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Abstract: The traffic signal control problem is an extensively researched area providing different
approaches, from classic methods to machine learning based ones. Different aspects can be considered
to find an optima, from which this paper emphasises emission reduction. The core of our solution
is a novel rewarding concept for deep reinforcement learning (DRL) which does not utilize any
reward shaping, hence exposes new insights into the traffic signal control (TSC) problem. Despite the
omission of the standard measures in the rewarding scheme, the proposed approach can outperform
a modern actuated control method in classic performance measures such as waiting time and queue
length. Moreover, the sustainability of the realized controls is also placed under investigation to
evaluate their environmental impacts. Our results show that the proposed solution goes beyond the
actuated control not just in the classic measures but in emission-related measures too.

Keywords: deep reinforcement learning; emission-reduction; sustainability; traffic signal control

1. Introduction
1.1. Motivation

According to the International Energy Agency (IEA), the transportation industry is
responsible for 24% of the direct carbon dioxide emission, three-quarters of which came
from road transportation in 2020. The reduction of CO2 emission has evolved into a
significant challenge because CO2 is a massive contributor to climate change [1]. The
emission of road transportation can be decreased in several ways, such as the utilization of
less polluting fuels like hydrogen [2], more energy-efficient vehicles [3], or the application
of intelligent transportation systems (ITS). ITS have the potential to mitigate congestion
having a profound effect on several aspects of our lives. Such aspects are more productive
hours, less emission, safer commute, and so forth. Consequently, this paper focuses on the
more efficient operation of signalized intersections because they are the prime bottlenecks
of urban transportation environments. Signalized intersections can be controlled more
productively by replacing the fixed-time operation approaches with actuated control
techniques simply by considering the incoming traffic flow of the crossings, which is called
the Traffic Signal Control (TSC) problem.

1.2. Related Work

The TSC problem has been tackled with several different approaches over time.
The earliest solutions utilized rule-based systems. These algorithms determine key states
with unique actions that can be used to reach a performance criterion. The authors in [4]
developed a Dynamic Traffic Signal Priority system that can handle real-time traffic and
transit conditions. In [5] a new system has been developed called REALBAND that iden-
tifies platoons in the network then predicts their arrival time to the intersection with the
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help of the fusion and filtering of traffic data. This paper also describes the solutions for
the arrival of conflicting platoons. Another well-studied solution is Genetic Algorithms
(GA). In [6] the authors developed a group-based optimization model that tackles the
safety and efficiency issues of the stage-based signal control approach in the case of mixed
traffic flows with unbalanced volumes. Ref. [7] proposes a novel Genetic Algorithm based
approach that optimizes transit priority in scenarios with both transit and private traffic.
Ref. [8] utilizes a simulation-based Generic Algorithm with a multi-objective optimization
model that considers both delays and emission. Simulation-based solutions are also widely
applied for the TSC problem. In [9] the authors have proposed a method that utilizes local
communication between the sensors and the traffic lights and is capable of control them in a
traffic responsive manner in complex real-world networks. Ref. [10] analyzed the behavior
of the CRONOS algorithm and showed that it decreases the total delay compared to a local
and a centralized control strategy. A significant number of researchers applied Dynamic
Programming (DP) to solve the TSC problem, primarily because of its adjustability and po-
tential to be used in a vast set of traffic conditions and its virtue to utilize a diverse group of
performance indicators. In [11] the authors used an Approximate Dynamic Programming
based approach that profoundly reduced the vehicle delays and also mitigated the required
computational resources by approximating the value-function. Ref. [12] presents RHODES
that decomposes and reorganizes the TSC problem into hierarchical sub-problems. The pa-
per also showed that RHODES outperforms semi-actuated controllers in terms of delay.
Multi-Agent Systems (MAS) can also be considered a common approach for tackling the
TSC problem. Ref. [13] proposes a Group-Based signal control method where the signal
groups are modeled as individual agents, and these agents can make decisions on the
intersection level according to the given traffic scenario. Game Theory-based methods are
well-explored in TSC applications. The authors in [14] formulated the TSC problem as a
noncooperative game where the agents’ goal is to minimize their queue length.

However, in recent trends, Reinforcement Learning (RL) algorithms have been used
for solving the TSC problem. RL showed impressive results in this realm and also in several
other transportation-related applications [15,16]. In [17] the authors proposed utilization of
high-resolution event-based data for state representation and outperformed both fixed-time
and actuated controllers in terms of queue length and total delay. Ref. [18] compared a
Game Theory and RL-based solutions with fixed-time control for a single intersection set-up,
and the results showed that both methods provide superior performance in queue length
compared to the fixed-time controller. The authors in [19] proposed a dynamically changing
discount factor for the Bellman equation that is responsible for generating the target values
for the DQN algorithm. They compared their results with the fixed-time controller and
the original DQN agent. The results showed that their improved agent reached better
results in total delay and average throughput than any other solution. Ref. [20] compared
conventional Reinforcement Learning algorithms with the DQN algorithm for the single-
intersection TSC problem, and the results showed that the DQN algorithm mitigates
more the total delay. Ref. [21] proposes a novel state representation approach called
discrete traffic state encoding (DTSE). Compared to the same algorithm with feature
vector-based state-representation, the new representation reaches better performance in
average cumulative delay and average queue length. The authors in [22] developed an
agent with hybrid action space that combines discrete and continuous action spaces and
compared their solution to DRL algorithms with discrete and continuous action spaces and
fixed-time control. The results showed that the proposed method outperformed all other
methods in average travel time, queue length, and average waiting time. RL has also been
applied for the multi-intersection TSC problem. Ref. [23] proposes a novel cooperative
DRL framework called Coder that decomposes the original RL problem into sub-problems
that have straightforward RL goals. The papers compare the proposed method to other
RL approaches and also to rule-based methods such as fixed-time control. The authors
in [24] proposed a new rewarding concept and the DQN algorithm, which is combined
with a coordination algorithm for controlling multiple intersections. Ref. [25] proposed a
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Multi-Agent A2C algorithm for solving the multi-intersection TSC problem and compared
the results with other DRL algorithms both on synthetic traffic grid and real-word traffic
network. For a more thorough review of algorithms that are applied for TSC, see [26] and
for purely RL solutions for the TSC problem see [27,28].

These papers prove that RL can be successfully applied in this field. The main
reasons for the utilization of RL in the TSC problem are the vast versatility of essential
features that the RL framework possesses for sequential decision-making problems. One
of them is the scalability from single intersections to multi intersections and even to
complex networks. Others are the generalization feature of function approximators and
the low computational cost of inferencing already trained models supporting real-life
implementation. The mentioned advantages are the main reason why RL-based solutions
have a vast literature in this domain. The trend of suitable algorithms in the TSC problem
evolved along with the advances in RL. It started from a simple value-based and policy-
based solution, such as Deep Q-Network (DQN) and Policy Gradient (PG), followed by
the Actor-Critic approaches. The same happened in the case of state representations. In
addition to feature-based value vectors, image-like representations started to trend thanks
to the tremendous result of Convolution Neural Networks (CNN).

From the aspect of performance, one could consider the applied rewarding concepts as
one of the most influential components of RL, but they have not matured at the same pace.
The prevailing trends in the rewarding concept are mainly transportation-related measures,
such as waiting time, queue length, vehicle discharge, phase-frequency, and pressure.
Exploiting the vacancy, this paper aims to develop a novel rewarding concept that can
outperform a modern actuated control approach in classic measures and, in the meantime,
pays attention to the environmental aspect of the TSC problem.

1.3. Contributions of the Paper

The contribution of the paper is twofold. First, a novel rewarding concept is presented
for the TSC problem, which avoids any reward shaping, hence being considered a new
insight into this particular control problem. Second, a PG and a DQN agent are trained
with this new rewarding concept to show how the performance formulates. Furthermore,
our proposed solutions are compared against a delay-based actuated control algorithm.
Moreover, the evaluation of this paper covers not just the classic measures, e.g., waiting
time, travel time, and queue length, but also compares the different solutions in sustain-
ability measures, such as CO2, NOx, CO emission, etc. Such evaluation can be argued
as necessary due to the sustainable transportation, and the reduction of transportation
emission have grown into major concerns all around the globe.

The paper is organized as follows: First, in Section 2 the utilized methodologies are
detailed. Second, Section 3 the training environment along with its key components, such
as the state representation, action space, and our novel rewarding concept, is presented.
Last, Section 4 compares the performances of the different methods. In Section 5 the paper
reveals a short conclusion about the results, discusses future endeavors, and ascertainment
of the topic.

2. Methodology
2.1. Reinforcement Learning

The accelerated evolution of computer science and hardware resources enabled ar-
tificial intelligence and machine learning to have their renaissance. Deep Learning (DL)
provides the opportunity of renewal to Reinforcement Learning (RL) as well. The recent
results show that the combination of DL and RL can perform on a superhuman level in
challenging domains [29,30]. These tremendous results fueled a lot of researches in a broad
spectrum of applications such as robot control [31], autonomous driving [32], and in board
games as well [33]. In 1998, Sutton and Barto revisited the concept of RL [34]. The building
blocks and theory laid down by Sutton and Barto are used by hundreds of thousands of ar-
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ticles and publications. Constant research tries to make RL more applicable and competent
in solving real-life problems.

Reinforcement Learning can be interpreted as a method to tune artificial neural net-
works (ANN). Unlike Supervised Learning (SL), which is also a type of machine learning,
RL does not use labeled training data as ground truth, which is hard or sometimes im-
possible to collect. RL generates its training data through interactions between the agent
and the environment. At the same time, it tries to reach the optimal behavior through
the maximization of a scalar feedback value called reward. The reward values implicitly
expose the inner dynamics of the given control task since they quantify the effect of the
executed action on the environment.

The RL formulation can be seen in Figure 1. The formulation consists of an environ-
ment and an acting agent. The interactions through action selection by the agent result
in the state transition, and as feedback, rewards are given to the agent. In this particular
domain, an environment can be a controllable simulator where the intersection is built.
From the aspect of the TSC problem, a state is a collection of influential features that
describe the intersection’s dynamics. Actions that can change the environment’s inner state
are basically for manipulating the given traffic signal configuration, while the reward is
created by considering traffic-related measures and its goal to operate as a performance
objective that characterizes the quality of the agent’s action The mathematical model of
most RL algorithms is called Markov Decision Process (MDP). MDP is a mathematical
framework for sequential decision-making. In an MDP, we suppose that the system has
the Markov property, which means that the conditional probability distribution of the fol-
lowing state of a random process depends only on the current state, given all the previous
states [34]. Thus the states should contain all information needed to draw this probability
and make educated decisions based on the currently observable state.

An MDP can be defined with a 4 element tuple, M ≡< S, A, PS,A, R >, where

• S is the state space and si ∈ S is the state at the ith time step,
• A is the action space and ai ∈ A means the action taken at the ith time step,
• Ps,a is the probability of the state transition from state s ∈ S with action a ∈ A. More

generally it is denoted with: p(s′|s, a).
• R stands for the reward function, in which ri ∈ R shows the current immediate reward

for the state transition from state s into s′ as a result of action a.

Figure 1. Reinforcement learning cycle.

RL can be formulated as an episodic setting where the agent interacts with the en-
vironment at every given discrete time step until termination using the above-explained
framework. It observes the state of the environment s ∈ S at every t ∈ {1, 2, 3, 4, . . .},
and chooses an action a ∈ A to maximize the expected reward r ∈ R. With each step the
environment transitions from state s to s′. In the long run, the agent tries to maximize
the cumulative reward - based on the given reward function. Thus we can express the
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goal of an RL agent as to find a policy π : S 7→ A that maximizes the value of every
state-action pair:

Qπ(s, a) ≡ E
[
∑∞

i=0 γir(St+i, At+i, St+i+1)|St = s, At = a
]
, (1)

where Eπ [·] denotes expectation over the episode induced by π, r is the reward function,
conditioned on the current and next state and the action causing the transition. Furthermore,
γ ∈ [0, 1) is the discount factor used for setting how time deteriorates the importance
of rewards.

2.2. Artificial Neural Network Representation

In general, deep learning and deep reinforcement learning use ANNs to approximate
complex functions. We considered the most straightforward network layers to both of our
proposed agents, especially Multi-Layer Perceptrons (MLP). A one-layer MLP stands from
a feed-forward fully connected linear layer and some kind of non-linearity, e.g., ReLU in
our case. The linear layer has bias and performs a linear transform on its input. Basically,
this is a matrix multiplication and provides an output according to (2).

y = xAT + b, (2)

where x denotes the input, y stands for the output, A contains the weight matrix of the
layer, and b is the used bias.

Since all nodes are connected with each other, and arbitrary output dimensions are
achievable, usually Linear is used for the output of a regression model. The non-linearity
layer is an activation function with the characteristics: ReLu(x) = max(0, x). With this
characteristic, only the positive values are passed through the layer, filtering the negative
values and thus their undesirable and unwanted properties. [35].

• in the case of the DQN agent, the last layer is the output of the second layer of the
MLP without activation.

• in the case of PG as the last layer of the network So f tmax is included because it is a
normalizing function, providing a normalized output between [0, 1) with the sum of
the output equal to 1.

The above considerations are taken to have a general internal structure of the agents,
however, satisfying the needs of the algorithms described later in this section. As acti-
vation layer, ReLu was chosen while considering its positive attributes and utilizing its
convergence supporting features.

2.2.1. Policy Gradient

The Vanilla Policy Gradient (PG) algorithm is a member of the basic policy-based
algorithms applied in RL. Policy-based methods earned the interest of researchers with
their tremendous results in a variety of domains [36]. Moreover, the PG algorithm has an
essential advantage over the value-based methods, notably that it is guaranteed that it
converges at least to a local optimum [37]. In policy-based methods, the neural network
weights are tuned to approximate a probability distribution over the executable actions
for every given state. Thus, the predicted values can be interpreted as dynamic heuristics
since the probabilities do not reveal how each choice benefits the agent in the long run.
In our work, to support better exploration, a categorical function is created based on
these probability output values, and a sampling is carried out to defines the final action
the agent will proceed with. Algorithms 1 and 2 shows the pseudo-code for the policy
gradient method.
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Algorithm 1 Vanilla Policy Gradient.

1: procedure VANILLAPOLICY(EPOCH)
2: Initialize (θ0), the weights of initial policy
3: for episode in range of epoch do
4: while not terminated do
5: Sample action based on current Policy
6: Step one in the environment
7: Save new state, reward and actual policy
8: updatePolicy()
9: Return Policy

Algorithm 2 UpdatePolicy.

procedure UPDATEPOLICY()
2: Calculate loss = −∑

e_length
i=0 ri · log2(P(ai|πi))

Compute gradients
4: if update then

Step with optimizer→ (θt)
6: Zero out gradients

else
8: Continue

In case of PG the loss is calculated with the following equation:

loss =
t

∑
i=0

ri · log2(P(ai|πi)), (3)

where
ai ∈ A, i ∈ {0, 1, 2, . . . , t}

Here the ri is the given reward at ith time step achieved by action ai applied in the
state input s, the log2(P(ai|πi)) means the probability of choosing action a in a given πi
and s.

2.2.2. Deep Q-Learning

The first and most substantial breakthroughs of RL are strongly tied to the value-based
methods such as DQN [30], Double-DQN [38], and Dueling-DQN [39]. These were the first
results that showed that trained agents could operate on the same level as humans and
outperform them in some cases. In these methods, the neural network weights are tuned to
approximate the amount of cumulated reward that the agent can score with the executable
actions in the given scenario during the episode. To do so, the Bellman equation is used as
an update rule to improve the predicted Q values:

Q(st, at; θt) = rt+1 + γ max
a

Q(st+1, at; θ−t ). (4)

Compared to the policy-based methods, these values can be interpreted as absolute
heuristics since each value shows the benefits of a choice in the long run. The decision-
making strategy of the training process also differs from that of PG since it utilizes an
ε–greedy approach. Moreover, DQN is considered an indirect method contrary to PG.
In the case of PG, the probabilities directly suggest a policy that emerges into a behavior,
while the predicted values of the DQN agents are more like a situation interpretation
has to be exploited with the suitable policy. Algorithm 3 shows the pseudo-code for the
DQN algorithm.
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Algorithm 3 Deep Q-learning with replay memory.

procedure TRAIN
Initialize parameters, weights θ, θtarget
for each episode do

st ← reset environment state . t = 0
while not done do

if Bernoulli(ε) = 1 then
at ← Uni f orm(A)

else
at ← argmax

b∈A
(Qπ(st, b), ∀b ∈ A

st+1, rt, done← Env(at) . step with at
memory← st, at, st+1, rt, done
st ← st+1

UPDATE_WEIGHT()

2.3. Baseline Controller

Some papers utilize different RL solutions [20,21], actuated controllers [17], and fixed
time controllers [18,19,22] for baseline to evaluate the performance of their solutions in
various measures. This work compares different RL algorithms trained with our novel
rewarding concept and utilizes actuated control for baseline. We omit fixed-time control
because it can not handle unbalanced changes in the traffic volume; hence it can be
outperformed easily. The utilized actuated control is SUMO’s built-in Time-loss based
actuated controller that considers the time loss of the vehicles in the lane as the basis of
its behavior.

3. Environment

As discussed before, the RL framework requires an environment to interact. In our
case, Simulation of Urban MObility (SUMO) [40] serves the purpose of a simulation
environment. SUMO is an open-source, microscopic, and macroscopic traffic simulator that
can be extended dynamically and highly customizable. One can build different networks
or even load entire networks through the APIs developed by the community. As Figure 1
displays, our infrastructure looks as follows: The PG and DQN agents are implemented in
python with the use of the Pytorch Deep Learning library. In the meantime, the environment
consists of two major parts, a python component and the intersection created in SUMO , see
Figure 2. The python component is responsible for manipulating the SUMO environment
based on the agent’s action with the TraCI interface’s help and gathering the information for
state representation, rewarding, and evaluating the performance. Moreover, the simulations
can be easily randomized, making it an excellent choice for RL since diverse experiences
are required for a robust outcome in the training process.

In our setting, there are four road segments, which meet at one intersection (Figure 2).
All segments have 500 m lengths and contain two-direction lanes, each 3.2 m wide. At the
four ends, we added vehicle departure points, where new vehicles enter the simulation at
each step randomly. In every episode we select a frequency of launching a new vehicle at
each end uniformly in the interval of [1, 200] dt

vehicle . This means that in case of frequency 1,
at every simulation time step (dt) a vehicle will be launched at that entry point.

For evaluation purposes, we use some of the SUMO simulator features that help us
measure the impact of traffic on the environment. With the tool, we extract measures such
CO2, CO, NOx, HC, PMx, and fuel consumption. As a result, the different solutions for
the Traffic Signal Control (TSC) problem can be compared on an environmentally friendly
scale, beyond the classic flow measures, as detailed in Section 4.
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Figure 2. Layout of the intersection.

3.1. Limitations

The utilized network type in this paper is a single isolated intersection, where the
potential role of pedestrians and pedestrian crossings along with bicyclists is not considered.
Furthermore, in the simulation, there are only passenger cars. Hence the formulated
environment does not prioritize road users, such as transit vehicles, emergency vehicles,
or buses. Consequently, these aspects are not considered during the formulation of the
solution. The exclusive usage of passenger cars in the simulation is also important from the
emission standpoint since SUMO’s emission model differentiates based on vehicle types.
In the intersection, the left turns are omitted to avoid the additional congestion generated
by the time spent deciding which vehicle should go first. Thanks to that, the agent can
clearly observe the impact of its actions on the intersection, which further accelerates the
learning process. Its noise-reductive effect, no delays in traffic due to negotiations, also
supports the precise evaluation of the utilized abstraction for training. The goal of the
launched vehicles is also based on a uniform distribution, resulting in an equal number
of cars turning right and going straight at the intersection. The intersection is controlled
through a traffic light, whose optimal manipulation will be the agents’ task.

3.2. State Representation

In the RL framework, one has two duties regarding the environment. These are the
formulation of the state representation and the rewarding concept. These two components
are responsible for the proper credit assignment. The formulation of the state represen-
tation is basically the abstraction of the control problem, which provides the influential
features of the task. Hence, the researcher’s intuitions decide whether the agent can utilize
the potential of RL or not. In the TSC problem, two main approaches are used for state
representation. The first is raw pixel data in the form of snapshots from the intersection,
which require relatively more computation resources since the use of convolutional neural
networks (CNN) [41,42]. The second is feature-based value vectors which contain infor-
mation about each lane provided by simple detectors [43,44]. This information can be the
average speed of the vehicles, queue length, waiting time, and so forth. The presented
research utilizes the second approach and represents each lane is with a single value which
is the occupancy of the given 500 m long road. These occupancy values are transformed
into the [0, 1] interval for avoiding numerical problems of the back-propagation method.
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3.3. Action Space

There are two different types of actions for the TSC problem. In the first case, one can
change the duration of the phases in a predefined interval continuously. In the second case,
used by this paper, changes the order of the traffic light phases after the previous phase
duration is ended [45]. There are also hybrid approaches, which combine the two former
concepts [22]. This paper uses the second approach. There are two main phases:

• The first one, called East-West Green (EWG), provides a green signal for the pair of
vertical lanes and red for the horizontal ones.

• The second phase, called North-South Green (NSG), allows the horizontal lanes to
pass and signals red to the vertical ones.

With the settings of these two phases, the agent can prolong the green light for the
lanes. The duration of each phase is at least 30 s. It is worth mentioning that every phase
change is separated with a yellow, yellow-green phase, respectively. This approach ensures
the agent understanding the consequences of its actions and lets the vehicles adjust to the
new state in the environment. It is also important to note that the simulations are generated
randomly with defined random vehicle flows at every episode, which gives the power to
the agent to generalize on different situations. As the different flows result in diverse loads
on the road segments, the agent must carefully pay attention to the lamp states and find
the right changing points to have the desired throughput in the intersection.

3.4. Rewarding Concept

The rewarding concept is one of the most crucial aspects of RL since the agent only
uses these feedback values to understand the inner dynamics of the process, which is the
core of credit assignment. Thanks to that, the rewarding concept can firmly influence the
success of the training and thus the agent’s performance. In the literature, most of the
authors utilize waiting time and delay-based rewarding concepts [46] or queue length,
discharge [47]. Compared to these rewarding schemes, a novel strategy is presented.

Our approach relies on the occupancy of the oncoming lanes, which are interpreted
as a distribution. The introduced actions (NSG, EWG) can control the mean and standard
deviation of the occupancy-based distribution by providing more green time to one or
another incoming lane. Considering this aspect of the TSC problem, the reward of each
step is calculated from the occupancy distribution as its standard deviation, normalized
to the [−1; 1] interval. The standard deviation is chosen because it aims to balance the
provided green time between the incoming lanes of the intersection according to the traffic
flow that occurred on them. The proposed rewarding looks formally as follows:

R = Rmax +
(σ− σmin ∗ (Rmin − Rmax))

(σmax − σmin)
(5)

The parameters in (5) depends on the standard deviation σ, which is calculated from
the occupancy of the lanes. The value choices are shown in Table 1.

Table 1. Parameter choices for different σ values.

Parameter σ < 0.1 σ ≥ 0.1

Rmax 1 0
Rmin 0 −1
σmax 0.1 0.5
σmin 0 0.1

Generally, in the formulation of the reward concept, a great deal of thought must be
focused on the learnable loopholes, because such pitfalls of the rewarding might ruin the
final performance of the trained model. In our case, as a possible loophole scenario can
happen where only a few vehicles stay in the horizontal or vertical lanes, and the agent
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provides green time to the direction with absolutely no traffic flow. Since in the above
described scenario the standard deviation is small, the agent would get a positive reward
from the environment despite the fact that provides green time to the wrong lanes. This
makes our control problem impossible to solve. This loophole is neutralized by punishing
the agent with a −1 scalar feedback value, when it provides green time to a lane without
traffic flow. Nevertheless, the episode is not terminated in such cases because without
termination much more experience can be gathered about this particular scenarios and that
promotes the learning and generalization.

3.5. Important Aspects of Real-World Implementation

When formulating an RL solution for the TSC problem, the possibility of real-world
implementation should also be considered. In the case of RL-based algorithms, it means
choosing easily accessible traffic measures for the state representation and the reward
strategy. In modern cities, there are a lot of sensors that are used for collecting information
about the traffic flow, congestions, accidents, occupancy of lanes, and queue lengths in
intersections. These sensors are loop detectors, magnetic sensors, cameras, lidar sensors,
probe vehicle sensors, mobile phones, wi-fi, Bluetooth, and so forth. The management of
the collected large amount of data is also can be done in several ways. Still, a promising
contender is V2X communication combined with 5G [48], thanks to its short latency.
This paper tries to create a representation and a rewarding system that supports real-
world implementation through easily accessible features. Our concept only requires the
occupancy of the incoming lanes. The occupancy of lanes can be monitored with simple
loop-detectors, which are an affordable and reliable choice, not to mention that it is already
installed in larger cities worldwide.

3.6. Training

The training scenario has vital importance in the success of the agent. It has to provide
a diverse set of experiences to the agent to reach a sufficient level of robustness, hence
the best possible performance and generalized solution. The training is realized with the
introduced SUMO environment, with which it is possible to randomize the traffic flow for
every episode. This means different drivers are launching from the departure mentioned
above points with random speed profiles and route destinations. Thus, in each episode,
a predefined number of vehicles enter the simulation. Thanks to this randomization,
the agents have the opportunity to solve a great variety of traffic situations with diverse
use-cases. Every training episode starts with a warm-up stage, where vehicles start to
enter the network, and it lasts until the summarized occupancy of all four lanes reaches
10%. During the warm-up time interval, all traffic lights are set to red. If the warm-up
stage has ended, the agent controls the traffic lights with the introduced actions. A training
episode lasts until all the vehicles pass through the intersection. If the agent fails to
pass through all the vehicles, the episode is stopped after 2000 steps (s) measured in the
SUMO simulation time. The convergence of the two RL solutions is shown in Figure 3. It
shows the average reward gathered throughout the episodes. Based on the convergences’
characteristics, it naturally comes that the PG algorithm is more stable and has better
convergence properties such as speed over the DQN algorithm. This might be because
DQN methods can overestimate the Q values of some actions, and thus when selecting the
best action, the deviation of the resulting rewards can differ significantly from their beliefs.
However, as it can be read from the figure, the training converges to the optimal. Based on
this figure, we expect that the PG algorithm outperforms the DQN in the evaluation stage
in all measures.

One of the most critical hyperparameters is the learning rate because it profoundly
influences the convergence of the model. A high learning rate resulted in a suboptimal
solution; furthermore, a small one slowed down the convergence for both agents. In
general, the PG agent requires a lower learning rate because the algorithm tends to become
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deterministic in the case of huge gradient steps. In some cases, the learning rate caused the
agent to be stuck at a local minimum, hence never finding the global optimum.
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Figure 3. Convergence of the PG and DQN algorithms.

4. Results

Today, keeping our planet healthy is a significant concern and a leading goal. Con-
sequently, a lot of attention is directed to minimizing the environmental footprint of
transportation. When testing new traffic control algorithms, it comes naturally to investi-
gate their performance against sustainability measures, along with traditional measures
such as travel time, waiting time, and queue length.

For the sake of comparability, all the solutions are evaluated on 1000 episodes, where
the traffic flow of the incoming lanes is randomized. Still, for each agent, the same
settings are applied. Contrary to training episodes, where the episodes terminate when all
vehicles pass through the intersection. The test episodes last until all the vehicles have left
the network.

4.1. Comparison of the Sustainability Measures

Tables 2 and 3 show the performance of different solutions for the TSC problem on
a diverse set of emission measures, e.g., carbon-dioxid, carbon-oxid, nitrogen-oxid and
the fuel consumption. The different values are calculated by SUMO, and the mean of
the values over the 1000 episodes are shown in the Tables 2 and 3. SUMO utilizes The
Handbook Emission Factors for Road Transport (HBEFA) model for emission calculation.
This model calculates the vehicles’ emissions based on polynomes derived from the velocity
and acceleration of the vehicle. This approach distinguishes between vehicle type and
emission categories also, for more information [49].

Table 2. Statistical comparison of the sustainability measures in 1000 consecutive runs.

Agent CO2 Emission (kg) CO Emission (kg) NOx Emission (g)

PG 66.7 2.2 29.1
DQN 70.9 2.3 31.1

Loss-Based 73.8 2.6 32.3

Table 3. Statistical comparison of the sustainability measures in 1000 consecutive runs.

Agent PMx Emission (g) HC Emission (g) Fuel Consumption (L)

PG 1.4 11.4 28.7
DQN 1.5 12.6 30.5

Loss-Based 1.6 13.7 31.7
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The lower the value, the better the method performs. It can be seen that the PG
agent outperforms the others in all of the emission-related measures. The second most
sustainably controlling solution is our DQN. As mentioned earlier, one of the essential
emission categories from the aspect of global warming is CO2. Thanks to the proposed
rewarding concept, the PG agent can save 9% percentage of the CO2 emission compared
to the actuated control. Another critical measure is the fuel consumption along with the
test episodes. Our solution decreased the average fuel consumption by approximately 9%,
which also has a profound environmental impact in the long run.

To further investigate the performance of the different solutions in the sustainability
metrics, the CO2 emission and fuel consumption are compared on [10, 50, 100, 500, 1000,
5000, 10,000] random episodes for every run. In this way, we can test the consistency of the
algorithm’s ability. Figure 4 shows the CO2 emission results, and Figure 5 depicts the fuel
consumption throughout the different number of episodes. Both Figures show the max,
min, and average values along with the distribution of the individual episode averages
for all three algorithms and every run. In all the runs, the RL-based solutions have lower
max and average emission and fuel consumption values than the time loss-based actuated
control except the DQN’s performance in the first run, where the time loss-based approach
has better performance. However, still, the PG agent has superiority in this and every
other run.
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Figure 4. Distribution of CO2 emission in different amount of random episodes.
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Figure 5. Distribution of Fuel consumption in different amount of random episodes.
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Considering that the applied rewarding concept does not utilize any sustainability-
related metrics, the agent’s performance on the measures can be a consequence of the
smaller conjunction and better traffic flow in the intersection. To support our hypothesis
Table 4 shows how the average travel time, average waiting time, and queue length have
developed over the mentioned 1000 episodes.

Table 4. Statistical comparison of the performance measures in 1000 consecutive runs.

Agent Travel Time (s) Waiting Time (s) Queue Length (No. of Veh.)

PG 141.3± 42 29.4± 21 10.8± 8
DQN 150.7 ± 37 37.8 ± 22 13.2 ± 8

Loss-Based 141.7 ± 45 46.8 ± 49 16.1 ± 16

4.2. Comparison of the Classic Measures

Travel time is defined as the time that a vehicle is needed to arrive at its destination
from the moment of departure. Average travel time is the sum of all vehicle travel time
entered into the network divided by the number of vehicles. Formally it looks as follows:

ATT =
1

Nveh

Nveh

∑
j=0

tj,start − tj,end, (6)

where ATT is the average travel time, and Nveh is the number of vehicles. tj,start marks the
departure time of the jth vehicle and tj,end shows the arrival time of the jth vehicle.

The waiting time is the summarized standing time from its departure until passing
through the intersection. A vehicle is considered to be in a waiting state if its speed is
less than 0.1 (m/s). This measure is calculated for all vehicles that entered the network.
The average waiting time is calculated as the sum of the accumulated waiting time of all
vehicles, divided by the number of all vehicles. It yields to:

AWT =
1

Nveh

Nveh

∑
j=0

WTj, (7)

where AWT is the average waiting time and WTj is the accumulated waiting time of the
jth vehicle in the moment of leaving the intersection.

Queue length is calculated as the number of vehicles waiting in the given lane. For
simplicity, the queue length of all lanes is summarized into one value. This results in one
metric, representing the queuing in the network. Equation (8) shows:

QL =
L

∑
l=0

ql , (8)

where QL is the summarized queue length of all lanes, and ql is the queue length in lane l.
The results in Table 4 demonstrate that the PG agent performance has absolute superi-

ority in waiting time and queue length over the actuated control and the DQN agent as
well. In travel time, the actuated control outperforms the DQN agent and reaches nearly
the same performance as the PG agent, but still, the PG algorithm slightly performs better.
The difference between the actuated control and the PG algorithm is firm if the standard
deviation of the results is considered since it shows that the PG agent conducts the traffic
signal control in a more balanced manner. By monitoring the operation of the different
solutions, we noticed that the main difference between the algorithms is that the actuated
control utilizes longer green phases, which trigger the discrepancy in waiting time and
queue length and also in the standard deviation of the travel time.

Figure 6 shows the characteristics of some key metrics (CO2 emission, Queue length,
Travel time, Waiting time) during the 1000 episode evaluation phase. These figures support
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the previous ascertainment about the behavior and performance of the different solutions.
Note that the presented RL solutions outperform the actuated control in almost all the
episodes except the DQN agent in the case of travel time. Nevertheless, the DQN agent
conducts its control in an environmentally sustainable manner along with the PG agent.
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Figure 6. Performance of the agents in the different sustainability measures along the 1000 ran-
dom episodes.

Waiting time strongly impacts the satisfaction of the individual traffic participants,
so the proposed solutions’ consistency is further evaluated. For that purpose, the total
waiting time is monitored for [10, 50, 100, 500, 1000, 5000, 10,000] episodes. In each run,
a different random seed is applied for all three solutions. In an episode, approximately
150–300 vehicles commute to the intersection, and the total time of all vehicles completing
their journey is around 10–20 min, depending on the controlling algorithm and the number
of vehicles deployed. The results of the accumulated waiting times are shown in Figure 7.
The figure states that both RL solutions with the proposed rewarding concept reach a lower
amount of total waiting time, hence outperform the Time-Loss based actuated controller.
The difference between the RL solutions is also substantial, favoring the PG algorithm,
which can maintain its supremacy. Thanks to our approach, higher satisfaction can be
reached among the road users, which is also advantageous since it can decrease the stress
of the individuals.
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Figure 7. Comparison of total waiting time.
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These results show that the RL agents trained with the new standard deviation-based
reward concept reach better performance in sustainability and classic measures without
any reward shaping. This suggests that we have found an interesting insight into the TSC
problem’s inner dynamics, which results in superior performance.

5. Conclusions

In this paper, a new rewarding concept is introduced for the single-intersection traffic
signal control problem. For simplicity, the left turns are omitted, and the turning ratio is
uniformly distributed between the exits of the intersection. Furthermore, the actions chosen
by the agent can not cause conflicts in the intersection. Consequently, the agent’s goal is to
find the phase combination that results in the environmentally most sustainable control
and mitigates individual drivers’ waiting time and travel time along with the queue length
in the intersection. A DQN and a PG agent are trained for solving the control task at hand.
Both agents’ behavior is assessed according to classic performance measures concerning
average travel time, average waiting time, and queue length. Moreover, the trained
agents are also evaluated according to sustainability measures, such as CO2 emission,
fuel consumption, NOx emission, and so forth. The results suggest that both agents can
outperform the SUMO’s built-in time loss-based actuated control in every sustainability
measure with the introduced rewarding concept. In the classic measures, average waiting
time and queue length, both the PG and the DQN agent can go beyond the performance
of the actuated control, and only the PG algorithm can perform slightly better than the
actuated one in average travel time. The main advantage of our approach is that it naturally
tries to keep the balance between the incoming lanes. Beyond the statistical measures, it
reaches higher satisfaction of the road users since the waiting time is generally less for
one individual. Another important aspect is that this approach can handle intersections,
where the importance of the incoming lanes is different. This differentiation can be easily
achieved by scaling the occupancy of the lanes with constants. However, the importance
of a lane does not necessarily have to be predefined. It can be calculated dynamically by
scaling the occupancy of the lanes according to the waiting time occurring, queue length,
or any favored measure, for that matter. Thus, our solution can have plenty benefits in
real-world applications. Using our algorithm for traffic signal control can indeed reduce the
emission of the urban areas, as well as it can spare us time spent in traffic jams. Our agents
naturally support the minimization of the congestion by the throughput maximization
of the intersection. If we apply prioritization to any incoming lanes (e.g., main roads vs
complimentary roads) the traffic flow can be adjusted even further. Moreover, the needed
sensory requirements for the proposed state representation of our agents can be produced
with loop-detectors that are cheap and reliable and also are implemented in most of the big
cities around the world. Thus, we propose the experiments with our method in some real
intersections that would provide useful statistics of our theory in practice. Based on the
results acquired in our research about the potential of the novel standard deviation-based
rewarding concept for the TSC problem, it seems reasonable to continue this research and
scale up the control problem’s complexity by using interdependent multi-intersections.
We plan to use our novel rewarding combined with Multi-Agent Reinforcement Learning
(MARL) in our future endeavors. The MARL framework possesses essential features such
as communication and even negotiation between agents that undoubtedly help to solve
complex, real-world problems.

Author Contributions: Conceptualization, T.B. and S.A.; methodology, P.G. and B.K.; software,
B.K. and L.S.; validation, T.B and S.A.; investigation, T.B.; resources, P.G.; writing—original draft
preparation, B.K. and L.S.; writing—review and editing, T.B., S.A. and P.G; visualization, B.K.;
supervision, P.G.; funding acquisition, P.G. All authors have read and agreed to the published version
of the manuscript.

Funding: The research was supported by the Ministry of Innovation and Technology NRDI Office
within the framework of the Autonomous Systems National Laboratory Program. The research was
also supported by the Hungarian Government and co-financed by the European Social Fund through



Sustainability 2021, 13, 11254 16 of 18

the project “Talent management in autonomous vehicle control technologies” (EFOP-3.6.3-VEKOP-
16-2017-00001).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The data and source is available at the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DRL Deep Reinforcement Learning
TSC Traffic Signal Control
IEA International Energy Agency
ITS Intelligent Transportation Systems
GA Genetic Algorithm
DP Dynamic Programing
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