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Abstract: As public perception about the shared economy evolves, peer-to-peer ridesharing has
been gaining increased attention worldwide. Both private and public sector entities have launched
mobile app-based ridesharing services, while a range of methodologies and system architectures
have been proposed in academia. Whereas traditional ridesharing methods match drivers and riders
when their origin and destination are similar, recently proposed algorithms often feature multi-hop
and multimodal properties that allow riders to be connected by multiple modes. Such algorithms
can reduce travel time and/or travel cost; however, they may also add other travel impedances,
such as requiring multiple transfers. Understanding user behavior toward such new ridesharing
systems is essential for successful service design. For policymakers and service planners, identifying
factors that impact traveler choices can lead to better design and improved services. This research
involved a web-based survey to capture traveler preferences using a conjoint analysis framework. A
choice-based method was adopted to identify factors for the estimation model and to analyze traveler
willingness to pay. Among the proposed factors, the number-of-transfers was shown to be the most
important, as was expected. When a multimodal ridesharing system provides less travel time, low
travel cost, and sufficient ridesharing incentive, people are more likely to pay for the service.

Keywords: multimodal ridesharing; conjoint survey design; choice-based conjoint analysis; multino-
mial logit model; factor estimation analysis; choice behavior

1. Introduction

As a part of the newly developing shared economy, ridesharing systems (RSS) are
becoming popular throughout the world, providing sustainable transportation that fills
empty seats in existing vehicles. RSS can provide increased mobility in cities, which, in
turn, can reduce congestion and emissions, while reducing the dependency on personal car
ownership. The question is often raised as to whether RSS and more established systems
(such as ride-sourcing services) are detrimental or beneficial to the existing transit systems.
Our previous study [1] highlighted the potential role of multi-hop RSS as a transit system
feeder. A combination of public transit and ridesharing can impact mobility; for example,
one study [2] reported that 30% of shared mobility users reported driving to work less often.
In line with these findings, research on mobility platforms suggests that these can lead to
enhanced urban mobility, which can create a dynamic multimodal lifestyle by integrating
RSS with the existing transportation services [3].

Multimodal ridesharing systems, where multiple transportation modes fulfill rider
trip demands, have been the focus of the recent studies seeking to improve the matching
rate and connectivity across travel modes, and thus to provide increased mobility [1,
4–7]. Multimodal RSS, however, have several key questions that must be considered:
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(a) do RSS provide reasonable travel times? [6,8–11]; (b) do RSS properly price their
services? [6,8–10,12–14]; (c) do RSS produce a reasonable number of transfers? [7,10]; (d)
do RSS provide sufficient ridesharing incentives to encourage their use [6,15–18]? These
four factors are significant because they are the most likely to affect traveler preferences of
multimodal RSS. By adopting multimodal RSS’ services, users might improve upon travel
time and travel costs, compared to their current travel option. For instance, if commuters
who currently ride public transit want to use multimodal RSS to reduce travel time, they
might need to pay more and, consequently, may not be willing to accept this option if they
are not compensated with some type of incentive. Similarly, even with lower travel cost
and travel time, a user may only be willing to accept a transfer inconvenience if there is a
sufficient incentive, such as a subsidy.

Therefore, with any type of multimodal ridesharing system, it is necessary to analyze
how travelers respond to the set of attributes characterizing the system. Capturing the
implicit determinants of individual preference is also important. Factor analysis and
conjoint analysis are commonly used as multivariate statistical techniques to capture data
regarding consumer behavior through an empirical or quantitative measurement [8,19].
Kim et al. [19] analyzed the potential factors affecting the attitudes of participants in electric
vehicle sharing programs (EVSPs), regarding car ownership and program participation.
Unlike factor analysis, which is used to examine how underlying constructs influence
responses on a number of measured variables, a conjoint analysis is used in market research
to determine how people value different features that make up an individual product or
service. A conjoint analysis examines which combination of a limited number of attributes
is most influential on an individual’s decision making. It is also possible to analyze the
relative importance of a set of attributes. While common in marketing research, conjoint
analysis has not been widely used in transportation systems research, although it can be
useful in providing insights into user acceptance of newly proposed systems and designs.
In this study, we utilized a choice-based conjoint analysis method. Data were collected
using a web-based survey system, targeting people who live in Southern California (e.g.,
Los Angeles, Irvine, San Diego, and Santa Barbara).

The remainder of the paper is structured as follows. In the next section, we will briefly
introduce the concept of multimodal ridesharing. In Section 3, we outline the technical
approach that was used for the conjoint survey design. In Section 4, we describe the data
that were collected and present the conjoint analysis with a multinomial logit model. We
follow this with a discussion of the impact factor results in Section 5. Lastly, we summarize
the findings and conclude the paper with a discussion on future research opportunities
(Section 6).

2. Multimodal Ridesharing System

Although multimodal ridesharing systems (RSS) refer to a rather broad concept, many
travelers consider ridesharing to be the same as carpooling. Perhaps the most well-known
mechanism for carpooling is to match drivers and riders that have the same origin and desti-
nation (which usually limits the matching rate). Multimodal ridesharing systems extend the
concept of carpooling to include multiple modal connections. In such a system, riders and
drivers provide their origin/destination and desired departure/arrival time. The system
can match a rider to multiple drivers to increase the matching rate and to provide a faster
path. It should be noted that the term “driver” can conceptually include virtual “drivers”
representing other modes of transport, such as transit or bikes. Rudnicki et al. [4] studied
ridesharing with walking, where the roles of drivers and passengers were known and each
driver was assigned to passengers with the same destination [4,5]. Other studies [6,20]
have proposed route/hop planning schemes, such as: (a) car -> car -> car; (b) car; (c) car ->
airplane -> bus; (d) foot -> car -> car -> car; (e) car -> subway -> bus; (f) bicycle -> car ->
bicycle; (g) foot; (h) bicycle; (i) foot -> bus -> foot. In previous studies that were completed
at UC Irvine [1,7], a multimodal ridesharing system was proposed to enhance the use of the
LA Metro Red Line (a subway), allowing transfers between shared-ride cars and the LA
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Metro. The results were that a sizable fraction of travelers in drive-alone vehicles switched
to transit [1]. Figure 1 illustrates the concept of multimodal RSS.

Figure 1. Multimodal ridesharing system concepts.

3. Choice-Based Conjoint Survey Design

As part of this study, a choice-based conjoint survey was designed and executed in
Southern California (Los Angeles, San Diego, Santa Barbara, and Irvine), with a sample size
of 4254 choices from 401 participants. A web-based survey has several advantages: it can
minimize missing data by advising respondents to respond to all questions. In addition,
a well-designed survey website can help respondents to understand the purpose of the
survey and, thus, can increase their participation [14].

3.1. Conjoint Survey Design

Conjoint analysis is a marketing technique used to assess the weight individuals
place on different features of a given product or service. Products are represented by their
attributes and respondents provide data about their preferences for hypothetical products
that are defined by combinations of attributes. A range of new models and techniques
for the estimation of part-worth functions have been developed. While several conjoint
methods exist, two primary alternatives are the ratings-based (RB) and choice-based (CB)
conjoint analyses. A significant systematic difference between these two analysis options
is the compatibility effect. For example, some attributes (such as brand name) tend to be
more critical in RB models, whereas some comparable attributes (such as price) are likely to
be more critical in CB models [21]. Choice-based conjoint analysis has become perhaps the
most widely used conjoint technique. Rao [22] described the major steps in a conjoint study,
including: problem selection of attributes and design of profiles (i.e., the set of attribute
levels describing a system design alternative); choice set and analysis methods; utilization
of results (see Figure 2a). To analyze the impact factors of the multimodal ridesharing
system, this study designed a survey questionnaire by applying choice-based conjoint
analysis (see Figure 2b).

The selection of attributes and the design of choice sets is critical in conjoint studies
because each attribute combination for hypothetical products influences the choice of an
alternative. Hypothetical alternatives are presented as profiles, where a profile is defined as
a set of attribute levels that defines the hypothetical system design alternative. In general,
the number of levels is restricted to a relatively small number for any attribute (from as few
as 2 to no more than 5 or 6) to ensure that fewer profiles are generated for data collection.
Next, we describe some relevant studies that influenced our selection of attributes.
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Figure 2. Overview of analysis design: (a) major steps in conjoint study; (b) conjoint analysis steps
for multimodal RSS impact factor analysis.

Various factors can be considered to evaluate the utility of a travel mode. Wang [10]
considered system-wide travel and travel cost to optimize a dynamic ridesharing matching
problem. Herbawi and Weber [23] addressed a dynamic ride-matching problem by minimiz-
ing the total travel time of both the driver and riders. Ko et al. [24] considered EVSP renting
and returning hours as the survey components for an electric vehicle sharing program.
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A survey conducted by the Korea Railroad Research Institute [8] considered travel
time and travel cost to be the representative attributes for the proposed rail alternatives
that were studied. Accordingly, travel time and travel cost were considered important
factors that affect the choice of transport mode [25,26].

Multimodal ridesharing systems (RSS) technically include transferring between travel
modes, and the number of transfers may be a critical factor affecting the preferences of
potential multimodal RSS users. Masoud et al. [1] considered LA Metro Red Line stations
as transfer points to provide a connection point between travel modes. Wang [10] stated
that consistent, seamless, and efficient mode transfers will only be possible with an effective
optimization technology. Furuhata et al. [25] addressed the necessity for transfer points to
support high-dimensional ride-matching algorithms.

It is also possible to encourage people to use multimodal RSS by providing sustainable
transportation incentives. Brownstone and Golob [15] studied the effects of incentives that
are designed to promote carpool ridesharing on work trips to reduce congestion and air
pollution. They proposed ordered probit discrete choice models to estimate the commuting
mode choice of full-time workers in the Los Angeles area. Three types of incentives to
control transportation demand were investigated: (a) reserved or other preferential parking
for ride-sharers; (b) direct carpooling and/or vanpooling cost subsides by employers;
(c) guaranteed rides home for ride-sharers. They found that providing all workers with
these incentives would reduce drive-alone commuting between 11 and 18 percent. The
effectiveness of high-occupancy vehicle (HOV) lanes in promoting ridesharing on Southern
California freeways was also considered as a rideshare incentive [15,27].

Two recent programs offered some insight into the design of our survey. San Luis
Obispo (California) Council of Governments (SLOCOG) launched the county-wide SLO
Regional Rideshare program [16] to reduce the reliance on driving alone and to improve
mobility. SLO Regional Rideshare provides the “iRideshare” service, which is a free online
ride-matching system with online trip logging for rewards and prizes. Back ‘N’ Forth Club
Rewards is a free program in the region that is offered to businesses and organizations
that encourage employees to use sustainable transportation when commuting. Employees
record their trips made by bike, carpool, vanpool, bus, telecommute, or on foot into their
personal calendars at iRideshare.org and then redeem points for gift cards. This system
provides carpooling reimbursements to drivers and offers discounted pricing to riders.
The riders cover a share of driver costs, ranging from approximately USD 2 to USD 10,
and the drivers receive reimbursements ranging from USD 3 to USD 9 per passenger per
trip. Another program is a sustainable transportation incentive program at Santa Monica
College (California) that is designed to reduce the use of single-occupancy vehicles. The
college provided monthly incentives per usage of sustainable transportation alternatives,
such as biking, walking, and carpooling. To ensure incentive compatibility, the program
offers three options of ridesharing incentives, namely, USD 150, USD 200, and USD 250 per
month. Based on these findings, in this study, ridesharing travel time changes (compared
to the user’s current travel time), ridesharing travel cost changes (compared to the user’s
current travel cost), the number of transfers, and the monetary incentives for ridesharing
(as an annual reward) are considered as attributes of the multimodal RSS survey. Table 1
shows the attributes of the multimodal RSS and the option levels.

Once the attributes and levels are chosen, the next step is to generate the stimulus set
of hypothetical profiles to be evaluated by respondents. The procedure for constructing
stimulus profiles is intertwined with the particular conjoint approach used [22]. To generate
profiles, a full cards method and a fractional factorial design are commonly used as
statistical techniques.

In the full cards method, the profiles are generated by a full factorial design, including
all combinations of the attribute levels; however, these designs are not practical when the
total number of combinations is large [22]. With this method, our study would generate 81
profiles, which is too large for respondents to evaluate.
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Table 1. Multimodal RSS attributes and levels.

Attribute Sub-Attribute Level

Efficiency Number of transfers
2 times or more 1

1 time 2
No transfer 3

Mobility Ridesharing travel time compared
to your current travel time

Up to 10 min. longer 1
Up to 5 min. longer 2

Equal or less 3

Economic Feasibility

Ridesharing travel cost compared
to your current travel cost

Equal or less 3
Up to 5% higher 2
Up to 10% higher 1

Ridesharing incentives
Up to USD 150 annual refund 1
Up to USD 200 annual refund 2
Up to USD 250 annual refund 3

This problem can be resolved by using a fractional factorial design, which reduces
the number of profiles using an orthogonal design, and which offers several advantages.
First, these designs are parsimonious. Second, they enable the estimation of all of the main
effects of attributes in a conjoint study. These designs can be restricted to blocks so that
each individual receives a balanced subset of profiles [22]. The condition for a design to be
orthogonal (which is called symmetric if each attribute in the design has the same number
of levels) is that each level of one factor should occur with each level of another factor
with proportional frequencies. In a symmetric orthogonal design, every level of a factor
occurs an equal number of times with every level of another factor. Orthogonal arrays can
either be balanced or imbalanced in terms of the levels of attributes. The property of level
balance implies that every level occurs the same number of times within each attribute
in the design. An imbalanced design allows for larger standard errors in the parameter
(part-worth) estimates. Therefore, to reduce errors, the orthogonal design method was
adopted with the balanced incomplete block design process. Detailed expositions can be
found in Rao [22].

3.2. Conjoint Choice Set Design

In general, there are two types of choice-based conjoint schemes that are studied:
(1) binary choice experiments where the response is binary to a stimulus profile; (2) multi-
nomial choice experiments where the responses are to a set of three or more alternatives,
including a “no choice” option, which can make a decision more realistic [22,28]. A binary
choice experiment is used when each profile is presented to the respondent seeking a
response of yes or no. We designed a multinomial choice experiment to determine the
relative importance of each multimodal RSS attribute. Rao [22] suggested a design process
for multinomial choice experiments: (a) the first step is to design the profiles of alternatives,
using the attributes and their levels; (b) the second step is to scheme choice sets, with
each set consisting of a subset of these profiled alternatives. Choice sets could be created
manually (using a shifting method), which develops an ordered combination of attribute
levels. The shifted-design choice set is shown in Table 2, where 27 profiles emerge for
different sets of attribute levels. A sample from the conjoint questionnaire is shown in
Table 3.
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Table 2. Shifted design for nine choice sets of three for four attributes, each at three levels.

Choice Set Profile Attribute 1 Attribute 2 Attribute 3 Attribute 4

1

1 1 1 3 1

2 2 2 2 2

3 3 3 1 3

2

4 1 2 2 3

5 2 3 1 1

6 3 1 3 2

3

7 1 3 1 2

8 2 1 3 3

9 3 2 2 1

4

10 2 1 2 2

11 3 2 1 3

12 1 3 3 1

5

13 2 2 1 1

14 3 3 3 2

15 1 1 2 3

6

16 2 3 3 3

17 3 1 2 1

18 1 2 1 2

7

19 3 1 1 3

20 1 2 3 1

21 2 3 2 2

8

22 3 2 3 2

23 1 3 2 3

24 2 1 1 1

9

25 3 3 2 1

26 1 1 1 2

27 2 2 3 3

Table 3. A sample choice attributes and option levels from the conjoint questionnaire.

Choice Set Attribute Option 1 Option 2 Option 3

None of These
Options1

Number of transfer 2 times or more 1 time No transfer

Ridesharing travel time
compared to user’s
current travel time

Up to 10 min.
longer

Up to 5 min.
longer Equal or less

Ridesharing travel cost
compared to user’s
current travel cost

Up to 10% higher Up to 5% higher Equal or less

Ridesharing incentives Up to USD 150
annual reward

Up to USD 200
annual reward

Up to USD 250
annual reward

Select
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3.3. Sociodemographic and Trip Characteristics Factor

In the survey, respondents were asked about (a) sociodemographic factors, such as
employment status, age, gender, and household income; and (b) trip characteristics, such
as primary trip purpose, trip frequency, primary trip mode, travel time, travel distance,
and the number of transfers. Willingness to use multimodal RSS was also considered.

3.4. Characteristics of Respondents

Table 4 displays the sociodemographic and trip characteristics of respondents to the
web-based survey.

As indicated in Table 4, most respondents were female (61.3%), full-time employed
(46.6%), and within the 35–44 age group (53.9%). Concerning the primary travel mode,
78.8% of the respondents preferred to use personal vehicles when they made their most
frequent trip (i.e., to/from work: 43.1%). Due to the high proportion of private vehicle
users, almost 70 percent of respondents made zero transfers. An interesting observation is
that 83.5% of respondents answered that they were willing to use a multimodal ridesharing
system. This reveals that most people are willing to change their travel mode when they
are offered a multimodal ridesharing system, as long as it satisfies their preferences.

Both respondents travel time and trip distance appear to be rather evenly distributed.
Respondents’ household incomes were also evenly distributed, with the median group of
between 50 and 75 thousand(25.2% of respondents). The most common trip frequency of
more than once per week but not every day was reported by almost half (48.8%) of the
respondents.

Table 4. Sociodemographic and trip characteristics of the survey respondents.

Sociodemographic Characteristics

Sociodemographic
Characteristics

Variable Description Frequency Percentage (%)

Employment Status

Employed full-time 187 46.6
Employed part-time 68 17.0

Homemaker 35 8.7
Student 41 10.2
Retired 34 8.5

Unemployed 36 9.0

Age

Under 16 years old 1 0.2
16–24 years old 60 15.0
25–34 years old 131 32.7
35–44 years old 85 21.2
45–54 years old 50 12.5
55–64 years old 51 12.7

65 years old or older 22 5.5
Prefer not to answer 1 0.2

Gender

Female 246 61.3
Male 151 37.7

Prefer not to answer 3 0.7
Other 1 0.2

Household Income

Less than USD 15,000 27 6.7
USD 15,000 to USD 25,000 30 7.5
USD 25,000 to USD 35,000 25 6.2
USD 35,000 to USD 50,000 52 13.0
USD 50,000 to USD 75,000 101 25.2

USD 75,000 to USD 100,000 60 15.0
USD 100,000 to USD 150,000 45 11.2

More than USD 150,000 36 9.0
Prefer not to answer 25 6.2



Sustainability 2021, 13, 11517 9 of 14

Table 4. Cont.

Sociodemographic Characteristics

Trip Characteristics

Most Frequent Trip

To/from work 173 43.1
School 42 10.5

Shopping 71 17.7
Personal business 79 19.7

Social and recreation 30 7.5
Other 6 1.5

Trip Frequency

Less than once per week 32 8.0
More than once per week, but not every

day 193 48.1

Once every day 124 30.9
More than once every day 52 13.0

Primary Travel Mode

Personal vehicle (car, truck, van,
motorcycle, etc.) 316 78.8

Rail
(Subway, light rail, commuter rail, etc.) 8 2.0

Bus 27 6.7
Bicycle 10 2.5
Walk 8 2.0

Uber/Lyft/taxi/shuttle 13 3.2
Carpool, vanpool 15 3.7

Other 4 1.0

Average Travel
Time

Less than 5 min 15 3.7
6~10 min 60 15.0
11~15 min 87 21.7
16~20 min 68 17.0
21~30 min 75 18.7
31~45 min 49 12.2
45~60 min 20 5.0

More than 60 min 27 6.7

Average Trip
Distance

Less than 5 miles 70 17.5
6~10 miles 119 29.7
11~20 miles 103 25.7
21~30 miles 62 15.5
31~40 miles 28 7.0
41~50 miles 9 2.2

more than 50 miles 10 2.5

Number of Transfers
0 279 69.6
1 86 21.4

2 or more 36 9.0

Willingness to
use multimodal RSS

Yes, I would definitely try 149 37.2
Maybe, I would consider trying 186 46.4
No, I would definitely not try 66 16.5

4. Choice-Based Conjoint Analysis

Conjoint analysis is a commonly applied multivariate statistical technique that is
designed to support the understanding of how people make choices between products
or services, so as to design new products or services that incorporate the most valued
aspects. There are only a small number of transportation-related studies that use choice-
based conjoint analysis based on surveys [8,29–31]. This study utilized a multinomial logit
(MNL) model to estimate behavior based on choice-based conjoint data, which provides
the preferences for each attribute of a product or service.

In conjoint analysis, each respondent must choose one alternative from each of several
choice sets. These choice sets are constructed by dividing the total set of profiles across
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K choice sets. In this study, each choice set contained the same number of alternatives
without loss of generality. The utility of alternative m in choice set s for individual i is
defined as Equation (1):

uism = Xsmβ + eism (1)

where Xsm is a (1 × S) vector of variables representing the characteristics of the mth choice
alternative in choice set s, β is an (S × 1) vector of unknown parameters, and eism is an
error term. The MNL model treats each observation from the same respondent as an
independent observation, which falls within the standard random utility approach [28].
Under this condition, the MNL model for 400 respondents choosing from 15 choice sets is
computationally equivalent to 6000 respondents choosing from one choice set.

The choice probabilities in the conjoint MNL approach can be obtained by using the
straightforward generalization of Equation (2). The probability that alternative m is chosen
from set s is:

Psm =
exp(Xsmβ)

∑M
n−1 exp(Xsmβ)

(2)

The method of maximum likelihood is most suitable to estimate the logit model using
data at the individual level. Assuming that choices are available for I individuals, let the
choice for the i-th person be denoted by (yi1, . . . , yiSi ), where Si is the choice set of the
i-th person and each y is equal to one or zero, according to whether the corresponding
alternative is chosen or not [22].

Maximum likelihood estimation determines the values of parameters so as to maxi-
mize the probability (or likelihood) of matching the observed data. For the i-th individual
with choice set S = {1, 2, . . . , si}, the likelihood of observing the choices { yi1, . . . , yiSi

}
is:

Li =
S

∏
s=1

M

∏
m=1

Pyism
sm (3)

The joint likelihood for the sample as a whole is L = ∏N
i=1 Li. Here, L is a function of

the unknown parameters, β. The β values are determined by maximizing L with respect to
the β’s using standard methods. As is common, Equation (3) is replaced in the optimization
by a log function, as in Equation (4), that simplifies the optimization:

l =
I

∑
i−1

S

∑
s−1

M

∑
m−1

yism ln(psm) (4)

Our application used optimization algorithms in XLSTAT (19.4 Version).

5. Results
5.1. Model Fitness

The statistical significance test results for choice-based conjoint analysis with the MNL
model is presented in Table 5. If the p-value is low (i.e., less than 0.05), the model is said to
be statistically significant. As shown in Table 5, with 95% confidence, the p-value of the
choice-based conjoint model that drew from 4254 observations is less than 0.0001, meaning
we can state that this model is statistically significant and reject the null hypothesis.

Table 5. Statistical significance test results.

Content Statistic

Observations 4254.0
Likelihood value 484.8

Score 473.5
Wald 43.7

p-value <0.0001
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The statistical significance test was also conducted for the four defined impact factors
for a multimodal ridesharing system. The p-values for the number of transfers, ridesharing
travel time, and ridesharing travel cost are less than 0.0001. The ridesharing incentive
factor has a 0.148 p-value, as shown in Table 6.

Table 6. Statistical significance test results of multimodal ridesharing system attributes.

Attribute Chi-Square (Wald) Pr > Wald Chi-Square (LR) Pr > Wald

Number of transfers 305.3 <0.0001 328.4 <0.0001
Ridesharing travel time compared to your current travel time 25.7 <0.0001 25.7 <0.0001
Ridesharing travel cost compared to your current travel cost 40.3 <0.0001 39.8 <0.0001

Ridesharing incentive 3.8 0.148 3.8 0.150

5.2. Conjoint Analysis Results

To analyze the influence of the factors on the choice between alternatives within the
multimodal ridesharing system, a numerical part-worth utility value was computed for
each level of each attribute. Considering ridesharing travel cost as a quantitative attribute,
the estimated parameters for each level of the other three attributes were computed. As
shown in Table 7, the importance between attributes can be confirmed by the Wald value.
Transfer level 3 has the largest Wald value, making it the most important explanatory
variable, while ridesharing incentive shows the lowest importance. The reason for the
negative estimated coefficient for ridesharing travel cost is that, as travel cost increases,
it has a negative effect on the selection. From this table, our results reveal that the fewer
the number of transfers, the shorter the travel time, and the more the incentive, the more
positive the effect is on the multimodal ridesharing system.

Table 7. Statistical impact factor parameter estimates for the multimodal ridesharing system.

Attribute Level Estimated Coefficient Wald Chi-Square Pr > Chi2

Ridesharing travel cost compared to
the current travel cost - −0.234 *** 28.9 <0.0001

Number of transfers
2 0.524 *** 32.9 <0.0001
3 1.511 *** 294.3 <0.0001

Ridesharing travel time compared to
the current travel time

2 0.194 ** 4.9 0.026
3 0.434 *** 25.6 <0.0001

Ridesharing incentive 2 −0.037 0.2 0.664
3 0.152 * 3.1 0.077

* 0.10 level, ** 0.05 level, *** 0.01 level.

5.3. Willingness to Pay for the Multimodal Ridesharing Service

In economics terms, willingness to pay (WTP) is the amount an individual would be
willing to spend to receive a good or to avoid an undesirable outcome. Thus, a transaction
occurs when an individual’s WTP equals or exceeds an offered price. This principle holds
for the participants in the multimodal RSS being studied.

As shown in Table 8, the choice-based conjoint model suggests that people are likely
to pay USD 2.24 and USD 6.45 when a multimodal RSS provides one transfer and zero
transfers, compared to two or more transfers, respectively. This result reveals that a “no
transfer” option is the most preferred factor for a multimodal ridesharing system.

Based on the WTP values, the second most important factor is ridesharing travel
time. The WTP value of each ridesharing travel time level was calculated based on the
first level of ridesharing travel time, which is “up to 10 min longer travel time compared
to the participant’s current travel time”. For level two and level three of the ridesharing
travel time attribute, the participants were more likely to pay USD 0.83 and USD 1.85,
respectively.
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Table 8. Willingness to pay for each attribute.

Attribute Level Willingness to Pay (USD)

Number of transfers
2 2.24
3 6.45

Ridesharing travel time compared to
the current travel time

2 0.83
3 1.85

Ridesharing incentive 2 −0.16
3 0.65

Compared to the first level of ridesharing incentive, USD 150, participants were
willing to pay USD 0.65 when receiving USD 250 as a ridesharing incentive. However, the
results indicate that participants are not likely to pay when the incentive is only USD 200.
It could be interpreted that the USD 50 variance between ridesharing incentive levels is
not significant enough, meaning the p-value of “ridesharing incentive: level 2” in Table 7
is not significant. This could be addressed by increasing the variance between incentive
levels. It is also possible that our design used incentive levels that were too low. It is, of
course, conceivable that a sufficiently high level of monetary incentive would make any
option fully attractive, and thus we only used conservative amounts in this study. Based
on a complete cost–benefit analysis of such RSS options, one can calculate the plausible
maximum amounts of incentives and use that in future studies.

In summary, the analysis results validate our hypotheses and behavior expectations
that a multimodal ridesharing system with fewer transfers, shorter travel times, and more
usage incentives will have a higher level of participation. Based on their willingness to pay,
potential users value fewer transfers the most.

6. Summary and Conclusions

This paper assessed individual choice behaviors for multimodal ridesharing systems
(RSS). A web-based survey provided the data to examine the relevant impact factors
with conjoint analysis and discrete choice modeling. The results demonstrate the relative
magnitude of multimodal RSS’ factors, and reveal which factors better encourage the use
of such ridesharing systems. The results reinforce the importance and viability of factor
estimation modeling, and the significance of the “number of transfer” factor in how people
choose to make their trips. Future research should continue to improve the reliability of
survey-based factorial analysis by incorporating current multimodal RSS’ factors, and
by developing more specific attitudinal statements to expand latent factor analysis, such
as safety factors. Particularly, considering the COVID-19 situation, people might place
more weight on safety while using different ridesharing modes. By conducting further
studies, it is expected that insights will be gained regarding the changes in the perception
of ridesharing. Improving these models will promote better planning, engineering, and
operations in many regions and communities across the United States, which have not yet
been well studied regarding the potential of multimodal ridesharing systems.
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