers in daily steps. In order to match the other variables (monthly average temperature
from WorldClim 2.1, and monthly average evapotranspiration from TERRACLIMATE),
data were aggregated through the sum of the precipitation within each month. Later, the
monthly temperature, precipitation, and evapotranspiration were average across years
(n = 10) to build one layer for each variable for each month. Moreover, the pixels were
average and rescaled to 3500 m resolution to match the resolution with the soil dataset.
Lastly, all the weather variables layers were stacked and cropped using the study area
as a mask layer. This procedure was performed using the “raster” package [59], in R
software [60].

2.3. Protocol Sequence

The following protocol sequence was executed in two steps: firstly, using the soil
dataset, and secondly, using the climate datasets. This approach recognizes the value of
the classification of soil and climate as separate products, underlining the relevance of the
observed soil data availability of this study.

2.3.1. Principal Component Analysis

Feature reduction techniques are used to reduce the dimension in the datasets. Sev-
eral methods have been developed for dealing with data dimensionality. Among them,
principal component analysis (PCA), a multivariate technique, has been widely used in the
sciences, engineering, and commercial applications to reduce the number of variables [61].
This technique allows identifying the dimensionality and the latent structure of data [62].
This method captures different types of variability in the data, summarizing them as compo-
nents made up by linear combinations of the original variables. However, spatial datasets
have intrinsic characteristics, such as spatial autocorrelation and spatial heterogeneity,
that need to be considered. Recently, different approaches have been used to account for
the spatial component in the data [63]. In this study, we used spatial PCA (MULTISPATI-
PCA, [64]) to perform layer integration and feature reduction. Unlike conventional PCA,
the MULTISPATI-PCA is a type of PCA with spatial restrictions that are introduced through
a spatial weighting matrix to calculate correlations among the original data. These spatial
restrictions are included via the definition of spatial autocorrelations using Moran’s index
and a network of neighboring observations of each data point [65]. The set neighbor was
determined based on parameters obtained through semivariograms fitted to each dataset
(with a relative structure variability above 40%), establishing 20,000 m as the maximum
distance for the soil dataset and 50,000 m for the climate dataset. This method has been
executed using interactive variogram estimation with the eyefit function of geoR package.
This approach has been broadly implemented in different environments [66–69].

Lastly, to generate a continuous layer of the study area, the first and second spatial
principal components (sPC) were interpolated. A kriging methodology was used to
interpolate the sPCA of soil variables. In contrast, for the climate, sPCA used a regular grid
to extract the values of centroids of the pixels of climate raster layers creating a climate
database with the monthly data for cumulative precipitation, average temperature, and
cumulative evapotranspiration. The climate variables of this database were used as input
data for the climate sPCA.

This procedure encompasses the methodology described by Cordoba [70], using the
R packages Ade4 [71], geoR [72], adespatial [64], and Spdep [73], within the statistical
software R [60].

2.3.2. Cluster Analysis

In our analysis, for both soil and climate data, the first and second sPCs were selected
for further clustering using non-hierarchical spatial fuzzy c-means algorithm [74] with
the R package “Geocmeans” [75]. This approach is a logical diffuse algorithm for making
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cluster analysis, which introduces the spatial component to the fuzzy c-means method.
The introduction of the data spatial identity has the aim to produce a spatial smoothing,
decreasing the noise in the final outcome [76]. This algorithm classifies based on the
degree of similarity of an object to a group by its membership to the group. We used the
squared Euclidean distance and a fuzziness coefficient m = 1.3, following the methodology
from Odeh [77]. The number of clusters used for zoning was determined considering the
minimum number of clusters that explained at least 70% of the inertia (Supplementary
Materials, Figure S1A,B).

3. Results
3.1. Environmental Description

Selected soil variables and spatial descriptors are presented in Table 3. Coefficients
of variation (CV) ranged between ~7% (pH) and ~94% (P), with a majority of the soil
variables presenting high variability (CV > 40%). All variables portrayed a large spatial
autocorrelation, with both P and total carbon (Ctot) displaying the largest values for the
Moran Index (MI, 0.54 and 0.51, respectively). Positive values of the MI verify the presence
of spatial autocorrelation, showing the degree of similarity of a value in a given site with
respect to the surrounding data neighborhood.

Table 3. Summary statistics (mean, minimum (min), maximum (max), coefficient of variation (CV%), Moran Index (MI)) for
soil variables corresponding to 825 soil samples from the West Central region in Senegal, in the year 2019.

Variables Units Mean Min Max CV (%) MI

pH 1:2 (s:w) 5.9 4.7 7.4 7.2 0.32
Electrical conductivity (EC) uS/cm 18.4 5.5 53 53 0.34

P ppm 11.0 1.8 83 94 0.54
K ppm 31 3.8 97 56 0.39

Cation exchange capacity (CEC) meq/100 g 3.1 0.7 7.1 41 0.34
Total carbon (Ctot) % 0.30 0.07 0.90 52 0.51

Total nitrogen (Ntot) % 0.04 0.01 0.08 50 0.36

Focused in the study area, the density of samples per unit area were close to three-fold
less for the Africa SoilGrids (n = 282) relative to our collected soil database (n = 825), in
addition to presenting a less-uniform geographical representation for Africa SoilGrids with
more samples concentrated in the northern region (Figure 3A). Among the explored soil
variables, great differences were found for K, CEC, and Ctot. Regarding the variability
shown in the boxplots, Ctot and CEC from our database presented greater values ranges
than SoilGrids (Figure 3B–H). Overall, Africa SoilGrids overestimate compared to our
database, except for EC.

For the climate variables, the monthly cumulative precipitation ranged from 0 to
338 mm, with a mean monthly value of 78 mm (Table 4). Furthermore, this variable
showed the greatest CV (24%). In contrast, the average monthly temperature resulted
in a CV of 4.3%. This value was the lowest for all climatic variables, with a minimum
of 24.7 ◦C and a maximum of 31.9 ◦C and showing a mean value of 28.0 ◦C. Lastly, the
water potential atmospheric demand (potential evapotranspiration, ETo) ranged from 115
to 150 mm/month, with a CV of 11%.
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Table 4. Descriptive summary statistics (mean, minimum (min), maximum (max), coefficient of variation (CV%), standard
deviation (SD)) of climate variables from the west central region in Senegal (2010–2020 period).

Variable Unit Mean Min Max CV (%) SD

Average
Monthly temperature

◦C 28.0 24.7 31.9 4.3 1.20

Monthly
Cumulative precipitation mm/month 78 0 338 24 81

Monthly
Cumulative ETo mm/month 150 115 217 11 26

3.2. Soil Classification

As a first step, we executed the variable reduction using the sPCA. The variables that
explained the largest proportion of the spatial variability were Ctot, Ntot, CEC, and CE
for the sPC1 and pH and P for the sPC2 (Figure 4A). The sPCA applied to the soil data
accounted for roughly 73% of the variance between the first and second sPCs (Figure 4A).
Figure 4A shows a close association between Ctot and Ntot but not with P and pH factors.
Those last soil variables (P and pH) presented a similar direction and association with K.
Lastly, CEC, K, and EC presented similar directions, reflecting a high level of association
relative to other variables such as Ctot and Ntot or P content for the soils in this region.
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growing season of summer crops.

The geostatistical analysis applied to sPCs 1 and 2 of soil variables, using semivar-
iogram fitting, showed that the spatial dependence ranged between 3.6 km (sPC1) and
12.7 km (sPC2). The uncorrelated spatial variance, expressed as the nugget variance, were
0.63 and 0.47 for the sPC1 and sPC2, respectively. In contrast, the spatial variance expressed
as the sill partial parameter had values between 0.35 (sPC2) and 0.79 (sPC1). Analyzing
the values of relative structural variance, sPC1 presented a value of 55% and sPC2 of 42%.
These values showed the presence of intermediate spatial variability in both sPCs when
compared with reference values [78].

As a result of using the spatial fuzzy c-means clustering analysis with the sPC1 and
sPC2 from the soil data, we determined five zones, which accounted for 76% of inertia
in the spatial scale (Supplementary Materials, Figure S1A). These five zones represented
different geographical areas, with Zones 2 and 4 located to the north of the region, 1 and 5
to the center, and 3 in the south (Figure 5A). Overall, Zone 2 presented the lowest values
for CEC, Ctot, Ntot, and EC (as also reflected in Figure 2), while both Zones 3 and 4 had the
highest values for these soil features (Figure 5A.1). The main soil factors differing among
all zones were related to the variation on the CEC, Ctot, and Ntot.



Sustainability 2021, 13, 11739 10 of 17

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 17 
 

As a result of using the spatial fuzzy c-means clustering analysis with the sPC1 and 
sPC2 from the soil data, we determined five zones, which accounted for 76% of inertia in 
the spatial scale (Supplementary Materials, Figure S1A). These five zones represented dif-
ferent geographical areas, with Zones 2 and 4 located to the north of the region, 1 and 5 to 
the center, and 3 in the south (Figure 5A). Overall, Zone 2 presented the lowest values for 
CEC, Ctot, Ntot, and EC (as also reflected in Figure 2), while both Zones 3 and 4 had the 
highest values for these soil features (Figure 5A.1). The main soil factors differing among 
all zones were related to the variation on the CEC, Ctot, and Ntot. 

 
Figure 5. Soil (A) and climate (B) zones represented as the outcome of cluster analysis applied to each dataset. (A.1) Boxplot for the 
most relevant soil variables, displaying the range of variation and mean relative to each soil zones. (B.1) Boxplot for the most relevant 
climate variables, portraying the range of variation and mean relative to each climate zones. 

3.3. Climate Classification 
The sPCA applied to the climate data captured nearly 88% of the spatial variance 

(Figure 4B). The most relevant climate variables described from the analysis were the cu-
mulative precipitation in June, average temperature in August and in September for sPC1, 
and the average temperature in June and the cumulative potential evapotranspiration of 
May for sPC2. Three zones were described from the fuzzy c-means clustering analysis, 
which accounted for 72% of the inertia in the spatial–temporal scale (Supplementary Ma-
terials, Figure S1B). 

Figure 5. Soil (A) and climate (B) zones represented as the outcome of cluster analysis applied to each dataset. (A.1) Boxplot
for the most relevant soil variables, displaying the range of variation and mean relative to each soil zones. (B.1) Boxplot for
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3.3. Climate Classification

The sPCA applied to the climate data captured nearly 88% of the spatial variance
(Figure 4B). The most relevant climate variables described from the analysis were the
cumulative precipitation in June, average temperature in August and in September for
sPC1, and the average temperature in June and the cumulative potential evapotranspiration
of May for sPC2. Three zones were described from the fuzzy c-means clustering analysis,
which accounted for 72% of the inertia in the spatial–temporal scale (Supplementary
Materials, Figure S1B).

Compared to the soil clustering, the climate zones presented a more defined geograph-
ical delimitation, with Zone 3 to the North, Zone 2 in the Center, and Zone 1 to the South.
Zone 1 showed greater precipitation (PP), less potential evapotranspiration (ETo), and less
average temperature than the rest of zone (116 mm/month, 143 mm/month, and 27.5 ◦C).
The size of the range interquartile in Zone 3 of the analysis of climate data (Figure 5B1)
showed lower variation than the other boxes, indicating lower variation within each group.
In contrast with this, Zones 1 and 2 exhibited greater variation. The cumulative precipita-
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tion displayed an increasing gradient from north to south. The ETo showed the opposite
gradient, driven more by temperature.

The spatial variation in water balance (Figure 6A) displayed a gradient that decreased
with latitude (greater to the south). Furthermore, August and September were the months
with a more positive water balance (Figure 6B).
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Figure 6. (A) Spatial and seasonal variability of water balance (calculated as the difference between
precipitation, PP, and potential evapotranspiration, ETo). Maps portray geospatial differences in the
water balance during the summer crops season (May to November period). (B) Temporal (seasonal)
variability of water balance for each soil zones. The bars reflect the positive (PP > ETo) or negative
(PP < ETo) water balances in the summer crop season within soil zones.

3.4. Relationship between Monthly Climate Patterns among Soil Zones

Contrasting results were found when analyzing the difference between monthly cumu-
lative precipitation and the cumulative ETo for each of the soil zone. Positive water balances
were documented for the months of August and September for all soil zones (Figure 6B).
The month of May presented the largest negative water balance (<150 mm/month) during
the crop growing season. Lastly, the months of October and November were characterized
by presenting the lowest water balance, reaching negative values mainly for Zones 3 and
4. Regarding temperature, the greatest differences were found between Zones 1 and 3
(Figure 6B), beginning to decrease early from May to September, and increasing in October
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and November. In this way, the regions that showed less cumulative precipitation also
presented less variation of temperature in the time period selected.

4. Discussion

Our results highlight the potential of the soil and climate classification for generating
a baseline dataset to improve strategic planning, land use capability classifications, and
improved targeting of technologies. Overall, by using relevant soil features and climate
variables, this study was successful in capturing a large proportion of variation and
arranging both spatio-temporal variation of these factors in zone. The defined soil and
climatic zones could present a relevant impact for future crop mapping and suitability.
This could be easily visualized with the current distribution of crops sown for the different
zones. For example, there is a greater proportion of area planted with cotton (Figure 1A) in
Climatic Zones 2 and 3, (i.e., lower temperatures, and higher rainfall) and the Soil Zones 3
and 5 (i.e., soils with better agronomic characteristics: higher Ctot, Ntot, neutral pH, etc.).
Whereas sorghum, millet, and peanut crops were more concentrated in the Soil Zones 1, 2,
and 4. (i.e., lower rainfall and higher temperatures). This distribution is in accordance with
the crops’ capability to tolerate adverse condition [79]).

The process of clustering and presenting homogeneous regions is critical for improved
innovation dissemination and adoption and for scaling technologies shown to be effective
under similar soil and climate conditions. One of the most critical aspects of this study
is the availability of ground data for the soil classification, representing an advancement
in relation to the currently available mapping products; some of these include various
databases from different sources, including the HWSD (Harmonized World Soil Database),
the Food and Agricultural Organization (FAO) soil map, the International Institute of
Applied Systems Analysis (IIASA), the Institute of Soil Sciences—Chinese Academy of
Sciences (ISSCAS), the International Soil Reference and Information Center (ISRIC) 2012,
and SoilGrids [80,81]. Although many of these soil datasets are relevant to perform more
regional-scale investigations, the level of spatial heterogeneity is often overlooked, and it is
still a significant issue when developing an environmental classification for smallholder
farmers. To the extent of our knowledge, this is one of the first studies providing a ground-
data-based environmental classification and developing a more automated method for this
process that can be applied to many other countries around the region.

The novelty of this study remains in the use of local data to help improve products
of automated spatial prediction frameworks, which can be complementary to this type of
analysis. The collected soil dataset could contribute to improving current available machine
learning products [17] by integrating a large geographical scale and number of samples for
the study area. Although an improvement on the SoilGrids [82] was achieved by including
a measure of error (via quantile method) for each estimate, these estimations still do not
account for the true uncertainty of the estimate and its process (spatial scale) that can be
more formally quantified via the utilization of Bayesian approaches [83]. More recently,
Ippolito et al. [26] reported different levels of agreement between SoilGrids and HWSD in
the Dosso region of the Niger relative to key soil properties such as pH and texture, among
other parameters, and with most of the data collected many years ago, which reduces their
relevance for reflecting current soil conditions. The latter scenario of disagreement with
local (ground based) soil data and older data sets, without reflecting current management,
is a clear constraint when utilizing global datasets to address smallholder solutions. In
addition, errors related to more automated approaches and the distribution of observations
can limit the scale and applicability of the digital soil mapping [84], increasing the need to
obtain more reliable ground data sources at local levels. Likewise for climate data, a similar
issue was emphasized by Fall [34]; analyzing long-term mean climate conditions in Senegal
(1971–1998) revealed the need for more localized climate data due to the level of scale
variation, usually not always captured by gridded global data. We highlight this aspect to
be addressed in future studies. This summary clearly pinpoints the need to invest more
resources and efforts in developing more relevant terrestrial ground protocols for collecting
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reliable (and scale for more relevant, 250 m pixel is too large) data for smallholders due to
the intrinsic level of complexity, based on the spatial heterogeneity.

This environmental characterization provides a foundational knowledge and dataset
for more strategic planning and sustainable agricultural interventions (e.g., reduced tillage,
cover crops, crop selection, and use of fertilizers) to deal with such heterogeneity [85,86].
Future tests of the stability of soil and climate zones can improve our understanding of
fluctuations linked to climate change. Sustained increases in food supply will need the
integration of relevant soil, climate, and crop data with the goal of targeting the right
agricultural farming system to the right environment, increasing input use efficiency while
reducing the environmental footprint [87]. From the perspective of smallholder farmers,
a recent study confirmed that farmers in the region are all well-aware of the impact of
changing climate conditions on crop production and the potential adaptations needed to
manage the negative effects [88].

Lastly, an increase in the frequency of extreme climate events will require more
proactive changes and farmers better equipped with information and knowledge to more
rapidly adapt and react to those fluctuations [89]. For example, with the introduction of
the short-season dual-purpose pearl millet crop in the region, the adoption of high plant
density and balanced fertilization are still obstructed due to lack of economic, institutional
(access to credit), and socio-cultural barriers [90,91]. A compromised solution needs to be
sought in the near future for securing access to fertilizers via subsidies, providing better
credits for other farming inputs, crop insurance, and improving access to data-informed
and knowledge-based decision support tools [13,90]. In addition, the complex topics of
climate change, climate smart agriculture, sustainable agricultural intensification, and soil
fertility management require participatory processes to set research priorities and identify
the best solutions [91].

Limitations to the analysis, potentially informing future steps, are related to (1) the
lack of temporal variation for soil parameters (e.g., short-term: EC, pH; long-term: P,
K, Ctot and Ntot) and vertical soil profiles in order to study the physical limitations
(shallow soils), the depth of the soil profile, and the granulometric data of the different soil
horizons (relevant for estimation of water holding capacity); (2) the lack of relevant and
geo-referenced crop productivity data to validate the soil and climate zone to more formally
validate the current classification; (3) the lack of local climate data to benchmark against in
order to test the quality of the current regional gridded data sets (WorldClim 2.1, CHIRPS
and TERRACLIMATE); (4) the lack of integration of data-informed management practices
relevant to the study region; and lastly, (5) the lack of formal integration of remotely sensed
products to assist in unbalanced observations for soil and climate data sets and to provide
more crop-relevant data.

5. Conclusions

Our main findings were that (i) from the soils perspective, delineating five homoge-
neous areas with cluster analysis for the soil dataset accounted for roughly 73% of the
variation in the spatial scale, with most relevant variables as Ctot, Ntot, CEC, EC, pH, and
P; (ii) from a climate perspective, the clustering analysis revealed three climate areas, with
the temporal scale portraying August and September as the months with water-positive
balance, except for the northern region, and (iii) from the crop suitability standpoint, this
study provides insights into the established soil and climate zones and the planted area of
the most relevant summer crops in the region. To our knowledge, no previous studies were
performed with such a large database of soil samples (825), as field ground-based data are
often limited. The use of soil data and climate data allowed the characterization of different
areas with contrasting soil and climate patterns in Senegal. These results will be critical
for developing strategic planning for future land capability (and land use) classifications
and identifying suitability maps for key technologies that can enhance crop productivity,
sustainability, and resilience of agro-ecosystems.
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Future studies can benefit by including more relevant agronomic (e.g., crop pro-
ductivity, irrigation practices, and nutrient management), socio-economic (e.g., access
to inputs, markets, credit, and land holding) and cultural (e.g., gender, knowledge, and
social capital) data from the smallholder farmers in the region to provide a foundational
environmental classification relevant to the decision-making process, adoption, and scaling
of technologies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su132111739/s1, Figure S1A,B: Percentage of inertia explained by soil and climate data, Figure
S2: Temporal pattern of average temperature and cumulative rainfall among months and soil zones,
Table S1: Values of loadings of each variable in the soil data as results of PCA, Table S2: Values of
loadings of each variable in the climate data as results of PCA.
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43. Mandić-Rajčević, S.; Colosio, C. Methods for the identification of outliers and their influence on exposure assessment in

agricultural pesticide applicators: A proposed approach and validation using biological monitoring. Toxics 2019, 7, 37. [CrossRef]
44. Micó, C.; Peris, M.; Recatalá, L.; Sánchez, J. Baseline values for heavy metals in agricultural soils in an European Mediterranean

region. Sci. Total Environ. 2007, 378, 13–17. [CrossRef] [PubMed]
45. Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [CrossRef]
46. Fu, W.; Zhao, K.; Zhang, C.; Wu, J.; Tunney, H. Outlier identification of soil phosphorus and its implication for spatial structure

modeling. Precis. Agric. 2016, 17, 121–135. [CrossRef]
47. Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precis. Agric.

2019, 20, 1030–1044. [CrossRef]
48. Bennett, R.J.; Haining, R.P.; Griffith, D.A. The problem of missing data on spatial surfaces. Ann. Assoc. Am. Geogr. 1984, 74,

138–156. [CrossRef]
49. Anselin, L.; Koschinsky, J. Rate transformations and smoothing. Urbana 2006, 51, 61801.
50. Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37,

4302–4315. [CrossRef]
51. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al.

The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015,
2, 150066. [CrossRef] [PubMed]

52. Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate
and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [CrossRef]

53. Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat.
Sci. 2009, 19, 1665–1674. [CrossRef]

54. Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697.
[CrossRef] [PubMed]

55. Bhatt, R.; Hossain, A. Concept and consequence of evapotranspiration for sustainable crop production in the era of climate
change. Adv. Evapotranspir. Methods Appl. 2019, 1. [CrossRef]

56. Onyutha, C. Trends and variability of temperature and evaporation over the african continent: Relationships with precipitation.
Atmosfera 2021, 34, 267–287. [CrossRef]

57. Wu, Q. Geemap: A python package for interactive mapping with google earth engine. J. Open Source Softw. 2020, 5, 2305.
[CrossRef]

58. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google earth engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

59. Hijmans, R.J.; van Etten, J. Raster: Geographic Data Analysis and Modeling; R Core Team: Vienna, Austria, 2012.
60. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020.
61. Donoho, D.L. The curses and blessings of dimensionality. Am. Math. Soc. Lect. Chall. 2000, 32, 1–33.
62. Westfall, P.H.; Arias, A.L.; Fulton, L.V. Teaching principal components using correlations. Multivar. Behav. Res. 2017, 52, 648–660.

[CrossRef] [PubMed]
63. Demšar, U.; Harris, P.; Brunsdon, C.; Fotheringham, A.S.; McLoone, S. Principal component analysis on spatial data: An overview.

Ann. Assoc. Am. Geogr. 2013, 103, 106–128. [CrossRef]
64. Dray, S.; Saïd, S.; Débias, F. Spatial ordination of vegetation data using a generalization of Wartenberg’s multivariate spatial

correlation. J. Veg. Sci. 2008, 19, 45–56. [CrossRef]
65. Wartenberg, D. Multivariate spatial correlation: A method for exploratory geographical analysis. Geogr. Anal. 1985, 17, 263–283.

[CrossRef]
66. Giannini Kurina, F.; Hang, S.; Cordoba, M.A.; Negro, G.J.; Balzarini, M.G. Enhancing edaphoclimatic zoning by adding

multivariate spatial statistics to regional data. Geoderma 2018, 310, 170–177. [CrossRef]
67. Gavioli, A.; Souza, E.G.; Bazzi, C.L.; Betzek, N.M.; Schenatto, K.; Beneduzzi, H. Delineation of site-specific management zones

using spatial principal components and cluster analysis. In Proceedings of the 13th International Conference on Precision
Agriculture, St. Louis, MO, USA, 31 July–4 August 2016; pp. 1–11.

68. Ohana-Levi, N.; Bahat, I.; Peeters, A.; Shtein, A.; Netzer, Y.; Cohen, Y.; Ben-Gal, A. A weighted multivariate spatial clustering
model to determine irrigation management zones. Comput. Electron. Agric. 2019, 162, 719–731. [CrossRef]

69. Córdoba, M.; Paccioretti, P.; Giannini Kurina, F.; Bruno, C.; Balzarini, M. Guía Para el Análisis de Datos Espaciales en Agricultura;
Serie Estadística Aplicada; Repositorio Institucional CONICET Digital: Godoy Cruz, Argentina, 2019; ISBN 9789877602722.

70. Córdoba, M. Herramientas Estadisticas Para El Monitoreo y Uso de La Variabilidad Espacial Del Rendimiento y Propiedades Del
Suelos Intralote. PhD Thesis, Universidad Nacional de Cordoba, Cordoba, Argentina, 2014.

71. Chessel, D.; Dufour, A.B.; Thioulouse, J. The Ade4 package-I: One-table methods. R News 2004, 4, 5–10.
72. Diggle, P.J.; Tawn, J.A.; Moyeed, R.A. Model-Based Geostatistics; Lancaster University and Johns Hopkins University School of

Public Health: Lancaster, UK, 1998; Volume 47, ISBN 9780387329079.

http://doi.org/10.1016/j.biosystemseng.2015.12.008
http://doi.org/10.3390/toxics7030037
http://doi.org/10.1016/j.scitotenv.2007.01.010
http://www.ncbi.nlm.nih.gov/pubmed/17306340
http://doi.org/10.1111/j.1538-4632.1995.tb00338.x
http://doi.org/10.1007/s11119-015-9411-z
http://doi.org/10.1007/s11119-018-09632-8
http://doi.org/10.1111/j.1467-8306.1984.tb01440.x
http://doi.org/10.1002/joc.5086
http://doi.org/10.1038/sdata.2015.66
http://www.ncbi.nlm.nih.gov/pubmed/26646728
http://doi.org/10.1038/sdata.2017.191
http://doi.org/10.1016/j.pnsc.2009.08.001
http://doi.org/10.1104/pp.112.208298
http://www.ncbi.nlm.nih.gov/pubmed/23054565
http://doi.org/10.5772/intechopen.83707
http://doi.org/10.20937/ATM.52788
http://doi.org/10.21105/joss.02305
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1080/00273171.2017.1340824
http://www.ncbi.nlm.nih.gov/pubmed/28715259
http://doi.org/10.1080/00045608.2012.689236
http://doi.org/10.3170/2007-8-18312
http://doi.org/10.1111/j.1538-4632.1985.tb00849.x
http://doi.org/10.1016/j.geoderma.2017.09.011
http://doi.org/10.1016/j.compag.2019.05.012


Sustainability 2021, 13, 11739 17 of 17

73. Bivand, R.S.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013.
74. Bezdek, J.; Coray, C.; Gunderson, R. Detection and charactdrization of cluster substructure I. linear structure: Fuzzy c-lines. 1981,

40, 339–357.
75. Jérémy, G.; Apparicio, P. Apport de la classification floue c-means spatiale en géographie: Essai de taxinomie socio-résidentielle

et environnementale à Lyon. Cybergeo 2021. [CrossRef]
76. Oliver, M.A.; Webster, R. A geostatistical basis for spatial weighting in multivariate classification. Math. Geol. 1989, 21, 15–35.

[CrossRef]
77. Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Soil pattern recognition with fuzzy-c-means: Application to classification and

soil-landform interrelationships. Soil Sci. Soc. Am. J. 1992, 56, 505–516. [CrossRef]
78. Zimback, C.R.L. Análise Espacial de Atributos Químicos de Solos Para Fins de Mapeamento Da Fertilidade Do Solo. PhD Thesis,

Universidade Estadual Paulista, Botucatu, Brazil, 2001.
79. Dolferus, R. To grow or not to grow: A stressful decision for plants. Plant Sci. 2014, 229, 247–261. [CrossRef] [PubMed]
80. FAO. Harmonized World Soil Database Version 1.1.; FAO: Rome, Italy, 2009; Volume 43.
81. Hengl, T.; De Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.;
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