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Abstract: The tremendous progress made in the field of deep learning allows us to accurately predict
precipitation and avoid major and long-term disruptions to the entire socio-economic system caused
by floods. This paper presents an LSTM–CP combined model formed by the Long Short-Term
Memory (LSTM) network and Chebyshev polynomial (CP) as applied to the precipitation forecast
of Yibin City. Firstly, the data are fed into the LSTM network to extract the time-series features.
Then, the sequence features obtained are input into the BP (Back Propagation) neural network with
CP as the excitation function. Finally, the prediction results are obtained. By theoretical analysis
and experimental comparison, the LSTM–CP combined model proposed in this paper has fewer
parameters, shorter running time, and relatively smaller prediction error than the LSTM network.
Meanwhile, compared with the SVR model, ARIMA model, and MLP model, the prediction accuracy
of the LSTM–CP combination model is significantly improved, which can aid relevant departments
in making disaster response measures in advance to reduce disaster losses and promote sustainable
development by providing them data support.

Keywords: precipitation forecast; long short-term memory network; Chebyshev polynomial; BP
neural network

1. Introduction

Disasters caused by natural hazards can often lead to significant and long-lasting
disruptions of the whole socioeconomic system. One catastrophic event, such as a flood,
can destroy multi-infrastructure systems, lead to cascading failures and substantial socioe-
conomic damages, and hinder development. A large amount of precipitation will directly
lead to floods and waterlogging disasters and make crops impossible to harvest, as well as
easily cause secondary disasters [1], such as collapses, landslides, mudslides, and water-
logging. The causes of precipitation are highly complex [2–4] due to the comprehensive
influence of monsoons, topography, urban distribution, temperature, and evaporation,
leading to more difficulties in predicting precipitation. In addition, rainfall also has some
fixed characteristics, and its influencing factors, such as terrain, urban distribution, and
temperature, will not change greatly in a short time. Precipitation also shows a high degree
of regularity.

With the continuous progress of technology, artificial intelligence (AI) has become
an important driving force in various fields, including sustainable development. Deep
learning can improve the ability to deal with complex problems and help us increase
our understanding of variables and sources that affect rainfall. At present, there is a
myriad of existing studies on precipitation prediction, among which forecasts based on
regression analysis and forecasts based on time series are two classic forecasting approaches.

Sustainability 2021, 13, 11596. https://doi.org/10.3390/su132111596 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-0322-9017
https://doi.org/10.3390/su132111596
https://doi.org/10.3390/su132111596
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132111596
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132111596?type=check_update&version=3


Sustainability 2021, 13, 11596 2 of 24

Forecasts based on regression analysis mainly include autoregressive models, moving
average models, autoregressive moving average models, and differential autoregressive
moving average models [5]. Prediction methods based on time series can be mainly
divided into grey systems [6], Markov models [7], and set pair analysis [8]. These methods
are simple and widely used, but the accuracy of precipitation prediction is low, which
cannot accurately describe the trend of precipitation development and change. With the
rapid improvement of computer computing power and the development of big data [9],
deep learning technology has become more and more widely used in recent years [10].
For one thing, deep learning is highly suitable for processing multi-dimensional and
complex data, with no requirement for the physical modeling [11] of data; for another,
deep learning has multiple levels, where low-level features are combined to form more
abstract high-level features, and nonlinear network structure can achieve complex function
approximation, showing powerful dataset representation capabilities. Therefore, using
deep learning technology to predict precipitation has become a very practical value and
challenging problem.

Among numerous deep learning technologies, BP and LSTM are two widely used
deep learning neural networks [12,13]. The neural network has been put to work in many
ways, including fitting, classification, and pattern recognition, since the BP algorithm was
proposed [14]. For example, Ferreira et al. [15] evaluated the potential of deep learning and
traditional machine learning models to predict daily reference evapotranspiration (seven
days). The results show that the performance of the deep learning model is slightly better
than that of the machine learning model. Granata et al. [16] established three models based
on a recurrent neural network to predict short-term future actual evapotranspiration. The
results show that the model based on deep learning can predict the actual evapotranspira-
tion very accurately, but the performance of the model will be significantly affected by the
local climate conditions. There is a myriad of improvements in BP neural networks made by
researchers, one of which is to change the excitation function of the BP neural network. For
example, Zhang et al. [17] took the sine function as the excitation function of the BP neural
network. CP is a set of orthogonal polynomials that is often used for function approxima-
tion. Previous studies have shown that orthogonal polynomials perform better in fitting
functions, and in comparison to ordinary polynomials [18–20], orthogonal polynomials
have better fitting stability and fitting ability. CP already has a wide range of applications
in neural networks. Zhang et al. [21,22] proposed a variety of neural network structures for
classification, achieved by applying CP in a feedforward neural network and combing with
the direct weight determination method, as well as the cross-validation method. Based on
Zhang’s research, Jin et al. [23,24] further improved the research as applied to wine region
classification and breast cancer classification, respectively, and achieved good classification
results. Unlike the BP neural network, the recurrent neural network (RNN) is a network
dedicated to processing sequence data. The original RNN has poor processing capacity
for sequence data due to its limited memory capacity, such that many improvements have
been made on RNN by researchers. LSTM [25] is the most widely used network among
many variants of RNN, with its ability to effectively alleviate the disadvantages of RNN,
such as gradient disappearance and weak memory ability, making RNN widely applied in
various fields. For example, Kratzert et al. [26] explored the potential of using a long-term
and short-term memory network (LSTM) to simulate meteorological observation runoff,
and verified by practice that its prediction accuracy is comparable to that of the perfect
baseline hydrological model. Xiang et al. [27] used the prediction model based on LSTM
and seq2seq structure to predict hourly rainfall runoff. The results show that the prediction
accuracy of the LSTM-seq2seq model is higher than that of other models such as ordinary
LSTM. This method is used to improve the accuracy of short-term flood prediction.

At present, researchers have applied the above two kinds of neural networks to the
prediction of precipitation. The prediction approach of the neural network can effectively
extract the random characteristics of a nonlinear sequence, which achieves a high predic-
tion precision and has good research and application value. For example, according to the
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meteorological data of Jingdezhen from 2008 to 2018, J. Kang et al. used the long-term and
short-term memory neural network (LSTM) model to predict precipitation. The experimen-
tal results show that the LSTM model can be well applied to precipitation prediction [28]. Y.
Zhou [29] used an improved BP neural network model to predict typhoon precipitation and
typhoon precipitation events. By analyzing the difference in candidate predictors between
normal years and years with a large prediction error, this method proposed a new predictor
for the BP model in each iteration, and the precipitation prediction accuracy was better than
that of the original BP neural network. In addition to predicting precipitation through deep
learning methods, precipitation can also be predicted through satellite cloud images and
radar detection. For example, Zahraei et al. [30] introduced a pixel algorithm for short-term
quantitative precipitation forecasting (SQPF) using radar rainfall data, and proposed a
pixel-based nowcasting (PBN) algorithm, which uses a hierarchical grid tracking algorithm.
The image captures the high-resolution advection of storms in space and time. The results
show that the proposed algorithm can effectively track and predict severe storm events
in the next few hours. Bowler et al. [31] proposed a new Gandalf system precipitation
prediction scheme based on advection. The method does not need to divide the radar
analysis into continuous rain areas (CRA) and uses smoothing constraints to diagnose the
block advection velocity in rainfall analysis by using the idea of optical flow. This scheme
is compared with the old Gandolf advection scheme based on CRA, and the new scheme
performs better in cases related to severe floods and in a continuous validation period of
3 months. Pham et al. [32] compared several advanced artificial intelligence (AI) models for
predicting daily precipitation, and the results showed that support vector machine is the
best method for predicting precipitation, and it was also found to be the most robust and
effective prediction model. Banadkooki et al. [33] applied the flow pattern optimization
algorithm (FRA) to the optimization of the multilayer perceptron neural network (MLP)
and support vector regression (SVR), and established the precipitation prediction model.
The results show that the performance of the proposed MLP-FRA model is better than
all other models and has a stronger rainfall prediction ability. Wang et al. [34] combined
satellite and radar observation data, and through proper orthogonal decomposition and
assimilation of the data, the effect of precipitation forecasting was improved.

There have been many studies on precipitation prediction from the perspective of
relevant studies at home and abroad, and an excellent application of LSTM in the prediction
of sequence data has been achieved. However, the LSTM network structure is more
complicated, and the number of network unit parameters is relatively large. A slight
increase in the network depth will lead to a rapid increase in the number of parameters.
The huge amount of parameters increases the difficulty of calculation. For medium and
large datasets, higher performance equipment is required to perform calculations [35]. In
addition, although the LSTM network overcomes the problem of gradient disappearance
to a certain extent, the memory function of the LSTM network still depends on the long
sequence. When the sequence is too long, the problem of gradient disappearance may
still occur, which greatly affects the performance of LSTM [36], and the gradient vanishing
problem has not been completely solved. At the same time, the LSTM network training
model is more complicated and the training time is longer [37].

Given the above situation, this paper proposes to combine the Long Short-Term
Memory (LSTM) [38] network and the Chebyshev polynomial (CP) [39], aiming to form an
LSTM–CP combined model for rainfall prediction. From a theoretical point of view, this
model combines CP and LSTM networks for the first time. Firstly, the LSTM network is
used to extract the time-series features in the original data. Then, the BP (Back Propagation)
neural network [40] with CP as the activation function is used to process the time-series
features. This approach can effectively reduce the number of parameters, with the premise
of ensuring accuracy, and has stronger characterization capabilities for sequence data,
which provides a new idea for researchers in the field of neural networks. In the prediction
of rainfall using a machine learning algorithm, the ARIMA model has low accuracy in
predicting non-stationary or fluctuating time series [41]. The number of parameters in
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the SVR model is usually very large [42]. The MLP network needs a large number of
patterns and iterations to realize effective learning so it needs more execution time [43].
Compared with these classical machine learning algorithms, the LSTM–CP combined
model proposed in this paper has higher accuracy, fewer parameters, and faster operation
speed in the prediction of precipitation. The prediction results of the model in monthly
units are relatively accurate, basically reflecting the changing trend of precipitation. It is
helpful to provide a data reference for areas prone to floods and drought disasters, as well
as help relevant departments to prepare in advance, reducing local economic losses. The
model is capable of shortening the running time more effectively when dealing with large
and medium-sized datasets as it can effectively reduce the use of parameters, making the
process of sequence data more efficient.

This article is structured as follows: Introduction, where the importance and necessity
of accurate precipitation forecasts are addressed and the existing precipitation forecasting
methods and the existing problems are listed. The method section gives a detailed intro-
duction to the related models and theoretical methods used, and compares and analyzes
the parameters of different models. In the experimental evaluation section, the prediction
models of LSTM, LSTM–BP, and LSTM–CP are constructed, respectively, and the param-
eter setting process of the LSTM–CP combined model is elaborated. The experimental
results show that, compared with the ordinary LSTM neural network model, the LSTM–
CP combined model proposed in this paper has fewer parameters, shorter running time,
and relatively smaller prediction error than the LSTM network. At the same time, this
paper also compares the LSTM–CP combined model with the traditional rainfall prediction
SVR model, ARIMA model, and MLP model, finding that the prediction accuracy of the
LSTM–CP combined model is significantly improved. Finally, the discussion of results and
conclusions is presented, showing the ability to predict precipitation through the LSTM–CP
combination model.

2. Materials and Methods
2.1. LSTM–CP Combined Model Framework

The LSTM network has inherent advantages in processing sequential data on account of
its powerful memory [44–46]. In this paper, the LSTM network is used as the basic network of
sequence data prediction, with the BP neural network combined to use its excellent function
fitting ability. We can obtain an LSTM–CP combination model by using CP to improve BP
neural networks. CP and LSTM networks are combined for the first time in this model, where
the LSTM network is first used to extract the time-series features in the original data. Then,
the BP (Back Propagation) neural network of CP as the activation function is used to process
the time-series features, with the specific process shown in Figure 1.

Figure 1. Combined model framework.
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2.2. Feature Extraction Based on LSTM Network

Because the LSTM network has a strong memory capacity, it has a natural advantage
in processing sequence data. This article employs the LSTM network as the basic network
for sequence data prediction. In practical applications, RNN has been able to process
some simple correlation information while its memory capacity is not strong. When the
sequence is too long, error back propagation will cause larger gradient dispersion and
gradient explosion problems, which can be effectively alleviated by introducing a “gate”
mechanism [47,48] and memory unit [25,49] in the LSTM network.

2.2.1. Basic Idea

Only two factors, the current round of input xt and the last round of output ht−1,
affect the traditional RNN network unit. Since there is only one tanh excitation unit in the
network, the network output is:

ht = tanh(Wt[ht−1, xt] + bt) (1)

Therefore, RNN is sensitive to short-term input, making it difficult to solve the long
sequence problem, as shown in Figure 2.

Figure 2. RNN network structure.

The LSTM network introduces a unit state and “gate” mechanism, which enhances the
network’s ability to remember long-term information, as shown in Figure 3. The current
cell state Ct consists of the previous cell state Ct−1, the previous cell output ht−1, as well as
the current input xt. The forget gate and input gate process the output ht−1 of the previous
round and the input xt of the current unit, and then combine with the current unit state Ct
to form the output ht of the current round through the output gate.
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It can be seen from Figure 3 that the unit state C, which runs through the whole
LSTM network, constantly transfers information from the previous layer to the next layer,
realizing the long-term memory retention function. In the LSTM network, there are three
gate switches: input gate, forgetting gate, and output gate, through which the LSTM
network can determine whether the current output depends on the early output, recent
output, or current input.

2.2.2. Forgetting Gate

The first problem that the LSTM network solves is to determine the information that
can pass through the current neuron, which is determined by the forgetting gate in LSTM.
In the forgetting gate, the output ht−1 at the previous moment is dot multiplied with the
input xt at the current moment, and then the output ft at this moment inside the neuron is
obtained through the Sigmoid function [50], which is:

ft = σ
(

W f [ht−1, xt] + b f

)
(2)

where W f represents the weight matrix and b f represents the bias term.

2.2.3. Input Gate and Unit Status

After confirming the reserved information, LSTM needs to determine how much of
the current input needs to be stored in the cell state, with this function implemented by the
input gate in LSTM. In the input gate, the current input xt together with the previous round
of output ht−1 are point multiplied and then passed through the function of Sigmoid, with
the purpose to determine which inputs are updated; the current input xt and the previous
round of output ht−1 are subjected to a dot product operation and then passed through the
tanh function, aiming to form alternative update information.

it = σ(Wi[ht−1, xt] + bi). (3)

Ct = tanh(WC[ht−1, xt] + bC). (4)

where Wi and WC are the weight matrix, respectively, and bi and bC are the bias items,
respectively. The current cell state Ct is starting to be updated after obtaining the results of
the forgetting gate and the input gate. The output ft of the current time in the neuron is
point multiplied with the result Ct−1 of the previous round of the memory unit, while at
the same time the two internal update information points it and C̃t perform the dot product
operation, and finally the new unit state is obtained by adding them together.

Ct = ft ∗ Ct−1 + it ∗ Ct. (5)

2.2.4. Output Gate

For LSTM, it is necessary to determine how to output the current information when
the unit state is determined, and with this function determined by the output gate, the unit
output is jointly determined by xt, ht−1, and Ct. ot is obtained through the function of the
Sigmoid function after xt and st−1 are dot multiplied with Ct, which passes through the
tanh function dot multiplied by ot, and finally output st is obtained:

ot = σ(Wo[st−1, xt] + bo). (6)

st = ot ∗ tanh(Ct). (7)

where Wo is the weight matrix and bo is the offset term.
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2.3. Convert Sequence Features into Target Output
2.3.1. CP Combined with BP Neural Network

The Chebyshev polynomial is an important special function named after the famous
Russian mathematician Tschebyscheff. It originates from the cosine function of multiple an-
gles and the expansion of the cosine function. It is divided into the first kind of Chebyshev
polynomial and the second kind of Chebyshev polynomial. Chebyshev polynomials used
in this paper belong to the first category. Chebyshev polynomials play a very important
role in approximate calculation in mathematics, physics, and technical science, such as the
injection continuous function approximation problem, impedance transformation problem,
and so on. The roots of the first kind of Chebyshev polynomials (called Chebyshev nodes)
can be used for polynomial interpolation. The corresponding interpolation polynomials
can minimize the Runge phenomenon and provide the best uniform approximation of
polynomials in continuous functions. In practical application, it is often necessary to solve
a known complex function f (x), and in order to simplify the calculation, it is usually
necessary to find a function Qn(x) to minimize the error between the two in a certain
metric sense. In the Chebyshev best uniform approximation theory, the function Qn(x)
is a Chebyshev polynomial and it satisfies that the difference between and in an interval
[a, b] is the smallest of all polynomials Qn(x) and f (x) in the interval, as shown in the
following formula:

max
a≤x≤b

|Qn(x)− f (x)| = min

∣∣∣∣∣max

∣∣∣∣∣Q(x)
a≤x≤b

− f (x)

∣∣∣∣∣
∣∣∣∣∣ (8)

The function approximation theory of Chebyshev polynomials shows that such poly-
nomials Qn(x) exist and are unique: let Dx = max

a≤x≤b
|Qn(x)− f (x)|, Dx has at least n + 2

interleaving points [x1 · · · xn+2](a ≤ x1 < · · · < xn+2 ≤ b) on [a, b], so that D(xi) = ±Dn,
among them, i ∈ [1 , n + 2], Qn(x) is the best uniform approximation of f (x).

Chebyshev polynomials are a series of orthogonal polynomials [51], which can approx-
imate any continuous function. Neural networks based on CP have excellent capabilities in
fitting as well as generalization. The Chebyshev polynomial is defined in a recursive man-
ner, where CP can be expressed by the following recursive expression when the variable
has a value range between −1 and 1, for an n-th order CP:

T0(x) = 1, (9)

T1(x) = x, (10)

Tn+1(x) = 2xTn(x)− Tn−1(x). (11)

According to the theory of orthogonal polynomial approximation, a set of Chebyshev
polynomials can approach any objective function, when the variables belong to −1 to 1
and the number of polynomials R is large enough. As follows:

f (x) ≈
R

∑
r=0

wrTr(x). (12)

where R is the number of Chebyshev polynomials used to fit f (x), Tr(x) represents the r-th
polynomial, and wr represents the weight of the r-th polynomial.

It can be seen from Equation (12) that the objective function f (x) is obtained by the
weighted sum of R CPs. To express this more intuitively, this paper adopts the method of
lexicographical sorting to express Chebyshev polynomials, and sorts them according to the
order of each polynomial. Given two different basis functions ϕq(x) = µi1(x1) . . . µiN (xN)
and ϕq̂(x) = µj1(x1) . . . µjN (xN) in the condition of q 6= q̂. Let Q = [i1, i2, . . . , iN ], |Q| =
[i1 + i2 + . . . iN ], Q̂ =

[
î1, î2, . . . , îN

]
, and

∣∣Q̂∣∣ = [î1 + î2 + . . . îN
]
, q > q̂ is established when

any of the following conditions are met:
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Condition 1: |Q| >
∣∣Q̂∣∣;

Condition 2: |Q| =
∣∣Q̂∣∣, and the first non-0 element of Q− Q̂ =

[
i1 − î1, i2 − î2, . . . iN − îN

]
is positive.

The BP neural network usually consists of a myriad of layers, including one input
layer, several hidden layers, and one output layer. It has already been proved that the BP
neural network, with a single hidden layer, can approach any continuous function in the
closed interval with arbitrary precision [52]. The BP neural network of a single hidden
layer is combined with the LSTM network in this paper, and the topology diagram of the
common single hidden layer BP neural network is shown in Figure 4.

Figure 4. The topology of BP neural network.

In this network, where the input is x1 . . . xN , the actual output is o1 . . . ok and the target
output is y1 . . . yk, each neuron in the input layer is fully connected with each neuron in the
hidden layer, and each neuron in the hidden layer is fully connected with each neuron in
the output layer. The weight between the i-th neuron in the input layer and the j-th neuron
in the hidden layer is represented by wij, and the bias term is aj. The weight between the
j-th neuron in the hidden layer and the k-th neuron in the output layer is represented by
vjk, and the bias term is represented by aj. The learning process of the BP neural network
includes two steps, where the first step is the forward spread of information and the second
step is the error back propagation. In the stage of the forward spread of information,
information is transmitted forward, and the data are transferred from the input layer to
the output layer through a weighted sum, with each neuron in the hidden layer and the
output layer that can be, respectively, expressed as:

f
(
zj
)
= f

(
I

∑
i=1

wijxi − aj

)
, (13)

ok = f

(
J

∑
j=1

vjk f
(
zj
)
− βk

)
. (14)

For the error back propagation stage, by computing the error and gradually correcting
the weight and bias value through the gradient descent approach, the error and weight
adjustment can be expressed as:

E =
1
2

K

∑
k=1

(ok − yk), (15)

vjk = vjk − η
∂E

∂ f
(
zj
) , (16)



Sustainability 2021, 13, 11596 9 of 24

vij = vij − η
∂E

∂ f
(
zj
) × ∂ f

(
zj
)

∂xi
. (17)

The “learning” process of the BP neural network is to gradually correct the weight
and bias value according to the input data until the accuracy is satisfied or the maximum
number of iterations is reached.

Hecht-Nielsen [52] has proved that a feedforward neural network with three layers can
approximate any nonlinear continuous function in a closed interval with arbitrary precision.
However, BP neural networks have some inherent shortcomings, such as slow convergence,
ease of falling into a local minimum, and ease of falling into a saddle point, etc. The
excitation function adopted by the traditional BP neural network is usually sigmoid, tanh,
and ReLU, while this paper employs a set of linear independent orthogonal polynomials,
which are Chebyshev polynomials instead of Sigmoid function, as the excitation function,
as shown in Figure 5.
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A large amount of literature [17–19] has verified that using Chebyshev polynomials as
the excitation function can effectively optimize the BP neural network. In the experiment of
this paper, in contrast to networks and LSTM networks that use Sigmoid as the excitation
function, the error of the network using CP as the excitation function declines faster and
more steadily, and the prediction accuracy is also higher at the same time.

2.3.2. LSTM Combined with BP Neural Network

RNN is a typical feedback neural network whose network structure takes the time
dimension into account, which can achieve excellent performance in processing data with
timing laws. The structure of a single-layer RNN is shown in Figure 2, where each unit will
receive the output of the previous unit and the input of this unit, and then the output can
be given. Because the longer RNN is accompanied by the problems of gradient explosion
and gradient disappearance, it has a limited memory capacity, which makes it unable to
deal with long sequence data. In the actual operation of the LSTM network, the data need
feeding into a linear layer to change the data dimension after passing through the LSTM
network. This linear layer will transform the output of the LSTM network into a target
output. Adopting the BP neural network to replace the linear layer of the LSTM network is
considered in this paper, as shown in Figure 6.
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Firstly, the LSTM network is employed to process the original data, with the purpose
to extract the time-series features of the data, and then the characteristic data are fed into
the BP neural network with CP as the excitation function. In this way, the prediction ability
of LSTM for sequence data and the function fitting ability of the BP neural network are
used at the same time. This can effectively overcome the shortcomings of the BP neural
network, such as slow convergence and ease of falling into a local minimum and local
saddle point, through changing the excitation function of the BP neural network to CP.

2.4. Parameter Analysis/Complexity Analysis

The parameters of the LSTM–CP combined model consist of two parts: one is the
parameters of the LSTM network and the other is the parameters of the BP neural network.
Jin et al. [24] have proved that, for a fully connected feedforward neural network, the
computational complexity of CP as an excitation function is lower than that of a Sigmoid.
Therefore, this paper only focuses on the parameters of LSTM that combined with the BP
neural network with CP as the excitation function.
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The LSTM network has a total of three “gates” and a unit state, where each of the
three gates generates some parameters. In contrast, the unit state does not generate any
new parameters, and some parameters are also generated in the BP neural network. The
number of parameters of different networks will be analyzed next according to the network
operation flow chart in Figure 6.

For the forget gate, ht−1 is the output at the previous moment and the length is m; xt
is the input at the current moment and the length is n; W f represents the weight matrix and
the matrix size is [m + n, m]; and b f represents the offset term and the length is m. For the
input gate, ht−1 is the output at the previous moment and the length is m; xt is the input at
the current moment and the length is n; Wi and WC are the weight matrices, whose matrix
sizes are both [m + n, m]; and bi and bC are, respectively, offset terms and the length is m.
For the output gate, ht−1 is the output at the previous moment and the length is m; xt is the
input at the current moment and the length is n; Wo is the weight matrix and the matrix
size is [m + n, m]; and bo is the bias term and the length is m. For the memory unit, it only
performs a dot multiplication operation between the current output ft in the neuron and
the last round of memory unit result Ct−1, and the two internal update information points
it and C̃t perform the dot multiplication operation, with no new parameters generated.
Therefore, the parameters of the forget gate, input gate, and output gate are, respectively:

s1 = (m + n) ∗m + m, (18)

s2 = 2 ∗ ((m + n) ∗m + m), (19)

s3 = (m + n) ∗m + m. (20)

When the number of LSTM network layers is Q, the total parameter quantity of the
LSTM network is determined by the number of network layers, as well as the number of
parameters of the three “gates”, and the total parameter quantity of the LSTM network is:

s = Q1 ∗ 4 ∗ ((m + n) ∗m + m). (21)

In each round of parameter training, the parameters of the LSTM network and BP
neural network will be updated at the same time, and the input of the BP neural network
is determined by the LSTM network output. According to the above analysis, for the BP
neural network, the input is ht and the length is m. Let the number of neurons in the BP
network be R, the output be ht, and the length be m. The LSTM–BP combined model in this
paper adopts the BP neural network to replace the linear layer of the LSTM network, with
CP as the excitation function of the BP neural network, and each neuron is fully connected
to the output, as shown in Figure 5. Then, the number of parameters of the BP neural
network is:

s4 = m ∗ R + m ∗ R = 2mR. (22)

The number of parameters in the LSTM–CP combination model is:

S = s + s4 = Q2 ∗ 4 ∗ ((m + n) ∗m + m) + 2mR. (23)

In summary, the parameters of each network are listed in Table 1.
This paper studies the precipitation data of 784 months in Yibin City from 1951 to

2017. The precipitation data of 1971 are ignored due to the missing data from January to
June in 1971. In each round, 90% of the data are selected for training, and then the length
is n = 703. The experiment of Section 3.1 shows that in LSTM the length of ht is m = 16
and the number of LSTM network layers is Q1 = 2, and in LSTM–CP the number of LSTM
network layers is Q2 = 1, the length of ht is m = 32, and the number of BP neural network
neurons is R = 6. The various parts and overall parameters of the network used in this
article are shown in Table 2.
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Table 1. Network parameter quantity function.

Structure Parameter Quantity

forgetting gate s1 = (m + n) ∗m + m
input gate s2 = 2 ∗ ((m + n) ∗m + m)

output gate s3 = (m + n) ∗m + m
memory unit 0

LSTM s = Q1 ∗ 4 ∗ ((m + n) ∗m + m)
CP s4 = 2mR

LSTM–CP S = Q2 ∗ 4 ∗ ((m + n) ∗m + m) + 2mR

Table 2. Network parameters.

Structure Parameter

forgetting gate s1 = 11, 520
input gate s2 = 23, 040

output gate s3 = 11, 520
LSTM s = 92, 160

CP s4 = 384
LSTM–CP S = 46, 464

The derivative of the function f (x) at x0 represents the slope of y = f (x) at x0, that
is, the rate of change of f (x) at x0. The larger the derivative, the faster the change, that is,
the faster the function grows. Because a variety of function variables that represent the
parameter quantity occur in this article, drawing seems to be more difficult, such that the
derivative is used for comparing multiple functions, as shown in Table 3.

Table 3. Parameter quantity derivative.

Structure Parametric Function Derivative

LSTM S1′(Q) = 4 ∗ ((m + n) ∗m + m)
LSTM–CP S2′(R) = 2m

As can be seen from Table 3, when m and n are constant, the parameters of the LSTM
network increase in a square form as the number of LSTM network layers Q increases,
while the number of parameters in the BP neural network increases linearly when the
number of neurons in the BP neural network (R) increases. Therefore, the LSTM–CP
combination model can effectively reduce the number of parameters with the use of the
approach presented in this paper.

3. Results

Yibin City is located in the southeastern part of Sichuan Province, China, with an area
of 13,300 square kilometers. The city is located between 103◦36′–105◦20′ east longitude and
27◦50′–29◦16′ north latitude. Yibin is 298.7 km away from Chengdu, the capital of Sichuan
Province in the north, and 583.5 km away from Kunming, the capital of Yunnan Province
in the south, and the brief geographical location is shown in Figure 7. It is an important
city from Sichuan to the middle and lower reaches of the Yangtze River and coastal areas.
The terrain of Yibin City is dominated by hills and middle–low mountains, accounting for
91.9% of the city’s total area. It belongs to a subtropical humid monsoon climate, and the
annual average temperature is about 17.9 ◦C, the average temperature in January is 7.8 ◦C,
and the average temperature in July is 26.8 ◦C. The water system of Yibin City is very
complex and intertwined. The rivers in Yibin City are mainly the Yangtze River, the river
network is dense, and the total water resources and hydropower resources are relatively
abundant. The annual average precipitation is 1050–1618 mm, which is a typical humid
area. The rainy season is concentrated in the summer and autumn. The precipitation in
these two seasons accounts for 81.7% of the annual precipitation. The main flood season is
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mainly July, August, and September. The precipitation in these three months accounts for
about 51% of the annual precipitation.

Figure 7. General location of Yibin City.

To eliminate the adverse effects of single sample data, improve the operation speed
and accuracy as much as possible, and facilitate the operation of the model, it is necessary
to first normalize the precipitation data [50] of Yibin City and map the original data to the
interval [0, 1]:

xnorm
i = (xi − xmin)/(xmax − xmin). (24)

Mapping the input LSTM data to [0, 1] can aid in speeding up the convergence of the
model. The use of CP for function fitting requires that the value of the data is supposed
to be located in the interval [−1, 1], and the output data of LSTM will pass through the
output gate, that is, through Equations (6) and (7), such that the output value of LSTM
must be in the range of interval [−1, 1], meeting the requirements of the value range of the
data fitted by the CP function.

In this paper, the common mean square error [53,54] is selected as the loss function of
the training model, which is also adopted to calculate the validation set error of the model,
and its formula is:

MSE =
1
n

n

∑
i=1

(xi − x̂i)
2

. (25)

The Adam optimizer [55] has a fast convergence speed and can adjust the learning
rate adaptively according to the data distribution, which is why the Adam optimizer is
selected to optimize the error function in this paper. Additionally, Dropout [56] is added to
the network to reduce the influence of over fitting [57,58].

The experimental environment adopted in this paper is as follows: the training
platform is Windows 10 Home 64-bit operating system, the computer memory is 4G,
the processor model is Intel(R) Core(TM) I5-6300HQ CPU @ 2.30ghz, and the graphics
card model is NVIDIA GeFosrce GTX 960M 2G. With Anaconda as the development
environment and Python3.7 as the programming language, the PyTorch 1.2.0 [59] deep
learning framework is used as the development framework, and the Nvidia CUDA 10.0
computing platform is used for accelerated computing.

3.1. LSTM Parameter Setting

When LSTM is used to predict precipitation, network parameters of LSTM should be
determined first. First, the learning rate [60,61] is fixed to 0.01 to determine the remaining
parameters, and then the parameters including the number of LSTM network layers and
the size of the hidden layer in the LSTM network will be changed. For LSTM networks
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with different parameters, take the first NUM minimum errors, and the average prediction
error is shown in Figure 8.
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It is not difficult to see from the error curve in Figure 8 that when layer = 2 and hid-
den_size = 16 of LSTM, loss reaches the minimum. Therefore, layer = 2 and hidden_size = 16
are taken in this paper. Then, test the learning rate, take layer = 2, hidden_size = 16, and
take the learning rate 0.1, 0.05, and 0.01, respectively, for the experiment. As can be seen
from Figure 9, the loss will eventually stabilize at 0.01 when the learning rate is 0.1, but the
error will decrease slowly; when the learning rate is 0.05, the loss will eventually stabilize
around 0.01, but it is not stable; when the learning rate is 0.01, loss quickly drops to 0.01
and remains stable all the time. In summary, this article sets the number of layers of the
LSTM network to 2, the hidden features to 16, and the learning rate to 0.01.
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3.2. LSTM–CP Parameter Setting

At the end of the LSTM network, there will be a linear layer, which can convert the
time-series characteristic data extracted by the LSTM network into the target output [62,63].
The combination of CP and LSTM networks is supposed to use BP neural networks instead
of this linear layer. With the Sigmoid function used as the common excitation function of
the BP neural network, the Sigmoid function and CP function are, respectively, used as ex-
citation functions to carry out comparative experiments in this paper. Figures 8 and 9 show
that when layer = 2 and hidden_size = 16, the LSTM network performs the best. When
layer = 1 and hidden_size = 32, the network is simpler but the model performance is rela-
tively better. Therefore, this paper sets the basic LSTM network layer = 1, hidden_size = 32,
learning_rate = 0.01 in the LSTM–CP combination model.

The next step is to determine the number of neurons in the BP neural network. Zhang
Y proposed a two-stage approach to determine the number of neurons. In the first stage,
the number of neurons is increased to a large extent to determine the approximate value
range of neurons. In the second stage, the number of neurons is increased one by one to
determine the exact value of the number of neurons. This method can effectively determine
the number of neurons in the BP neural network. In order to obtain the approximate
value range of neurons quickly and determine the number of neurons accurately, the initial
number of neurons is set to 5 in the first stage of this paper, with a step size of 5 to increase
neurons. First, Sigmoid is tested as the excitation function, and the prediction error of
the minimum NUM among the error values of different neurons is taken as the average
error curve.

It can be seen from Figure 10 that the error fluctuates as the number of neurons changes.
When the number of neurons is about 70, the error is small, which means that the loss of
the network is relatively small and stable when the number of neurons is about 70, and the
optimal number of neurons is about 70. Therefore, the number of neurons is set from 66 to
74 for the experiment. As can be seen from Figure 11, when the number of neurons is 67, the
prediction error is the smallest, that is, when the Sigmoid function is used as the excitation
function of the BP neural network, the optimal number of neurons is 67.

Then, it is necessary to determine how many neurons should be used as the excitation
function of the BP neural network, and the minimum NUM prediction errors among the
error values of different numbers of neurons are still taken as the average error curve. The
first-order CP transforms all the input into 1, while the second-order CP is actually a linear
function. Since the first-order and second-order CP do not have nonlinear characteristics,
they are not suitable for excitation functions of neural networks, so the CP order is at least
3 in this paper. A good fitting effect can be obtained at a lower order due to CP’s strong
fitting ability, which makes it unnecessary to use the two-stage method to determine the
order of CP, and the order can be increased from 3 to 3. Figure 12 shows the experimental
results of CP with different orders as the excitation function. It is not difficult to see that the
error is low when the CP order is 6. Therefore, this paper sets the CP order of LSTM–CP to
6, that is, the number of neurons in the hidden layer of the BP neural network is 6.
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3.3. Comparative Analysis

The optimal parameters of different networks are given in Section 3.1, while this
section will make a detailed comparative analysis of the performance of each model.
Figure 13 shows the error curves of different models, and Figure 14 shows the prediction
results of different models. It can be easily seen from the error in Figure 13 that the LSTM
network has a stable error of around 0.01 after 100 rounds of training, LSTM–CP has a
stable error of around 0.01 after 100 rounds of training, and LSTM–BP (Sigmoid) also has a
stable error of around 0.01 after 100 rounds of training. The reason for this is that the LSTM
network has a strong ability to process sequence data and can quickly extract sequence
features. We ran each model separately and obtained the prediction results of different
models, as shown in Figure 14. It is not difficult to see from Figure 14 that the prediction
results obtained by all networks are very close to the original data.
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According to Figures 13 and 14, each model has better performance. Listing the
detailed data of each model in Table 4, it is not difficult to see that the training error,
prediction error, and training time of LSTM–CP are less than those of an ordinary LSTM
network. In particular, if the excitation function of the BP neural network is operated on
the CPU, the running time of CP will be shorter than that of Sigmoid. Therefore, using
CP as the excitation function can obtain the lowest training error, the prediction error is
smaller, and the running speed is better than the LSTM network.

Table 4. Comparison of model effects.

Model Training Error Prediction Error Running Speed

LSTM 0.0078 0.0091 4.95
LSTM–BP (Sigmoid) 0.0079 0.0090 3.19

LSTM–CP 0.0076 0.0090 4.62
Note: The running speed is s/100 times.

Next, by using the ARMA linear model, SVR model, and MLP model to predict the
precipitation at the same time, we calculated the evaluation indexes of each model, and
compared the results with the LSTM–CP model proposed in this paper, as shown in Table 5.
It is not difficult to see that, compared with other models, the values of MAE (mean absolute
error), MSE (mean square error), and MAPE (mean percentage error) of the LSTM–CP
network model are smaller than other models, which indicates that the LSTM–CP network
model proposed in this paper has higher consistency and accuracy in rainfall prediction.
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Table 5. Comparison results of prediction models.

Model MAE MSE MAPE

ARMIA 0.0836 0.0120 55.051
SVR 0.0925 0.0172 65.731
MLP 0.1101 0.0191 75.210

LSTM–CP 0.0601 0.0090 53.121
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4. Discussion

Due to the complex and diverse causes of precipitation and the interaction of various
factors [64], it is very difficult to establish a mathematical model [65] of precipitation.
Deep learning can automatically extract the low-level features of data and form abstract
high-level features, without the need for the physical modeling of data, and it can easily
deal with complex data structures because of its strong nonlinear ability [66]. The LSTM
network is often employed to process time-series data. Its strong memory ability makes it
have natural advantages in processing time-series data.

As can be seen from (a) in Figure 14, the precipitation value predicted by the LSTM
neural network model is basically consistent with the real value of precipitation data,
and LSTM can accurately extract the time-series features hidden in precipitation data.
However, the LSTM network has some problems such as complex structure and gradient
disappearance. Therefore, this paper proposes the LSTM–CP combination model by
combining LSTM and CP, which makes full use of LSTM’s ability to predict series data
and CP’s powerful function fitting ability in order to ensure the accuracy of the model,
reduce the parameters of the network, and reduce the complexity of the precipitation
prediction model.

Table 2 shows that using the LSTM–CP combination model can effectively reduce the
number of network parameters. The amount of LSTM network model parameters is 92160,
while the amount of LSTM–CP combination model parameters is only 46464, which greatly
reduces the complexity of the model and is suitable for processing large and medium-sized
datasets. At the same time, Table 4 shows that compared with the single LSTM model
and the traditional precipitation prediction model, the LSTM–CP combined model has a
smaller training error and test error, higher prediction accuracy, and is more suitable for
precipitation prediction research. Because the model can reduce the use of parameters to a
higher degree, it can more effectively reduce the running time when dealing with large
and medium datasets, and make the processing of sequence data more efficient.

Rainfall is affected by the fluctuations of sea and land locations, topography, latitude,
and human factors, but in this study, we ignored these changes. In future research, LSTM–
CP can be applied to the scene with complex and huge data, such as text, music, and
other sequence data processing. In this case, the number of network layers and hidden
layers is larger when LSTM is used alone, and the combination of LSTM and CP can
make the parameters have a larger space to decline, and it is not easy to overfit. In
addition, the derivative function can be determined in advance according to the order of
CP without using the deep learning framework for automatic derivation, which improves
the computational efficiency.

5. Conclusions

Natural disasters often lead to major and long-term damage to the entire socio-
economic system, such as floods, which may damage multiple infrastructure systems,
lead to cascading failures and major socio-economic losses, and hinder development.
Therefore, reducing the risk of precipitation disaster is closely related to sustainable devel-
opment. With the progress of technology in recent years, artificial intelligence has become
the main driver in various fields including sustainable development. Deep learning im-
proves the ability to deal with complexity and increases our understanding of the variables
and sources that affect rainfall. This paper proposed the LSTM–CP model to predict the
precipitation of Yibin City. Firstly, the BP neural network is combined with LSTM to form a
combined model where the LSTM network is used to extract the sequence features of the
precipitation data. Then, the BP neural network is used to process the sequence features to
obtain the target output. Because the traditional BP neural network has the disadvantages
of easily falling into local minimums and saddle points, this article considers using CP as
the excitation function to replace the Sigmoid function in the BP neural network, with the
powerful function fitting ability of CP to process sequence features.
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Through experimental tests and comparative analysis, the LSTM–CP combination
model proposed in this paper has fewer parameters, a shorter running time, and smaller
prediction error than the LSTM network. At the same time, compared with the SVR model,
ARIMA model, and MLP model, the prediction accuracy of the LSTM–CP combined
model is significantly improved, which improves the accuracy of rainfall prediction and
makes the model more applicable. It can reflect the change trend of precipitation and
help provide a data reference in areas prone to floods and drought disasters to help
relevant departments prepare in advance, reduce local economic losses, and better achieve
sustainable development. Furthermore, the rainfall prediction model can be incorporated
into the regional early warning system to help better plan and manage water resources and
reduce the risk of flooding. Finally, the application of artificial intelligence to precipitation
prediction provides new ideas and methods for the current precipitation prediction research,
and opens up a broader space for realizing the goal of sustainable development.
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