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Abstract: This study investigates the effects of concentration of air pollution on assault rates for
204 police districts of South Korea from 2001 to 2018. A series of panel spatial Durbin models
for the concentration of ozone, fine dust, and nitrogen dioxide—three key air pollutants of the
country—identify the significant impacts of air pollution on assault rates that vary from each other.
Ozone is expected to induce more assaults both locally and regionally. Fine dust decreases assault
rates of an area and also in neighboring areas. Nitrogen dioxide yields positive effects on the
surrounding areas’ assault rates but not in area of pollution itself. Findings of this study suggest the
need to incorporate active measures on air pollution and violent crime at both city and inter-city
levels. They also propose the active sharing of information on air pollution and crime between cities
and regions as a collaborative response.
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1. Introduction

Since the advent of fossil fuel-based combustion engines in the 18th century, cities
around the world have enriched themselves through the mass production of goods. How-
ever, small particles generated from the engines’ operation have polluted the earth’s
near-surface atmosphere, putting the natural ecosystem and the human species at great
risk. The Muse Valley fog of Belgium in 1930, the photochemical smog of Los Angeles in
the 1940s, and the Great Smog of London in 1952 are some of the most remembered air
pollution incidents that caused countless casualties and damages.

Chronic exposure to air pollution is widely known to adversely affect people’s
health [1,2]. Ozone induces chest pain, coughing, and nausea. It also exacerbates bronchitis,
heart disease, emphysema, and asthma [3,4]. Fine dust, or particulate matter, penetrates
inhaled alveoli and causes serious cardiovascular and respiratory diseases [5–7]. High
concentrations of nitrogen dioxide lead to chronic bronchitis, pneumonia, pulmonary
hemorrhage, and even pulmonary edema. In 2016, the World Health Organization (WHO)
estimated 4.2 million premature deaths occurred from air pollution worldwide [8].

Another effect of air pollution is on people’s aggressive behavior and misjudg-
ment, mainly through psychological and biological changes, leading to violent crime
outbreaks [9–11]. Many psychology studies report that air pollution impedes cognitive
function. Abilities for language learning, memory, and self-control are negatively affected;
and depression and anxiety symptoms may appear [12–14]. Losing self-control and the
reduction of individual work capacity [15] and productivity [16] are found. Effects on
depression, mental health, and even suicides are also identified [17–21]. Furthermore, a
number of biological studies argue that air pollution may cause a reduction in hormones
that make humans happy, and cause inflammation in the central nervous system [22–25].
They suggest that ozone significantly reduces serotonin, also known as the “happiness
hormone”, so also increases aggression [26,27], and that exposure to air pollution may
cause oxidative stress and neuroinflammation along with changes in cerebrovascular dam-
age, neurodegenerative pathology, and neuronal cells as the central nervous system is
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damaged [23–25,28]. Air pollution may also affect the oxygen transported in the blood and
trigger physical discomfort and cognitive impartment [29].

Recent studies identify significant links between exposure to air pollution and crime.
Burkhardt et al. [9] unveil the relationship between increased air pollution levels and
violent crime rates in the United States and note the overlooked social costs. Herrnstadt
and Muehlegger [30], based on an extensive analysis of data on more than 2 million
crimes, air pollution, and climate conditions reported over 12 years in Chicago, United
States, suggest that higher carbon monoxide levels result in increased daily crime rates.
Lu et al. [31], using a panel analysis of nine years of six major air pollutants and crime data
in 9360 cities in the United States, argue that criminal activities are positively associated
with high air pollution concentrations. Chen and Li [11], from the NOx Budget trading
program operated by the United States Environmental Protection Agency, report that
lowering air pollution levels significantly reduces criminal activities. Bondy et al. [32],
using air quality data and criminal records of London, United Kingdom, also unveils the
positive relationship between the two.

In spite of these efforts, it is clear that the current literature looks into a limited part of
the world and that further investigation is required. For better development of policies and
strategies for managing air pollution and violent crime in diverse contexts, their intricate
relationship should be further explored by adopting methods that take a wider range of
causes into consideration.

This study looks into South Korea where high concentrations of air pollution, which
frequently exceed WHO’s recommended standards, persist [33,34]. It is also where the number
of assaults, among the five official violent crime types in South Korea, does not present a clear
declining trend unlike the other four, which are burglary, rape and sexual assault, robbery,
and homicide, as Figure 1 illustrates, despite years of crime prevention efforts implemented
at the national and local level [35]. More specifically, we use panel spatial Durbin models to
empirically analyze the effects of concentrations of ozone, fine dust, and nitrogen dioxide on
assault rates. Findings of this study may help identify the relationship between air pollution
and crime for the first time in South Korea. It may also inform local and regional policy
makers to secure environmental sustainability and safety.

Figure 1. Reported numbers of the five types of violent crime (assault, burglary, rape and sexual
assault, robbery, and homicide) in South Korea from 2001 to 2018 (Data source: National Police
Agency of South Korea).

2. Materials

The dependent variable of our investigation is the assault rate. Assault in local
terms includes aggression, injury, confinement, threat and blackmailing, kidnapping, and
malicious mischief. We calculate the annual number of assaults per 100,000 residents using
panel data for 204 police districts across the country for eighteen years from 2001 to 2018
based on data availability. The data is obtained through a special request from the Korean
National Policy Agency (https://www.police.go.kr/ accessed on 4 March 2021).

https://www.police.go.kr/
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Our key independent variables are concentrations of ozone (O3), fine dust (PM10),
and nitrogen dioxide (NO2). They are the three most representative air pollutants of South
Korea and increasingly fail to satisfy the country’s environmental standards in many cities.
We use data offered by AirKorea (https://www.airkorea.or.kr/ accessed on 4 March 2021),
a public website run by the Korean Ministry of Environment and the Korea Environment
Corporation. The website plays an active role in providing access to data on concentrations
of various air pollutants acquired from hundreds of monitoring stations established across
the country. We calculate the annual mean concentrations of ozone, fine dust, and nitrogen
dioxide from 2001 to 2018 for each of the 204 police districts. For ten districts without
any monitoring stations, interpolations using geographic information systems are applied
to generate reliable estimates. Figure 2 delivers the relationships between each of the
independent variables and the log-transformed dependent variable for the 18 years. An
initial observation implies some correlations between the variables but suggests further
analysis is required.

Figure 2. Correlations between log-transformed assault rate and concentrations of (a) ozone, (b) fine dust, and (c) nitrogen
dioxide (Data sources: National Police Agency of South Korea and AirKorea).

We also adopt a number of control variables that may yield non-negligible impacts
on crime so as to avoid any confounding relationships between the dependent and in-
dependent variables. First, we look at climate characteristics by drawing from related
literature [36–39], which include mean, minimum, and maximum temperatures, precipita-
tion, and wind speeds. Relevant data is acquired from the Korea National Climate Data
Center (https://data.kma.go.kr/ accessed on 4 March 2021). Interpolated values are com-
puted for the ten police districts without specific data. Second, following previous research
attempts [40–44], we include population characteristics such as population density and
shares of children, elderly, and foreign populations. Lastly, to incorporate socioeconomic

https://www.airkorea.or.kr/
https://data.kma.go.kr/
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conditions of each district, data for property tax revenue, and unemployment rates, as
some studies suggest [45,46], are adopted. The density of commercial facilities, which
represent retail vibrancy as suggested by local literature [47], is also included. Population
and socioeconomic data are downloaded from by the Korean Statistical Information Service
(https://kosis.kr accessed on 4 March 2021).

Table 1 presents a descriptive summary of variables used in this study. Assault rate,
population density, and property tax variables are logged to minimize skewness and in-
crease normality. The log-transformed assault rates range between 4.15 and 8.05 with
a mean of 6.21. Concentrations of ozone, fine dust, and nitrogen dioxide average at
0.024 ppm, 51.61 µg/m3, and 0.023 ppm, respectively. The mean values of average, min-
imum, and maximum temperatures are 12.57 ◦C, −14.31 ◦C, and 35.41 ◦C, respectively.
Those for precipitation and wind speeds are 1307 mm and 1.85 m/s, respectively. As for
population characteristics, the logged population densities average at 6.35 persons per
square meter and range from 2.97 to 10.27. The mean ratios of child, elderly, and foreign
populations are 7.36, 15.54, and 1.55 percent, respectively. Regarding socioeconomic char-
acteristics, the logged property taxes average at 67.1 million Korean Won; unemployment
rates range between 1.3 and 5.7 percent with a mean of 3.13; and the average density of
commercial facilities is 12.03 per 100 residents.

Table 1. Summary statistics.

Variable (Unit) Observations Mean Standard Deviation Minimum Maximum

Dependent
Assault rate (logged)

(cases per 100,000 persons) 3672 6.21 0.46 4.15 8.05

Concentration of air pollution
Ozone (ppm) 3672 0.024 0.005 0.012 0.059

Fine dust (µg/m3) 3672 51.61 8.73 30.12 90.95
Nitrogen dioxide (ppm) 3672 0.023 0.007 0.008 0.043
Climate characteristics

Average temperature (◦C) 3672 12.57 1.33 8.14 16.34
Minimum temperature (◦C) 3672 −14.31 4.25 −29.14 −2.57
Maximum temperature (◦C) 3672 35.41 1.32 31.50 40.26

Precipitation (100 mm) 3672 13.07 3.38 1.02 31.90
Wind speed (m/s) 3672 1.85 0.52 0.89 4.27

Population characteristics
Population density (logged)

(persons/km2) 3672 6.35 2.16 2.97 10.27

Child population ratio (%) 3672 7.36 2.15 2.78 17.14
Elderly population ratio (%) 3672 15.54 7.57 2.53 38.64
Foreign population ratio (%) 3672 1.55 1.49 0.06 10.60

Socioeconomic characteristics
Property tax (logged)

(10 million Korean Won) 3672 6.71 1.69 2.01 11.14

Unemployment rate (%) 3672 3.13 0.90 1.30 5.70
Density of commercial facilities

(locations per 1000 persons) 3672 12.03 16.44 6.63 158.74

Note: Bold texts are used to differentiate variable types from the actual variables.

3. Methods

We first identify the spatial autocorrelation of assault rates for each year and select a
spatial econometric model based on likelihood ratio (LR) and Wald tests. The Hausman
test [48] is applied to each model to decide whether the model with fixed effect or the
model with random effect is employed.

It is widely shared that spatial data is subject to spatial dependence and heterogeneity.
Such effects, when identified as significant, violate basic assumptions of the ordinary least
square (OLS) estimation of regression models and may generate unreliable results [49].
Accordingly, we verify spatial autocorrelation of assault rates for each of the eighteen-year

https://kosis.kr
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periods by computing Moran’s I statistic [50]. Results, as shown in Table 2, verify that
the rates yield positive spatial autocorrelation that is statistically significant at the 0.1
percent level for all the eighteen years. They suggest the need for adopting spatial panel
econometric models for analysis to take into account the spatial effects.

Table 2. Moran’s I calculations of violent crime rates for each year.

Year Moran’s I p-Value

2001 0.292 *** <0.001
2002 0.325 *** <0.001
2003 0.285 *** <0.001
2004 0.278 *** <0.001
2005 0.273 *** <0.001
2006 0.232 *** <0.001
2007 0.283 *** <0.001
2008 0.262 *** <0.001
2009 0.306 *** <0.001
2010 0.253 *** <0.001
2011 0.284 *** <0.001
2012 0.263 *** <0.001
2013 0.252 *** <0.001
2014 0.243 *** <0.001
2015 0.199 *** <0.001
2016 0.186 *** <0.001
2017 0.188 *** <0.001
2018 0.168 *** <0.001

*** p < 0.01.

Spatial econometric models are classified based on the different spatial dependencies
considered. Spatial error models (SEMs) incorporate the spatial autocorrelation of the error
term. Spatial lag models (SLMs), or spatial autoregression models, capture the spatial
autocorrelation of the dependent variable. Spatial Durbin models (SDMs) introduce spatial
spillover effects by recognizing the spatial lag terms of the dependent variables and the
spatial lag term of the error of independent variables [51].

LR and Wald tests provide guidance to selecting the appropriate model [52,53]. As
presented in Table 3, both the LR and Wald test results reject the hypothesis that the SDM
can be simplified to an SEM or SLM at the 0.1 percent significance level, suggesting the
applicability of SDM to this analysis. We use the panel SDM henceforth to effectively
respond to the nature of the variables.

Table 3. Results of LR and Wald tests.

Air Pollutant
LR Test Wald Test

Chi-Square p Chi-Square p

Ozone 78.49 <0.001 81.41 <0.001
Fine dust 46.75 <0.001 53.79 <0.001

Nitrogen dioxide 32.12 <0.001 36.67 <0.001

The panel SDM can be expressed as follows:

Yt = ρWYt + Xtβ + θWXt + εit (1)

where Yt is the dependent variable at year t; ρ is the spatial lag coefficient of Yt; Xt is the
matrix of independent variables; β is the coefficient of the independent variables; θ is the
spatial lag coefficient of the independent variables; W represents the spatial weight matrix;
and εit represents random errors.

Unlike other spatial econometric models, panel SDMs capture direct and indirect
effects [49,54,55]. The direct effect implies that the assault rate of an area is affected by
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the variations in the explanatory variables of the area. It also includes the potential effect
of feedback loops where the impacts pass through neighboring areas back to the original
area [51]. The indirect effect exhibits spillover effects caused by the explanatory variables of
surrounding areas. The total effect is the sum of the direct and indirect effects. These effects
provide a better interpretation of the results as the coefficients of SDMs may not directly
reflect the marginal effects of each explanatory variable on the dependent variable [49,54].
SDMs successfully examine the influence of the independent variables on the dependent
variable in local and surrounding areas and test spatial, temporal, and spatiotemporal
dependences of the dependent variable [56]. For these reasons, many studies on air
pollution or crime rates actively adopt SDMs to incorporate and identify spillover effects
in their analyses [49,57–59].

We establish three panel SDMs each for the concentration of ozone, fine dust, and
nitrogen dioxide, since they commonly yield relatively high levels of correlation among
them (ozone and fine dust: −0.672; ozone and nitrogen dioxide: −0.675; and fine dust and
nitrogen dioxide: 0.524) all of which are significant at the 0.01 level. Among the control
variables, we do not include average temperature, population density, and child population
ratio in all three models, and additionally unemployment rate in the nitrogen dioxide model,
for their high levels of correlation, significant at the 0.01 level, with other variables.

4. Results
4.1. Ozone Impacts on Assault Rates

The Hausman test statistics for the ozone model is 47.21 (p < 0.001). We reject the
random effect model and select the fixed effect model. Table 4 presents estimation results
for ozone based on the panel SDM. Results suggest that the coefficient of concentration of
ozone is 7.706 (p < 0.05), indicating that it positively affects assault rates at the local level.
Among the control variables, minimum temperature, precipitation, wind speed, property
tax, unemployment rate, and density of commercial facilities increase the rates, while the
elderly population ratio decreases them. When spillover effects are considered, results differ
slightly. The table shows that the concentration of ozone yields no significant impact but
that minimum temperature, precipitation, elderly population ratio, and unemployment rate
negatively affect the rates. The spatial rho value, which represents spatial interdependency,
explains that a 1 percent increase in the surrounding areas’ assault rates is associated with
a 0.247 percent increase in local rates.

Table 5 demonstrates direct and indirect effects also generated from the panel SDM.
Results are generally in line with what Table 4 provides. The direct effects are in general
similar to the coefficients, and the indirect effects to those that consider spillover effects.
The direct and indirect effects of the concentration of ozone are both significantly positive.
This suggests that not only the ozone concentration of an area but also of its surrounding
areas simultaneously increase the area’s assault rates, similar to what previous studies
have found. Among the climate variables, minimum temperature’s negative indirect effect
overcomes its positive direct effect, resulting in a negative total effect. Precipitation yields
significantly positive direct and negative indirect effects at the same time, but the two
effects seem to offset each other when combined. Wind speed exhibits only a significantly
positive direct effect. Among the population variables, the direct and indirect effects of the
elderly population ratio are both significantly negative. As for the socioeconomic variables,
property tax, and unemployment rate present significantly positive direct effects but not
significant indirect effects. The direct and indirect effects of the density of commercial
facilities are both significantly positive.

4.2. Fine Dust Impacts on Assault Rates

The Hausman test statistics of the fine dust model is 46.20 (p < 0.001) and suggest
the fixed effect model for analysis. As the panel SDM in Table 6 illustrates, the coefficient
of concentration of fine dust, −0.003 (p < 0.1), presents a significantly negative impact on
assault rates. Among the control variables, minimum temperature, precipitation, wind
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speed, property tax, unemployment rate, and density of commercial facilities increase the
rates, while the elderly population ratio decreases them. When spillover effects are taken
into consideration, the coefficient of concentration of fine dust is 0.006 (p < 0.01), exhibiting
a significantly negative impact. Minimum temperature, precipitation, elderly population
ratio, property tax, and unemployment rate negatively affect the rates. The spatial rho
value presents that a 1 percent increase in the surrounding areas’ assault rates is associated
with a 0.247 percent increase in local rates.

Table 4. Estimation results for ozone.

Variables Coefficient p

Concentration of Ozone 7.706 ** 0.013
Minimum temperature 0.026 *** 0.000
Maximum temperature 0.006 0.490

Precipitation 0.010 ** 0.004
Wind speed 0.155 *** 0.000

Elderly population ratio −0.006 *** 0.001
Foreign population ratio 0.005 0.249

Property tax (logged) 0.051 *** 0.000
Unemployment rate 0.100 *** 0.000

Density of commercial facilities 0.013 *** 0.000

W* (Concentration of Ozone) 7.038 0.110
W* (Minimum temperature) −0.037 *** 0.000
W* (Maximum temperature) 0.009 0.200

W* (Precipitation) −0.009 ** 0.046
W* (Wind speed) −0.004 0.911

W* (Elderly population ratio) −0.009 ** 0.007
W* (Foreign population ratio) −0.006 0.498

W* (Property tax (logged)) −0.026 0.125
W* (Unemployment rate) −0.051 ** 0.016

W* (Density of commercial facilities) −0.001 0.463

Spatial rho 0.247 *** 0.000
R2 0.389

** p < 0.05, *** p < 0.01.

Table 5. Direct, indirect, and total effects (ozone).

Variables Direct Effect Indirect Effect Total Effects

Concentration of ozone 8.104 ** 11.590 ** 19.700 ***
Minimum temperature 0.024 *** −0.039 *** −0.015 ***
Maximum temperature 0.007 0.013 0.020 *

Precipitation 0.010 ** −0.008 * 0.002
Wind speed 0.158 *** 0.042 0.200 ***

Elderly population ratio −0.007 *** −0.013 *** −0.020 ***
Foreign population ratio 0.005 −0.006 −0.001

Property tax (logged) 0.050 *** −0.016 0.034
Unemployment rate 0.098 *** −0.034 0.064 ***

Density of commercial
facilities 0.013 *** 0.003 * 0.015 ***

* p < 0.1, ** p < 0.05, *** p < 0.01.

Direct and indirect effects, as Table 7 presents, are again in line with what the panel
SDM estimates in Table 6. The direct effects are almost identical to the coefficients, and the
indirect effects are generally similar to the coefficients that incorporate spillover effects.
The direct effect of concentration of fine dust is significantly negative but its indirect effect
is significantly positive, presenting a significantly positive overall effect. This can be
interpreted that an area’s concentration of fine dust may negatively affect assault rates,
but its surrounding areas’ concentrations may positively affect the area’s rates, resulting
in an overall increase. Minimum temperature and unemployment rate commonly yield
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significantly positive direct and negative indirect effects at the same time. Precipitation
and property tax present significantly positive direct effects. Wind speed and density of
commercial facilities show significant positive direct and indirect effects, while the elderly
population ratio exhibits significantly negative effects directly and indirectly.

Table 6. Estimation results for fine dust.

Variables Coefficient p

Concentration of fine dust −0.003 * 0.076
Minimum temperature 0.028 *** 0.000
Maximum temperature 0.002 0.769

Precipitation 0.010 *** 0.007
Wind speed 0.159 *** 0.000

Elderly population ratio −0.006 *** 0.001
Foreign population ratio 0.005 0.243

Property tax (logged) 0.049 *** 0.000
Unemployment rate 0.090 *** 0.000

Density of commercial facilities 0.013 *** 0.000

W* (Concentration of fine dust) 0.006 *** 0.008
W* (Minimum temperature) −0.033 *** 0.000
W* (Maximum temperature) 0.01 0.147

W* (Precipitation) −0.007 * 0.099
W* (Wind speed) 0.006 0.854

W* (Elderly population ratio) −0.009 *** 0.005
W* (Foreign population ratio) −0.013 0.180

W* (Property tax (logged)) −0.039 ** 0.019
W* (Unemployment rate) −0.069 *** 0.001

W* (Density of commercial facilities) −0.001 0.517

Spatial rho 0.247 *** 0.000
R2 0.403

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 7. Direct, indirect, and total effects (fine dust).

Variables Direct Effect Indirect Effect Total Effect

Concentration of fine dust −0.003 * 0.007 *** 0.004 *
Minimum temperature 0.027 *** −0.033 *** −0.006
Maximum temperature 0.003 0.013 * 0.017

Precipitation 0.009 *** −0.006 0.003
Wind speed 0.162 *** 0.056 * 0.219 ***

Elderly population ratio −0.007 *** −0.014 *** −0.020 ***
Foreign population ratio 0.005 −0.014 −0.009

Property tax (logged) 0.047 *** −0.033 0.014
Unemployment rate 0.088 *** −0.060 *** 0.028

Density of commercial facilities 0.013 *** 0.003 * 0.015 ***

* p < 0.1, *** p < 0.01.

4.3. Nitrogen Dioxide Impacts on Assault Rates

The Hausman test statistics of the nitrogen dioxide model is 38.07 (p < 0.01) and
suggests selecting the fixed effect model as opposed to the random effect model. As Table 8
shows, the panel SDM suggests that the concentration of nitrogen dioxide does not yield
any significant impacts on local assault rates. Among the control variables, minimum
temperature, precipitation, wind speed, property tax, and density of commercial facilities
show positive effects; and elderly population negative exhibit effects, similar to what
the two other models provide. When spillover effects are considered, results differ in
general. The coefficient of concentration of nitrogen dioxide is 7.441 (p < 0.05), presenting
a significantly positive impact on the rates. This can be interpreted that an area’s assault
rates are less affected by local concentration of nitrogen dioxide but more by those of the
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surroundings. Among other variables, minimum temperature, elderly population ratio,
and property tax yield significantly negative impacts. The spatial rho is 0.247, suggesting
that the surrounding areas’ violent crime rates are associated with a 0.247 percent increase
in local rates.

Table 8. Estimation results for nitrogen dioxide.

Variables Coefficient p

Concentration of nitrogen dioxide −3.904 0.149
Minimum temperature 0.028 *** 0.000
Maximum temperature 0.006 0.502

Precipitation 0.006 * 0.085
Wind speed 0.157 *** 0.000

Elderly population ratio −0.005 *** 0.003
Foreign population ratio 0.003 0.528

Property tax (logged) 0.055 *** 0.000
Density of commercial facilities 0.013 *** 0.000

W* (Concentration of nitrogen dioxide) 7.441 ** 0.026
W* (Minimum temperature) −0.034 *** 0.000
W* (Maximum temperature) 0.008 0.272

W* (Precipitation) −0.004 0.339
W* (Wind speed) 0.022 0.524

W* (Elderly population ratio) −0.011 *** 0.002
W* (Foreign population ratio) −0.015 0.132

W* (Property tax (logged)) −0.039 ** 0.024
W* (Density of commercial facilities) −0.002 0.301

Spatial rho 0.247 *** 0.001
R2 0.404

* p < 0.1, ** p < 0.05, *** p < 0.01.

Table 9 provides the direct and indirect effects of the nitrogen dioxide panel SDM.
Again, the direct effects for each variable are similar to the coefficients from Table 8,
and the indirect effects to those that consider spillover effects. Only the indirect effect
is statistically significant for the concentration of nitrogen dioxide, suggesting that the
spatial spillover effect of nitrogen dioxide of adjacent areas exhibit positive impacts on
increasing assault rates. Among the climate variables, minimum temperature presents a
significantly positive direct effect and a negative effect at the same time, resulting in an
overall negative effect. Maximum temperature yields a significantly positive indirect effect,
and precipitation a direct effect. Wind speed demonstrates significantly positive direct and
indirect effects. Among the population variables, the elderly population presents negative
direct and indirect effects. Among socioeconomic variables, property tax and the density
of commercial facilities show significantly positive direct effects.

Table 9. Direct, indirect, and total effects (nitrogen dioxide).

Variables Direct Effect Indirect Effect Total Effect

Concentration of nitrogen
dioxide −3.652 8.266 ** 4.614 *

Minimum temperature 0.027 *** −0.034 *** −0.008 **
Maximum temperature 0.007 0.012 * 0.018 *

Precipitation 0.006 * −0.003 0.003
Wind speed 0.161 *** 0.075 ** 0.236 ***

Elderly population ratio −0.006 *** −0.015 *** −0.021 ***
Foreign population ratio 0.002 −0.018 −0.016

Property tax (logged) 0.053 *** −0.032 0.022
Density of commercial facilities 0.013 *** 0.002 0.015 ***

* p < 0.1, ** p < 0.05, *** p < 0.01.
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4.4. Disscussion

The results suggest several issues for discussion. First, we are able to identify the
significant impacts of air pollution on assault rates, but the impacts differ by air pollutant
type. An increase in the concentration of ozone would not only escalate the rates of an
area but also increase in surrounding areas and in the end return to the area as feedback.
Expanded ozone discharged into the atmosphere, largely caused by vehicle emissions
and rising temperatures observed globally [60,61], is expected to induce more assaults
both locally and regionally. On the other hand, an increase in the concentration of fine
dust is expected to decrease assault cases of an area, while at the same time increasing in
neighboring areas. The decreasing effect may relate to previous empirical findings that
fine dust discourages outdoor activities [33,62,63], thus decreasing any likelihood of crime
occurrence. The increasing impact may reflect the spillover effects that have been less
perceived so far. In the case of nitrogen dioxide, only positive effects on the surrounding
areas’ assault rates are identified, raising concerns about its spillover effect, while not
yielding any significant local impacts.

Some noteworthy impacts can also be identified from the control variables. Among
the climate characteristics, rising minimum temperatures introduce higher assault rates
at the local level. This is largely in line with empirical findings from existing studies
that prove temperature impacts on crime [38,64,65]. Precipitation and wind speeds are
found to increase assault rates at the local level in most cases. Regarding population
characteristics, an evident finding is the negative impact of the elderly population on assault
rates, yielding both local and spillover effects for all three air pollutant types. Although
this may sound counterintuitive as some research identifies the elderly population as being
more vulnerable to violent crime [66–68], it may represent that assault more frequently
targets relatively younger population groups in our study context. Unlike researchers who
identify relationships between foreign population and violent crime [44,69,70], we find
no significant evidence in this analysis. Among socioeconomic characteristics, property
tax and unemployment in general rate increase assault rates at the local level. It can be
interpreted that more affluent areas, as represented by larger property tax revenues, and
economically stagnant areas, as described by higher unemployment rates, at the same time
may provoke assaults. This may illustrate the positive impact of economic inequality on
crime also experienced in other contexts [46,71–73]. Commercial facilities are found to
present positive impacts on assault rates at the local level. A higher concentration of retail,
which often draws a larger number of people, may attract violent crime.

5. Conclusions and Policy Implications

Using a series of panel SDMs that build on data between 2001 and 2018 from South Ko-
rea, we find that air pollution yields significant impacts on assault rates. More specifically,
concentrations of ozone, fine dust, and nitrogen dioxide, three of the most representative
air pollutants in South Korea, exhibit either positive or negative impacts. They also present
local and spillover effects at the same time.

There are several shortcomings in this study. First, our analysis carried out at the police
district level, which is in general similar to the city level, may not detect specific locations
of assaults that may be influenced by directly adjacent settings like building configurations,
land use, and accessibility. Second, using yearly data may not accommodate seasonal or
monthly fluctuations which may also influence crime. Third, as some climate data were
missing, interpolations had to be made for statistical analysis.

However, several policy implications for creating safer and sustainable environments
can be drawn. First, the identified impacts alarm cities with higher air pollution levels to
adopt measures that are more preemptive and comprehensive to combat crime. The close
connection between air pollution and assault should be reflected in local environmental
and crime policies and be widely shared by policymakers. Second, the spatial spillover
effects, identified for all three air pollutants, call for the need to adopt regional approaches
that build on close inter-city collaboration. Coordinated policy responses against air
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pollution and assault should be promoted. Information on local air pollution levels and
crime occurrences could be instantly shared between neighboring cities. Third, more
active measures are required for ozone. The concentration of ozone is continuously rising
nationwide and presents the most critical impacts on assault among the three air pollutants.
It is also receiving less societal and policy concerns than fine dust, for which a wide range
of strategies are being already established and implemented.

Future studies may benefit from the findings of this study and carry out more in-depth
analyses. Air pollution impacts on other violent crime types can be investigated, and
seasonal or monthly influences can be identified. Similar approaches in diverse contexts
may generate practical findings that would benefit local policymakers devoted to making
safer and more sustainable dwelling environments for people.
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