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Abstract: In response to the digital revolution, nowadays, many companies operate online and offline
businesses in parallel to ensure their future competitiveness. This research examines the inventory
strategy for multi-product vendor-buyer supply chain systems, considering space constraints and
carbon emissions, in order to improve competence in managing online and offline integrated orders.
We amalgamate costs and emissions in transport and storage. Here, we divide the warehouse of the
buyer into two stages: one for satisfying online orders and the other for satisfying offline orders.
We also assume that additional crashing costs reduce the lead times for receiving products in the
buyer’s warehouse. This study demonstrates a mathematical model in the form of a constrained
non-linear programme (NLP) and derives a Lagrangian multiplier method to solve it. An iterative
solution procedure is designed in order to attain sustainable manufacturing decisions, which are
illustrated numerically.

Keywords: dual-channel; space constraint; carbon emission; Lagrangian multiplier

1. Introduction

The modest business environment may amplify the need for industrial storage in
order to grasp a higher assortment of products and serve a broader topographical zone of
consumers. We should think about stretching out our warehousing abilities to satisfy our
commerce and clientele needs more readily throughout this development and extension.
The frequent warehouse configurations are either centralized or decentralized. Central-
ization involves a primary site that supplies all the ordered products to the various sites,
such as suppliers, buyers, etc. Decentralization is a method of controlling the batches of
various warehouses that send out the products to multiple locations to better aid different
markets or store various products. The well-known merit of centralized warehousing is
the reduction in operating costs. A significant drawback to centralization is the increased
shipping costs. The merits of decentralizing are the reduction in the delay of material han-
dling and an increased ability to store products. The biggest problem with decentralization
is the increased operating costs.

Strack & Pochet [1] studied a coordinated supply chain (SC) model for warehouse and
inventory planning. Their research goal was to appraise the value of integrating tactical
warehouse and inventory decisions. Sainathuni et al. [2] designed an NLP model for the
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warehouse transportation problem involving multiple vendors, stores, and periods in an SC
system. Yanlai & Fangming [3] considered the trade credit period in a two-warehouse SC
model for deteriorating items. Payel & Bibhas [4] derived a two-warehouse integrated SC
model considering quantity discount and demand depending on the stock in an imperfect
manufacturing process. Chakraborty et al. [5] studied a two-warehouse trade-credit model
with Weibull distribution deterioration and inflation. Alawneh & Zhang [6] derived a
dual-channel SC model for fulfilling online and offline orders. Peng et al. [7] designed a
buy-online-and-deliver-from-store strategy for a dual-channel SC considering the retailer’s
location advantage.

Communication technology is the transfer of messages (information) among people
and/or machines through the use of technology. This processing of information can help
people make decisions, solve problems, and control machines. Sandeep et al. [8] discuss the
vital technologies and opportunities within Food Logistics 4.0. In this connection, an SC can
be defined as the integration of all activities associated with the flow and transformation of
finished products, from the raw materials through to the end-user, as well as the associated
information flows, through improved supply chain relationships in order to achieve a
sustainable competitive advantage. This study will investigate the impact and role of
information technology on inventory management. Supply chain management (SCM)
addresses the handling of information and material across the entire chain, including
producers, suppliers, retailers, distributors, and customers. This study aims to examine the
effectiveness and role of the developed technology in the handling of material.

The multi-echelon SC is a familiar network structure for large-scale companies. Chen
et al. [9] addressed a coordination inventory problem for online sales in a drop-shipping
environment. Fichtinger et al. [10] identified the environmental impact of warehouse
inventory management. Ouyang et al. [11] designed an integrated SC model under ca-
pacity constraints with a trade credit period. Priyan & Uthayakumar [12] presented a
two-echelon SC model for multi-items, including recovery options with trade credit and
variable lead times considering multi-constraints. Xu et al. [13] provided the optimal in-
ventory strategies under a centralized and decentralized SC system. Aslani & Heydari [14]
addressed collaborated dual-channel SCs with regard to the issues of pricing and product
greenness under channel disruption. He et al. [15] designed a structure for a dual-channel
closed-loop SC under a government subsidy. Mojtaba & Mehdi [16] investigated an inter-
SC cooperation strategy to reduce the time-dependent deterioration costs by considering
sharing warehouses. Javad et al. [17] derived dual-channel SC coordination considering
targeted capacity allocation under uncertainty. Taleizadeh et al. [18] addressed a multi-
buyer multi-vendor SC problem with limited capacity. Kurt et al. [19] present a model and
solution methodology for production and inventory management problems that involve
multiple resource constraints. Müge & Onur [20] built a two-stage stochastic model with
budget constraints for the two-product case and determined its optimal solution using
Lagrangian multiplier conditions. Priyan & Uthayakumar [12,21] solved SC problems
using the Lagrangian multipliers method under various environments.

Another problem with inventory communication between the buyer and the seller
is the lead time. The decline in the lead time and backorder price discounts becomes
significant when the SC results from an uncertain demand. Hoque & Goyal [22], and
Hoque [23], examined the batch-size effect and shortened lead times on renewing the stock
strategies of the relationship between the supplier and the purchaser. Modak & Kelle [24]
have indicated a double-channel SC where the client can buy online or from the stores
derived via DFA. Priyan & Mala [25] suggest a healthcare SC model considering the varying
quality characteristics for the raw materials and finished products, varying lead times,
and service level constraints. Myron et al. [26] developed a model for pricing, lead-time
quotations and delay compensation in a Markovian make-to-order production or service
system with strategic customers who exhibit risk aversion. Bikash et al. [27] propose a
smart SC model with variable lead times and variance.
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Emissions from carbon trap heat in the atmosphere, making the planet warmer. The
increase in greenhouse gases within the atmosphere in the last 150 years has resulted
from increased human practices [28], as shown in Figure 1. Fossil fuel combustion from
generating electricity, heat, and transport is the main source of carbon released into the
atmosphere. The primary sources of carbon pollution from industries are the burning
of fossil fuels to generate energy, and the greenhouse gases emitted from the chemical
reactions that produce goods from raw materials. The emissions rise and fall from year to
year depending on fuel prices, changes in the economy, and other factors. Climate change
resulting from carbon pollution has led to high costs that are already being felt globally.
There is a need for developing policies that will shift the carbon pollution costs facing the
polluters. This will reduce carbon emissions across all sectors, such as industry, energy,
and transportation. The best option would be setting a price for carbon that shifts the cost
to the polluters, which will reduce greenhouse gas emissions.
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The literature on the emissions of carbon in the inventory system has risen significantly
over the past few years. Hammami et al. [29] designed two multi-stage SC models with
lead-time limitations in carbon emission tax and cap regulation. Li et al. [30] report the
development of two models for the SC system, and the incorporation of carbon emissions
where there are operation problems with production and transport operations found in the
cap-and-trade rules and the regulation for combined carbon cap-and-trade and tax. Tang
et al. [31] developed the reduction of emissions in the transport industry and inventory
management found in the (R, Q) inventory policy. Halat & Hafezalkotob [32] studied the
effect of synchronization and the regulation of carbon-on-carbon emissions, inventory costs,
and the objective role of the government by the game theory approach. A few more papers
have also been published in the field of carbon emissions [33–36]. Table 1 summarizes an
overview of the reviewed literature.

Firms introducing online sales are facing many challenges in terms of logistics and
delivery processes, such as large volumes of very small orders, short delivery lead times,
flexible delivery, the capacity of the warehouse, and the picking and packing process for
single unit orders, in addition to the usual challenges of the conventional business. Ware-
houses or distribution centers must be ready to prepare orders coming from both offline
stores and online shoppers. The conventional warehouse was designed for physical stores
and delivery does not work under a dual-channel business environment. For example,
warehouse workers cannot use the same picking patterns for online orders as for physical
shoppers. Warehouses operating in the current digital era of e-commerce must have the
all-purpose infrastructure, which is capable of sharing information, interconnectedness,
and handling different orders from different customer segments with various features,
such as diverse order sizes and delivery lead times (McCrea [37]).
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The emergence of COVID-19 in 2020 prompted a global economic collapse, with the
economic effect exceeding that of the 2008 financial crisis [38]. COVID-19 clearly had a
detrimental impact on international commerce, the service sectors, manufacturing, and
supply chains, and many firms have suffered from insolvency or a lack of money (Zhang
et al. [39]). In the economic recovery and transformation of enterprises, green finance can
promote the green capital market to actively fight the epidemic and serve and support
the real economy with a shortage of funds [38,40]. Among the challenges in running the
dual-channel warehouse are how to organize the warehouse to control carbon emissions,
and how to manage inventory to fulfill both online and offline (retailer) orders, where the
orders from different channels have different features.

Table 1. Literature review overview.

Author(s) Integrated
Model

Multi-
Channel

Controlable
Lead Time

Carbon
Emission

Space
Constraint

Stracket al. [1]
√

Sainathuni et al. [2]
√

Yanlaiet al. [3]
√

Payel et al. [4]
√ √

Chakraborty et al. [5]
√

Alawnehet al. [6]
√

Ouyang et al. [11]
√ √

Priyanet al. [12]
√ √ √

Aslani et al. [14]
√ √

Priyan et al. [25]
√ √

Hammami et al. [30]
√ √

Li et al. [31]
√ √

Tang et al. [32]
√

Halat et al. [33]
√ √

Qingguo et al. [34]
√ √

Benjaafar et al. [41]
√

This paper
√ √ √ √ √

√
Factors included in the research.

Although numerous studies address the multi-echelon SC, only a few have applied
an inventory model in a multi-channel multi-echelon SC considering multiple products. To
the best of our knowledge, no research has considered carbon emissions and controllable
lead times aiming to optimize carbon emission policies with minimum system costs. The
key contribution of this research is to fill this research gap. We attempt to respond to the
following questions from the assumption and the model set:

1. If the lead-time demand is uncertain, what would be the economic inventory approach
for the industry?

2. How can we adjust the operations to reduce carbon emissions?
3. What impacts do space constraints have during decision-making?
4. How can we improve efficiency in handling online and offline integrated orders?

The rest of the paper follows the consequent design: Section 2 shows the required
notations and assumptions of the research. The mathematical model is constructed in
Section 3, and Section 4 studies the solution procedure of the problem. Section 5 discusses
the sensitivity and numerical analyses. Section 6 concludes the paper.
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2. Notations and Assumptions
2.1. Notations

M Number of finished products (or products) and raw material families controlled in the
system

i Index for item
j Index for stage, where j = 1 for warehouse area to satisfy online demand, and j = 2 for

warehouse area to satisfy both retail and online demands
Pi Production rate for the ith item
Si Setup cost for the ith item
hi Holding cost for the ith item
c Price of the fuel
c0 Cost of carbon emissions per unit released
g0 Unit fuel consumption for the unloaded vehicle
g1 Unit fuel consumption for the loaded vehicle
α Minimum required space probability
W Floor space of the entire warehouse
R(L) Crashing cost
T1i Production time

For ith raw material family
Awi Ordering cost
hwi Holding cost per unit time
ϑi Defect rate in a lot
Qwi Replenished quantity for production
rsi Screening rate
Sci Screening cost
Sdi

Disposal cost
lwi Labor cost

For item i in stage j
xij Demand during lead time
Dij Rate of demand
σij Standard deviation of demand during lead time
Aij Order cost per order
hij Holding cost per unit time
γij Storage space
rij Reorder point
βij The fraction of shortage backordered (0 ≤ βij ≤ 1)
π0ij Penalty cost for a loss of sale including lost profit
πyij Shortage cost per unit backordered
f (xij) Probability density function (p. d. f) of lead-time demand

Decision variables
Qij Ordered quantity for item i in Stage j
n Total number of shipments
L Lead time
θ Lagrangian multiplier

2.2. Assumptions

1. This single vendor-buyer system is dealing with M finished products and raw material
families. A raw material family is a group of raw materials that are converted to a
single finished product.

2. The buyer’s warehouse is divided into two stages. Stage 1 is for sending small-size
online customer orders, while Stage 2 is for fulfilling offline large-size orders. Both
Stages 1 and 2 obtain internal shipments from Stage 2 and the supplier, respectively.
In addition, the reorder point of each stage parallels an installation inventory for that
stage (see Alawneh & Zhang [6,42,43]).

3. An external supplier delivers all ordered quantities in a single delivery for raw
material family i.
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4. For the ith product at stage j, the reorder point is rij = expected demand during
L
(

DijL
)
+ the safety stock

(
sij
)
, and sij = kij × standard deviation of L, i.e.,

rij = DijL + kijσij
√L , where kij is the safety factor and satisfies P(xij > rij) = qij, and

qij signifies the acceptable stock-out chance for item i during L at stage j.
5. The lot-size, Qi2, is placed when its inventory level falls to ri2 because the buyer

follows a continuous review strategy.
6. For M products, the lead time, L, is comprised of N jointly sovereign modules. The

Jth module has a normal period bJ , a minimum period aJ , and a crashing cost per unit
time cJ . It rearranges cJ such that c1 < c2 < . . . < cN . The modules of L are crashed
one at a time, starting from the 1st module, because it has the minimum unit crashing
cost, and then the 2nd module, and so on.

7. Let L0 = ∑N
J=1 bJ , and LJ be the length of L with modules 1, 2, . . . , J crashed

to their minimum period, then LJ can be derived as LJ = L0 − ∑J
f=1

(
b f − a f

)
,

J = 1, 2,. . . , N ; and for M products, the crashing cost per cycle R(L) is derived by
R(L) = cJ

(
LJ−1 − L

)
+ ∑J−1

f=1 c f

(
b f − a f

)
, L ∈

[
LJ , LJ−1

]
, as given in [26].

3. Model Development

The geometrical picture of the proposed dual-channel two-echelon SC system is
expressed in Figure 2.
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3.1. Model Formulation for the Vendor
3.1.1. Cost of Raw Material Family

For raw material family i, the replenishment quantity Qwi is received at the beginning
of each cycle time nQi2

Di2 instantaneously. The expected order cost per unit time = Awi Di2
nQi2

.
Raw material families are screened at a rate of rsi to the distinct perfect and imperfect

raw material family because of the imperfect quality in each ordered quantity, Qwi. At the
end of the screening process, imperfect raw material families are disposed of as a single lot
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at the lowest disposal price per unit item. Screening cost = SciQwi
nQi2

. The disposal cost for

imperfect raw material families per unit time = SdiϑiQwi Di2
nQi2

.

Let (1− ϑi)Qwi = PiT1i where T1i =
nQi2

Pi
. That is,

Qwi =
nQi2

(1− ϑi)
for all i = 1, 2, 3, . . . , M. (1)

Holding costs for a perfect and imperfect raw material family per unit time are
hwi(1−ϑi) Qwi Di2

nQi2
and hwiϑiQ2

wi Di2
rsinQi2

, respectively. Then the labor cost for all raw material families

is lwiQwi Di2
nQi2

.
Let ETCwi(Qi2, Qwi, n) be the vendor’s expected total cost for the ith raw material

family, which is the accumulation of the expected order, holding, screening, labor, and
disposal costs.

That is,

ETCwi(Qi2, Qwi, n)

= Awi Di2
nQi2

+
hwiE(ϑi)Q2

wi Di2
rsinQi2

+ hwi(1−E(ϑi))Qwi Di2
nQi2

+ SciQwi
nQi2

+ lwiQwi Di2
nQi2

+ SdiE(ϑi)Qwi Di2
nQi2

(2)

Using Equations (1) and (2), we have

ETCwi(Qi2, n) =
AwiDi2
nQi2

+ hwiDi2 +
hwiE(ϑi)nQi2Di2

rsi(1− E(ϑi))
2 +

Di2
1− E(ϑi)

(Sci + lwi + SdiE(ϑi))

Now, the expected total cost for M raw material families per unit time is

ETCw(Qi2, n) =
M

∑
i=1

[ETCwi(Qi2, n)] =
M

∑
i=1

[
AwiDi2
nQi2

+ hwiDi2 +
hwiE(ϑi)nQi2Di2

rsi(1− E(ϑi))
2 +

Di2
1− E(ϑi)

(Sci + lwi + SdiE(ϑi))

]

3.1.2. Cost of Finished Products

In the proposed scenario, the vendor initiates the production at the rate and obtains the
product in n lots, each of size Qi2(i = 1, 2, . . . , M). The initial lot Qi2 is ready for shipment
after the period of Qi2

Pi
, and the vendor continues to deliver the product on average every

unit of time Qi2
Di2

until the inventory level becomes 0.
Hence, the vendor’s expected on-hand inventories for product i is the difference of

the accumulated inventory of the vendor and the buyer. According to Priyan & Uthayaku-

mar [12], the inventory of product i for the vendor is nQi2

(
Qi2
Pi

+ (n− 1)Qi2
Di2

)
− n2Q2

i2
2Pi

units,

as well as the accumulated inventory for the buyer, which is Q2
i2

Di2
(1 + 2 + . . . + (n− 1)).

Henceforth, the vendor’s expected inventory per unit time is

EHC(Qi2, Pi, n) =
[{

nQi2

(
Qi2
Pi

+ (n− 1)Qi2
Di2

)
− n2Q2

i2
2Pi

}
−
{

Q2
i2

Di2
(1 + 2 + 3 + . . . + (n− 1))

}
Di2

nQi2

]
= Qi2

2

[
n
(

1− Di2
Pi

)
− 1 + 2 Di2

Pi

]
The holding and setup costs for the ith product per unit time are hi

Qi2
2

[
n
(

1− Di2
Pi

)
− 1 + 2 Di2

Pi

]
and Si

Di2
nQi2

, respectively.
Let g0 and g1 be the unit fuel consumption for the unloaded (return trip) and loaded

vehicle, respectively. In this research, the amount of fuel ingested for the vendor’s trans-
portation vehicle to and from is g1Qi2 and g0, respectively. Thus, the total amount of fuel
ingested for replenishment is g0 + g1Qi2.
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Hence, the transportation cost per unit of time for ith is product = cDi2
nQi2

(g0 + g1Qi2).
The vendor’s expected total cost, ETC f i(Qi2, n), for the finished product i, equals the

sum of the setup, holding, and transportation costs. That is,

ETC f i(Qi2, n) = Si
Di2

nQi2
+ hi

Qi2
2

[
n
(

1− Di2
Pi

)
− 1 + 2

Di2
Pi

]
+

cDi2
nQi2

(g0 + g1Qi2)

The expected total cost per unit time for M finished products is

ETC f (Qi2, n)=
M

∑
i=1

ETC f i(Qi2, n)

=∑M
i=1

[
Si

Di2
nQi2

+ hi
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2

Di2
Pi

}
+

cDi2
nQi2

(g0 + g1Qi2)

]
3.1.3. Cost of Carbon Emission

In this model, we consider that transport and storage produce the total quantity of
carbon emissions. Thus, on the basis of the features of transport and storage, the quantity of
emissions is the sum of emissions from transportation, denoted by Π1(Qi2, n), and storage
denoted by Π2(Qi2, n). That is,

Π(Qi2, n) = Π1(Qi2, n) + Π2(Qi2, n)
= nθ1(g0 + g1Qi2) + (w0 + w1EHC(Qi2, Pi, n))θ2

Here, θ1 and θ2 are the carbon emission factors for fuel and energy. In Π2(Qi2, n), w0
and w1 are fixed and the unit variable is the energy ingested for storage.

Consequently, the vendor’s overall carbon emissions cost for M products is derived by:

Π(Qi2, n) =
M

∑
i=1

[
Di2c0nθ1

nQi2
(g0 + g1Qi2) +

(
w0 + w1

Qi2
2

{
n
(

1− Di2
Pi

)
− 1 +

2Di2
Pi

})
c0θ2

]
Then the expected total cost for the vendor for M products is

ETCV(Qi2, n) = ETCw(Qi2, n) + ETC f (Q, n) + Π(Qi2, n)

ETCV(Qi2, n) =
M
∑

i=1

[
Awi Di2

nQi2
+ hwiDi2 +

hwiE(ϑi)nQi2Di2
rsi(1−E(ϑi))

2 + Di2
1−E(ϑi)

(Sci + lwi + SdiE(ϑi)) + Si
Di2

nQi2

+hi
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2 Di2

Pi

}
+ Di2c0θ1

Qi2
(g0 + g1Qi2) +

cDi2
nQi2

(g0 + g1Qi2) +
(

w0 + w1
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2Di2

Pi

})
c0θ2

] (3)

3.2. Inventory Model for the Buyer

The buyer uses a dual-channel warehouse that is divided into two stages. Stage 1 is for
sending small-size online customer orders, while Stage 2 is for fulfilling offline large-size

orders. The ith product’s ordering cost at jth stage =
AijDij

Qij
for j = 1, 2.

Now the average inventory level for Stage 2 and Stage 1 are the sum of the average
cycle inventory and the safety inventory, expressed as Qi2

2 + ki2σi2
√

L, and Qi1
2 + ki1σi1

√
L,

respectively. Hence the holding cost for the ith product at Stage 2 is hi2

(
Qi2
2 + ki2σi2

√
L
)

,

and Stage 1 is hi1

(
Qi1
2 + ki1σi1

√
L
)

. The expected shortage of the ith product at Stage

2 = E(xi2 − ri2)
+, and the expected backorders = βijE(xi2 − ri2)

+. The backorder cost
= Di2

Qi2
(πyi2βi2 + π0i2(1− βi2)) E(xi2 − ri2)

+ for the ith product at Stage 2.
For the ith product at Stage 2, shortages occur when xi2 > ri2. Therefore, for the ith

product at Stage 2, the buyer’s expected shortage at the end of the cycle time is

(xi2 − ri2)
+ =

∫ ∞

ri2

(xi2 − ri2) f (xi2)dxi2 = σi2
√

Lψ(ki2)
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The backorder cost per unit time = Di2
Qi2

(πyi2βi2 + π0i2(1− βi2))σi2
√

Lψ(ki2).
Similarly, the expected backorder cost per unit time for the ith product at Stage 1 is

Di1
Qi1

(πyi1βi1 +π0i1(1− βi1))σi1
√

L ψ(ki1). Thus, the buyer’s expected total cost is comprised
of the ordering, holding, backorder, and crashing costs.

That is,

ETCB(Qi1, Qi2, L) =
M
∑

i=1

[
Ai2Di2

Qi2
+ Ai1Di1

Qi1
+ hi2

(
Qi2
2 + ki2σi2

√
L
)
+ hi1

(
Qi1
2 + ki1σi1

√
L
)

+Di2
Qi2

(πyi2βi2 + π0i2(1− βi2))σi2
√

Lψ(ki2)

+ Di1
Qi1

(πyi1βi1 + π0i1(1− βi1))σi1
√

Lψ(ki1) +
Di2
Qi2

R(L)
] (4)

Now the joint expected total cost, IETC(Qi2, Qi1, L, n), per unit time for M products
can be stated as the sum of ETCV(Qi2, n) (given in Equation (3)) and ETCB(Qi1, Qi2, L)
(given by Equation (4)). That is,

IETC(Qi2, Qi1, n, L) =
M
∑

i=1

[
Awi Di2

nQi2
+ hwiDi2 +

hwiE(ϑi)nQi2Di2
rsi(1−E(ϑi))

2

+ Di2
1−E(ϑi)

(Sci + lwi + SdiE(ϑi)) + Hi
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2 Di2

Pi

}
+Di2c0θ1

Qi2
(g0 + g1Qi2) + Si

Di2
nQi2

+ cDi2
nQi2

(g0 + g1Qi2)

+
(

w0 + w1
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2Di2

Pi

})
c0θ2

+ Ai2Di2
Qi2

+ Ai1Di1
Qi1

+ hi2

(
Qi2
2 + ki2σi2

√
L
)
+ hi1

(
Qi1
2 + ki1σi1

√
L
)

+Di2
Qi2

(πyi2βi2 + π0i2(1− βi2))σi2
√

Lψ(ki2)

+ Di1
Qi1

(πyi1βi1 + π0i1(1− βi1))σi1
√

L ψ(ki1) +
Di2
Qi2

R(L)
]

(5)

Now we include the buyer’s warehouse capacity constraint. Then, similar to Alawneh
and Zhang [6], we have the constraint ∑i[(γi2(Qi2 + ri2) + γi1(Qi1 + ri1)] ≤ W + µY +
Z1−ασY, where Y = ∑i ∑j γijxij,µY = ∑i ∑j γijµijσ

2
Y = ∑i ∑j γ2

ijσij, and Z1−α is the value of
the cumulative probability distribution of the demand at point 1− α.

Then ∑i

[(
γi2(Qi2 + Di2L + Ki2σi2

√L
)
+ γi1

(
Qi1 + Di1L + ki1σi1

√L
)]
≤W + µY +

Z1−ασY.
That is, warehouse space constraint is

M

∑
i=1

[
γi2Qi2 + γi1Qi1 + (γi2Di2 + γi1Di1)L + (γi2ki2σi2 + γi1ki1σi1)

√L
]
≤W + µY + Z1−ασY (6)

Now our aim is to obtain the optimal of Qi2, Qi1, L, and n for M products that minimize
the IETC(Qi2, Qi1, n, L), as given in Equation (5), and satisfy the storage constraint, as
shown in Equation (6). The mathematical model of the problem is

Min IETC(Qi2, Qi1, n, L) =
M
∑

i=1

[
Awi Di2

nQi2
+ hwiDi2 +

hwiE(ϑi)nQi2Di2
rsi(1−E(ϑi))

2

+ Di2
1−E(ϑi)

(Sci + lwi + SdiE(ϑi)) + hi
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2 Di2

Pi

}
+Di2c0θ1

Qi2
(g0 + g1Qi2) + Si

Di2
nQi2

+ cDi2
nQi2

(g0 + g1Qi2)

+
(

w0 + w1
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2Di2

Pi

})
c0θ2 +

Ai2Di2
Qi2

+ Ai1Di1
Qi1

+ hi2

(
Qi2
2 + ki2σi2

√
L
)
+ hi1

(
Qi1
2 + ki1σi1

√
L
)

+Di2
Qi2

(πyi2βi2 + π0i2(1− βi2))σi2
√

Lψ(ki2)

+ Di1
Qi1

(πyi1βi1 + π0i1(1− βi1))σi1
√

L ψ(ki1) +
Di2
Qi2

R(L)
]

subject to,
M

∑
i=1

[
γi2Qi2 + γi1Qi1 + (γi2Di2 + γi1Di1)L + (γi2ki2σi2 + γi1ki1σi1)

√L
]
≤W + µY + Z1−ασY (7)
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4. Solution Technique

The problem, which is expressed in Equation (7), is a constrained NLP. We use the
Lagrangian multiplier optimization technique to solve the proposed NLP. That is, we
optimize the succeeding function by adding a Lagrange multiplier:

Min LF(Qi2, Qi1, n, L, θ) =
M
∑

i=1

[
Awi Di2

nQi2
+ hwiDi2 +

hwiE(ϑi)nQi2Di2
rsi(1−E(ϑi))

2

+ Di2
1−E(ϑi)

(Sci + lwi + SdiE(ϑi)) + hi
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2 Di2

Pi

}
+Di2c0θ1

Qi2
(g0 + g1Qi2) + Si

Di2
nQi2

+ cDi2
nQi2

(g0 + g1Qi2)

+
(

w0 + w1
Qi2
2

{
n
(

1− Di2
Pi

)
− 1 + 2Di2

Pi

})
c0θ2 +

Ai2Di2
Qi2

+ Ai1Di1
Qi1

+ hi2

(
Qi2
2 + ki2σi2

√
L
)
+ hi1

(
Qi1
2 + ki1σi1

√
L
)

+Di2
Qi2

(πyi2βi2 + π0i2(1− βi2))σi2
√

Lψ(ki2)

+Di1
Qi1

(πyi1βi1 + π0i1(1− βi1))σi1
√

L ψ(ki1) +
Di2
Qi2

R(L)

+θ{(γi2Qi2 + γi1Qi1 + (γi2Di2 + γi1Di1)L

+(γi2ki2σi2 + γi1ki1σi1)
√L

)
−W − µY − Z1−ασY

}]

(8)

Property 1. For fixed Qi2, Qi1, θ and L ∈
[
LJ , LJ−1

]
, LF(Qi2, Qi1, n, L, θ) is convex in n.

Proof. Take the first- and second-order derivatives of Equation (8) LF(Qi2, Qi1, n, L, θ)
with respect to n, and we have,

∂LF(Qi2,Qi1, n, L,θ)
∂n = − Di2

n2Qi2
(Awi + Si)− cDi2

n2Qi2
(g0 + g1Qi2)

+ hwiE(ϑi)Qi2Di2
rsi(1−E(ϑi))

2 + (hi + w1c0θ2)
Qi2
2

(
1− Di2

Pi

)
and

∂2LF(Qi2,Qi1, n, L,θ)
∂n2 = 2Di2

n3Qi2
(Awi + Si) +

2cDi2
n3Qi2

(g0 + g1Qi2) > 0

Therefore, for fixed Qi2, Qi1, θ and L ∈
[
LJ , LJ−1

]
, LF(Qi2, Qi1, n, L, θ) is convex in n.

�

Property 2. For fixed Qi2, n, θ and L ∈
[
LJ , LJ−1

]
, LF(Qi2, Qi1, n, L, θ) is convex in Qi1.

Proof. Take the first- and second-order derivatives of LF(Qi2, Qi1, n, L, θ) with respect to
Qi1, and we have,

∂ LF(Qi2, Qi1, n, L, θ)

∂Qi1
= −Ai1Di1

Q2
i1

+
hi1
2
− Di1

Q2
i1
(πyi1βi1 + π0i1(1− βi1))σi1

√
L ψ(ki1) + θγi1 (9)

and ∂2LF(Qi2,Qi1, n, L,θ)
∂Q2

i1
= 2Ai1Di1

Q3
i1

+ 2Di1
Q3

i1
(πyi1βi1 + π0i1(1− βi1))σi1

√
L ψ(ki1) > 0.

Therefore, for fixed Qi2, n, θ and L ∈
[
LJ , LJ−1

]
, LF(Qi2, Qi1, n, L, θ) is convex in Qi1.

�

Result 3. For the given values of Qi2, n, θ, and L ∈
[
LJ , LJ−1

]
, and LF(Qi2, Qi1, n, L, θ), by

equating Equation (9) to zero, we attain the subsequent optimal lot size Qi1:

Qi1 =

2Di1

[
Ai1 + (πyi1βi1 + π0i1(1− βi1))σi1

√
L ψ(ki1)

]
hi1 + 2θγi1


1
2

(10)

Property 4. For fixed Qi1, n, θ and L ∈
[
LJ , LJ−1

]
, LF(Qi2, Qi1, n, L, θ) is convex in Qi2.
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Proof. Take the first- and second-order derivatives of LF(Qi2, Qi1, n, L, θ) with respect to
Qi2, and we have,

∂LF(Qi2,Qi1, n, L,θ)
∂Qi2

= − Di2
nQ2

i2
(Awi + cg0 + Si)− Di2

Q2
i2
(Ai2 + c0θ1g0)

−Di2
Q2

i2
(πyi2βi2 + π0i2(1− βi2))σi2

√
Lψ(ki2)− Di2

Q2
i2

R(L)

+ hi2
2 + hwiE(ϑi)nDi2

rsi(1−E(ϑi))
2 +

1
2 (hi + w1c0θ2)

(
n
(

1− Di2
Pi

)
− 1 + 2Di2

Pi

)
+ θγi2

(11)

and

∂2LF(Qi2,Qi1, n, L,θ)
∂Q2

i2
= 2Di2

nQ3
i2
(Awi + cg0 + Si) +

2Di2
Q3

i2
(Ai2 + c0θ1g0)

+ 2Di2
Q2

i2
(πyi2βi2 + π0i2(1− βi2))σi2

√
Lψ(ki2) +

2Di2
Q2

i2
R(L) > 0.

Therefore, for fixed Qi1, n, and L ∈
[
LJ , LJ−1

]
, LF(Qi2, Qi1, n, L, θ) is convex in Qi2.

�

Result 5. For the given values of Qi1, n, θ and L ∈
[
LJ , LJ−1

]
, LF(Qi2, Qi1, n, L, θ), by equating

Equation (11) to zero, we attain the subsequent optimal lot size Qi2:

Qi2 =


2Di2

[
Awi

n + Si
n + cg0

n + Ai2 + c0θ1g0 + (πyi2βi2 + π0i2(1− βi2))σi2
√

Lψ(ki2) + R(L)
]

2hwiE(ϑi)nDi2
rsi(1−E(ϑi))

2 + (hi + wic0θ2)
(

n
(

1− Di2
Pi

)
− 1 + 2Di2

Pi

)
+ hi2 + 2θγi2


1
2

(12)

Property 6. For fixed Qi2, Qi1, and n, LF(Qi2, Qi1, n, L, θ) is concave in L ∈
[
LJ , LJ−1

]
.

Proof. Take the first- and second-order derivatives of LF(Qi2, Qi1, n, L, θ) with respect to
L ∈

[
LJ , LJ−1

]
, and we have,

∂LF(Qi2,Qi1, n, L,θ)
∂L =

M
∑

i=1

[
−Di2

Qi2
cJ +

1
2
√

L
{hi2ki2σi2 + hi1ki1σi1

+ Di2
Qi2

π0i2(1− βi2)σi2ψ(ki2) +
Di1
Qi1

π0i1(1− βi1)σi1ψ(ki1) + θ[(γi2Di2 + γi1Di1) + (γi2ki2σi2 + γi1ki1σi1)]
}]

and

∂2LF(Qi2,Qi1, n, L,θ)
∂L2 = − 1

4L
3
2

M
∑

i=1

[
hi2ki2σi2 + hi1ki1σi1 +

Di2
Qi2

π0i2(1− βi2)σi2ψ(ki2)

+Di1
Qi1

π0i1(1− βi1)σi1ψ(ki1) + θ(γi2ki2σi2 + γi1ki1σi1)
]
< 0.

Therefore, for fixed Qi2, Qi1, θ and n, LF(Qi2, Qi1, n, L, θ) is concave in L ∈
[
LJ , LJ−1

]
.

�

Result 7. Since for fixed Qi2, Qi1, θ and n, LF(Qi2, Qi1, n, L, θ) is concave in L ∈
[
LJ , LJ−1

]
,

the minimum LF(Qi2, Qi1, n, L, θ) will occur at the endpoints of the interval
[
LJ , LJ−1

]
. Now we

take the first derivative of LF(Qi2, Qi1, n, L, θ) with respect to the Lagrangian multiplier θ,

M
∑

i=1

[
γi2

 2Di2

[
Awi

n +
Si
n +

cg0
n +Ai2+c0θ1g0+(πyi2βi2+π0i2(1−βi2))σi2

√
Lψ(ki2)+R(L)

]
2hwi E(ϑi)nDi2
rsi(1−E(ϑi))

2 +(hi+w1c0θ2)
(

n
(

1− Di2
Pi

)
−1+ 2Di2

Pi

)
+hi2+2θγi2


1
2

+γi1

{
2Di1[Ai1+(πyi1βi1+π0i1(1−βi1))σi1

√
L ψ(ki1)]

hi1+2θγi1

} 1
2
+ (γi2Di2 + γi1Di1)L

+(γi2ki2σi2 + γi1ki1σi1)
√

L−W − µY − Z1−ασY

]
= 0.

(13)
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Algorithm

Step 1. Set n = 1.
Step 2. For each LJ , J = 0, 1, 2, · · · , N execute Steps (2.1) to (2.3).
Step 2.1. Calculate the θ value by solving Equation (13).
Step 2.2. Using the value of θ, determine Qi1 and Qi2 from Equations (10) and (12),

respectively.
Step 2.3. Compute the corresponding LF(Qi2, Qi1, n, L, θ) using Equation (8).
Step 3. Find MinJ=0,1,2,··· ,N LF(Qi2, Qi1, n, L, θ).
Step 4. Set LF(Q◦i2, Q◦i1, n, L◦, θ◦) = MinJ=0,1,2,··· ,N LF(Qi2, Qi1, n, L, θ). Then the set

(Q◦i2, Q◦i1, L◦, θ◦) is the optimal solution for n.
Step 5. Set n = n + 1 and recap Steps 2–4 to find LF(Q◦i2, Q◦i1, n, L◦, θ◦).
Step 6. If LF(Q◦i2, Q◦i1, n, L◦, θ◦) ≤ LF(Q◦i2, Q◦i1, n− 1, L◦, θ◦), then jump to Step 5, or

else move to Step 7.
Step 7. If (Q∗i2, Q∗i1, L∗, n∗, θ∗) = (Q◦i2, Q◦i1, L◦, n− 1, θ◦), then the set (Q∗i2, Q∗i1, L∗, n∗,

θ∗) is an optimal solution.

5. Numerical Analysis

We carry out a numerical analysis to validate the applications and performance of the
proposed solution technology. The parameters are tabulated in Table 2. In Table 2, we take
a few appropriate values from Alawneh & Zhang [6], and carbon emission values from
www.eia.gov, accessed on 21 July 2021, which is the website of the U.S. Energy Information
Administration, and other values based on the following realistic observations:

• A2 > A1: The Stage 1 purchasing procedure seeks to refill products for Stage 2, but
Stage 2 replenishment necessitates ordering items from the provider. As a result, the
cost of buying Stage 2 from an external source is greater.

• h1 > h2: Because the necessary space to keep a unit in the online low-density region is
larger than that in the offline high-density area, the holding cost for the online channel
is higher than that for the offline channel.

• πy2 > πy1: The online channel’s backorder cost is designed to be lower than the
offline channels. Online orders are often smaller than offline orders, and online orders
offer greater flexibility in delivery schedules than offline orders. Because a shortage
in an offline order usually results in a higher penalty, based on the contract signed
between the vendors and the buyers, whereas a shortage in an online order has a
smaller economic impact on the vendors, it is reasonable to have a Stage 2 shortage
cost that is higher than the Stage 1 shortage cost.

• D2 > D1: Offline demand is often higher than online demand, and offline channel
demand has a bigger order size than online demand.

• γ1 > γ2: The assumption is based on the fact that, in Stage 2, the space required for
each unit placed on pallets is smaller than in Stage 1, when the goods are generally
stored in low-density storage systems, such as stands or racks, to allow individual
item selection.

• In the numerical experiment, we set θ1 = 0.01015 tonnes/gallons, θ2 = 0.00059 t/kWh
as default values. The values of θ1 and θ2 are taken from www.eia.gov, accessed on
21 July 2021, which is the website of the U.S. Energy Information Administration. As
well, we set w0 = 20, and w1 = 0.1 as the default values, similar to the existing work
of Tang et al. [32].

• Moreover, g0 and g1 are the unit fuel consumptions for the unloaded and loaded
vehicles, respectively. We set g0 = 20 gallons, and g1 = 0.1 gallon/unit as the default
values. In practice, g0 is usually much greater than 0. The following is an explanation.
To fulfill the required emission reduction objective, the reorder point is reduced,
lowering the average inventory level and, therefore, reducing the emissions from
storage. Simultaneously, the order quantity rises dramatically, resulting in a further
reduction in shipment frequency in order to save gasoline.

www.eia.gov
www.eia.gov
www.eia.gov
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Table 2. Numerical parameters.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

W 90,000 πy21 15 h11 8 ψ(k21) 0. 5201 h1 25

Z1−α 1.3 πy22 25 h12 2 ψ(k22) 0.5828 h2 20

P1 6500 π011 20 h21 6 Aw1 50 w0 20

P2 4350 π012 35 h22 1 Aw2 75 w1 0.1

D11 2500 π021 25 γ11 2 S1 300 ϑ1 0.02

D12 1500 π022 40 γ12 1 S2 450 ϑ2 0.02

D21 3800 β11 0.6 γ21 0.2 c 3.3 rs1 175,200

D22 2700 β12 0.7 γ22 0.1 c0 5 rs2 180,000

A11 25 β21 0.4 k11 0.75 g0 20 Sc1 0.3

A12 30 β22 0.6 k12 0.45 g1 0.05 Sc2 0.5

A21 50 σ11 4 k21 0.25 θ1 0.01015 lw1 50

A22 75 σ12 8 k22 0.5 θ2 0.00059 lw2 75

πy11 10 σ21 6 ψ(k11) 0.6394 hw1 10 Sd1 2

πy12 20 σ22 10 ψ(k12) 0.55 hw2 15 Sd2 3

Furthermore, the lead-time demand has three modules, with the data shown in Table 3,
similar to Banerjee [44], and Table 4 provides the data of the lead-time modules [25].

Table 3. Lead-time components data [44].

Lead-Time Module
i

Normal Period
bi (Days)

Minimum Period
ai (Days)

Unit Crashing Cost
ci ($/Days)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

Table 4. Summarized lead-time data [25].

Lead-Time (Week) R(L)

8 0

6 5.6

4 22.4

3 57.4

On the basis of the algorithm, we obtain the optimality of θ = 0.75, n = 2, L = 3,
lot-sizes Q11 = 199, Q12 = 431, Q21 = 352, Q22 = 391, and the corresponding expected
total cost LF(Q∗i2, Q∗i1, L∗, n∗, θ∗) = 386,840. The graphical depiction of the expected total
cost versus n is expressed in Figure 3.

5.1. Sensitivity Analysis

In this section, the sensitivity analysis is performed in order to know the effects of
the major parameters. This study is applicable when only one parameter has changed at a
time, and other parameters have been kept at their original values. The results are listed
in Tables 5–11, and the plots are shown in Figure 4. The sensitivity analysis will allow for
some productive managerial insights.
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Table 5. Sensitivity analysis where production rate Pi is changed.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

P1

+50% 0.85 6 3 248 532 442 485 435,681

+25% 0.85 6 3 221 501 402 435 410,026

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 161 395 312 368 368,952

−50% 0.75 3 2 134 321 291 315 346,858

P2

+50% 0.85 6 3 241 523 432 473 431,250

+25% 0.85 6 3 214 485 381 422 428,563

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 142 382 293 352 378,420

−50% 0.75 3 2 120 310 278 301 365,871

Table 6. Sensitivity analysis where Dij is changed.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

D11

+50% 0.90 6 3 279 552 462 513 442,572

+25% 0.85 6 3 252 523 421 454 431,036

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 182 402 323 371 372,958

−50% 0.65 3 2 165 341 302 335 355,848

D12

+50% 0.90 6 3 271 542 450 501 441,522

+25% 0.85 6 3 238 513 411 442 431,016

0% 0.75 3 2 199 431 352 391 385,840

−25% 0.75 3 2 172 389 313 361 371,828

−50% 0.75 3 2 152 374 283 323 354,727
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Table 6. Cont.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

D21

+50% 0.90 6 3 270 542 456 503 442,572

+25% 0.85 6 3 243 517 421 454 431,036

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 181 394 320 363 372,858

−50% 0.75 3 2 160 338 295 331 355,748

D22

+50% 0.90 6 3 261 532 442 492 441,412

+25% 0.85 6 3 231 503 402 432 430,812

0% 0.75 3 2 199 431 352 391 385,840

−25% 0.75 3 2 168 381 302 351 371,448

−50% 0.75 3 2 149 370 274 313 354,528

Table 7. Sensitivity analysis where ordering cost Aij is changed.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

A11

+50% 0.75 3 2 215 458 371 411 388,541

+25% 0.75 3 2 209 447 363 402 387,453

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 186 423 344 382 385,532

−50% 0.75 3 2 178 411 332 374 384,514

A12

+50% 0.75 3 2 211 451 361 407 388,648

+25% 0.75 3 2 202 442 354 402 387,423

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 181 420 334 372 385,431

−50% 0.75 3 2 172 405 322 362 384,312

A21

+50% 0.75 3 2 212 456 368 402 388,531

+25% 0.75 3 2 207 444 360 397 387,442

0% 0.75 3 2 199 431 352 391 386,832

−25% 0.75 3 2 182 418 335 377 385,425

−50% 0.75 3 2 176 402 328 370 384,427

A22

+50% 0.75 3 2 210 452 363 400 387,532

+25% 0.75 3 2 204 440 358 395 386,432

0% 0.75 3 2 199 431 352 391 385,732

−25% 0.75 3 2 178 412 330 372 384,321

−50% 0.75 3 2 171 399 324 369 383,420
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Table 8. Sensitivity analysis where shortage cost πyij is changed.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

πy11

+50% 0.75 8 3 220 458 377 427 388,452

+25% 0.75 8 3 211 441 361 410 387,246

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 182 423 344 386 384,888

−50% 0.75 3 2 174 408 333 377 384,025

πy12

+50% 0.75 8 3 218 456 371 422 387,412

+25% 0.75 8 3 208 438 357 407 386,146

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 180 425 341 381 383,872

−50% 0.75 3 2 171 421 330 375 383,008

πy21

+50% 0.75 8 3 218 452 370 422 388,456

+25% 0.75 8 3 206 446 365 410 387,526

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 185 422 344 380 385,550

−50% 0.75 3 2 180 415 334 370 384,418

πy22

+50% 0.75 8 3 216 450 471 410 388,810

+25% 0.75 8 3 210 444 462 402 387,920

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 190 422 341 386 385,725

−50% 0.75 3 2 181 312 338 375 384,256

Table 9. Sensitivity analysis where penalty cost π0ij is changed.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

π011

+50% 0.75 6 2 205 440 362 405 387,250

+25% 0.75 6 2 201 436 357 399 387,002

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 192 428 346 386 386,620

−50% 0.75 3 2 188 421 341 380 386,458

π012

+50% 0.75 6 2 203 440 361 401 386,990

+25% 0.75 6 2 200 436 358 395 386,902

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 196 428 346 384 386,680

−50% 0.75 3 2 190 422 341 378 386,421

π021

+50% 0.75 6 2 202 441 360 400 387,880

+25% 0.75 6 2 200 438 357 394 386,868

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 197 426 348 388 386,620

−50% 0.75 3 2 195 420 342 385 386,411
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Table 9. Cont.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

π022

+50% 0.75 6 2 201 440 360 400 387,770

+25% 0.75 6 2 200 435 357 395 387,256

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 196 428 346 388 386,265

−50% 0.75 3 2 193 422 341 384 385,952

Table 10. Sensitivity analysis where raw material ordering cost Awi is changed.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

Aw1

+50% 0.75 3 2 208 443 462 477 387,456

+25% 0.75 3 2 205 438 458 470 387,002

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 195 426 344 381 385,520

−50% 0.75 3 2 190 419 340 374 385,001

Aw2

+50% 0.75 3 2 206 440 460 405 387,325

+25% 0.75 3 2 202 437 457 397 387,002

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 197 425 342 380 386,524

−50% 0.75 3 2 195 418 338 372 386,158

Table 11. Sensitivity analysis where setup cost Si is changed.

Parameter Percentage
Changes θ* L* n* Q*

11 Q*
12 Q*

21 Q*
22 LF(.)

S1

+50% 0.75 3 2 256 485 456 468 389,225

+25% 0.75 3 2 236 461 428 436 388,546

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 178 410 331 362 385,269

−50% 0.75 3 2 152 399 312 324 383,567

S2

+50% 0.75 3 2 246 480 452 462 389,124

+25% 0.75 3 2 230 458 420 430 388,824

0% 0.75 3 2 199 431 352 391 386,840

−25% 0.75 3 2 174 401 325 342 385,870

−50% 0.75 3 2 162 145 301 325 385,142
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Figure 4. Plots of the sensitivity analyses for major parameters: (a) Effects of production rate Pij; (b) Effects of production
rate Dij; (c) Effects of ordering cost Aij; (d) Effects of shortage cost πyij; (e) Effects of penalty cost π0ij; (f) Effects of raw
material ordering cost Awi; (g) Effects of setup cost Si.
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5.2. Managerial Insights and Discussion

On the basis of the behavioral changes, as reflected in Tables 5–11 and Figure 4, the
resulting managerial insights can be derived:

(1) The members of the SC system can condense their inventory costs, as well as their car-
bon emissions, by executing a collaboration apparatus for handling product streams.
As a result, collaboration assists both the government and the SC system in attaining
their goals. Though the collaborative design may be hard to execute in practice, it
necessitates a decision-maker with all of the partners’ details.

(2) An increasing value of Pi results (Table 5) in an increase in the number of deliveries,
and an increasing value of Qij increases the total costs, which indicates the increasing
value of the maximum inventory level. It increases the back-ordered quantity while
carbon emission factors are unchanged. Therefore, producers shouldn’t increase the
production rates so high that the holding costs increase by a large amount.

(3) The results from Tables 5–11 demonstrate the impact of inventory decisions on the
expected system costs, including the carbon emission costs. Consequently, industries
can reduce their emissions through operational alterations as an alternative to other
expensive techniques. Benjaafar et al. [41] agree on this viewpoint in their paper.

(4) The effects of the inventory strategies evaluated by this study are based on emissions,
the objective functions of the proposed inventory system, and inventory costs. The
results indicate that n∗ is extremely sensitive to the parameters of Pi, Dij, and πyij,
and is less sensitive to other parameters. The value of L∗ is extremely sensitive
to the parameters Pi, Dij, πyij, and π0ij, and less sensitive to the other parameters,
Aij, Si, Awi.

(5) A dual-channel company decision-maker must consider whether to sell products
offline, online, or through both channels, as well as the impact of online and offline
sales on the system costs. In such a situation, the suggested model is a valuable
decision support tool for estimating the incurred inventory-related costs. Table 6 and
Figure 4b show the outcomes for an item with various offline demand increments for
three distinct scenarios of online demand, namely, unchanged, increased, and reduced,
as a result of the addition of the offline demand. Decision-makers can choose which
channel to sell the products through based on the cost increase. The findings back the
notion that low-demand products should be offered online, whereas high-demand
items should be sold both online and offline. Xingyue & Haluk [45] examined and
compared consumer demand under product substitution when the price changes, or
the product stocks out, between online and offline markets, using a large-scale dataset
on consumer packaged goods and a random coefficients discrete choice model.

(6) In some situations, according to the nature of the business, we must choose a channel
preference in terms of which channel is preferred in order to meet demand. By chang-
ing the scarcity and penalty costs, we can simply include channel preference into our
model. Tables 8 and 9 and Figure 4d,e illustrate an example of shortage and penalty
costs and their effects on the channel preference. As we can observe in Tables 8 and 9
and Figure 4d,e, we keep the shortage and penalty costs constant for the offline
channel and increase the deficit and penalty costs for the online channel. As the cost
of online backorders rises, the offline fill rate falls, and the online fill rate rises. The
greater the online service level, the higher the online scarcity and penalty charges will
be.

(7) Modifications in batch sizes or order amounts, for example, have been shown to
reduce emissions successfully. In the context of a dual-channel two-echelon inventory
system, this article presents a new mathematical model that combines costs and
emissions in transit and storage to perform optimal operational changes.

(8) When transportation is the primary source of emissions, the overall quantity of
emissions falls as Qij rises. When transportation and storage account for the majority
of emissions, the total amount of emissions from transportation and storage rises
as the reorder point rij rises, although it may rise or fall with order quantity Qij,
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depending on the values of the parameters. Transportation-related emissions always
decrease as the order quantity increases.

(9) The value of the total system cost, LC(.), is highly sensitive with respect to the
parameters of Pi, and Dij, more sensitive to Si, and less sensitive to the parameters of
πyij, π0ij, Aij and Awi. Priyan and Uthayakumar [46] address the same phenomena in
their paper.

(10) There is a two-way relationship between energy consumption and carbon emissions.
The increase in energy consumption will significantly promote the rise of carbon
emissions, leading to the continuous deterioration of the environment. Given this fact,
we considered EHC(Qi2, Pi, n) in the amounts of emissions where EHC(Qi2, Pi, n) is
holding inventory.

(11) The greater the load, the greater the fuel consumption to move that load around,
especially in stop-and-go traffic where the load must be frequently accelerated and
decelerated. Even on long straight hauls, any increase in the load also increases the
vehicle’s rolling resistance at the cost of additional fuel. Because of this indisputable
fact, in the amounts of emissions, we considered the factor g1Qi2 where Qi2 is delivery
quantity. If the quantity Qi2 increases then, automatically, the fuel consumption for
the loaded vehicle increases.

(12) Many firms would willingly establish a carbon footprint reduction objective as an
important component of their social responsibility initiatives once the carbon emission
factor is taken into consideration. More significantly, large retailers, such as Walmart,
have established an emission reduction target for their suppliers as well as a timeline.
By the end of 2021, the firm wants to cut carbon emissions by 40 million metric tons
throughout its supply chain.

(13) As we discussed earlier in Section 1, among the challenges of running a dual-channel
warehouse are organizing the warehouse in order to help the government limit carbon
emissions and managing inventory to fulfill online and offline (retailer) orders with
different features. We provide the optimal inventory decisions for the firms facing
challenges in a dual-channel system, with the objective of minimizing system costs
and controlling carbon emissions. This study contributes to the existing literature
on warehouse management in several ways. First, it is the first work to analyze the
structure of the emerging dual-channel warehouses and to develop a structure related
to the inventory policy for such warehouses. Second, it develops a mathematical
model that determines the multi-item product inventory policy for the two areas
in integrated dual-channel warehouses, minimizing their total expected costs. The
constraint of warehouse space is also considered. Furthermore, the proposed solution
can be used to evaluate the performance of two-echelon dual-channel warehouse
systems by comparing the total system costs for different warehouse structures and
assessing the effects of adding a new sales channel. The solutions demonstrate that the
proposed model is appropriate to industries using a dual-channel inventory system.

6. Conclusions

The major goals of buyer’s warehouses are to maximize space utilization, lower
operating costs, and fulfill orders swiftly and reliably. These goals are frequently at odds
with one another. We need to store goods in high-density storage areas, such as on pallets
or in high beam storage systems, to achieve high space utilization. Meanwhile, the effective
order selection for online orders, which are often modest in size, needs complete access to
the stored products, which necessitates displaying them in low-density storage spaces, such
as on racks or stands. At the same time, the warehouse must maintain an ideal inventory
level for each item in order to deliver a high level of service. To fulfill both online and
offline orders, we evaluate the developing dual-channel warehouse.

For the purpose of determining the ordering quantities for both offline and online
channels, we study the two-channel warehouse two-echelon SC system considering carbon
emissions. We consider that transportation and storage produce a certain amount of carbon
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emissions in the system, and that the lead time can be controlled by crashing costs. More-
over, we consider the warehouse capacity for the buyer. This research aims to minimize
inventory and carbon emission costs while satisfying warehouse space constraints. We
formulate a constrained NLP and design a Lagrangian multiplier technique to find the opti-
mal decision variables. Numerical examples demonstrate the merit of the proposed model
for determining the optimal strategies for dual-channel warehouse multi-echelon systems.

In the future, one can extend this study to multi-constraints. Moreover, the setup/ordering
cost, which was constant in this study, should be considered a decision variable and
used to determine the impacts of decreasing setup costs. This research can be studied by
considering that buyers purchase products from multiple vendors. In addition, the present
study can be extended through to the service level limit and the trade credit period in the
inventory model.
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