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Abstract: Erosion is the main threat to sustainable water and soil management in Morocco. Located
in the Souss-Massa watershed, the rural municipality of El Faid remains an area where gully erosion
is a major factor involved in soil degradation and flooding. The aim of this study is to predict the
spatial distribution of gully erosion at the scale of this municipality and to evaluate the predictive
capacity of three prediction methods (frequency ratio (FR), logistic regression (LR), and random forest
(RF)) for the characterization of gullying vulnerability. Twelve predisposing factors underlying gully
formation were considered and mapped (elevation, slope, aspect, plane curvature, slope length (SL),
stream power index (SPI), composite topographic index (CTI), land use, topographic wetness index
(TWI), normalized difference vegetation index (NDVI), lithology, and vegetation cover (C factor).
Furthermore, 894 gullies were digitized using high-resolution imagery. Seventy-five percent of the
gullies were randomly selected and used as a training dataset, whereas the remaining 25% were used
for validation purposes. The prediction accuracy was evaluated using area under the curve (AUC).
Results showed that the factor that most contributed to the prevalence of gullying was topographic
(slope, CTI, LS). Furthermore, the fitted models revealed that the RF model had a better prediction
quality, with the best AUC (91.49%). The produced maps represent a valuable tool for sustainable
management, land conservation, and protecting human lives against natural hazards (floods).

Keywords: gully erosion; frequency ratio; logistic regression; random forest; rural municipality of El
Faid; Morocco

1. Introduction

Issues related to climatic hazards and water management have major importance
given their impacts on the rural environment [1,2]. In the climate change context, there is
evidence of more and more recurrent extreme climatic events. Several findings highlight
global warming trends associated with reduced rainfall and vigorous hydrological cycles
over most of Earth’s surface [3]. In Morocco, climate change will produce more frequent
and intense extreme events [4,5], which will lead to an increased probability of floods and
droughts [6]. Land-use pattern change, rapid global population growth, and careless use
of natural resources will intensify pressure on both the land and natural resources, with
consequences with regard to the ability of the fragile ecosystems to sustain the provision of
ecosystem services, in turn threatening human lives and property [7–10]. Thus, preventing
further land degradation is a challenging task. Water erosion is one of the most frequent
soil degradation processes in Morocco, especially in semi-arid areas [11,12]. The process
consists of topsoil particle loss due to erosion agents that destroy agricultural lands and
forest ecosystems and increase nutrient loss from the rich surface soil [13]. As an extreme
form of soil erosion, gully erosion is one of the most visible and critical types of land
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degradation process in arid and semi-arid areas [14,15]. The gullying process is initiated
when the shear stress of flow exceeds a critical value, leading to sediment movement rather
than deposition [16]. Channels measuring 18 inches in depth appear. These cannot be filled
using normal tillage operations or crossed over with farm equipment [17,18]. Through a
reduction in surface soil and land productivity, gully erosion affects sediment production
in upstream areas, alters the region’s hydrological characteristics, and increases the runoff
coefficient [15,19]. Gully development is a complex process depending on a wide range
of environmental factors. These factors are mainly related to rainfall, topography, soil
type, and land use [20–24]. To guarantee the sustainable management of areas subject to
gully erosion, spatial occurrence of gullies is of high interest for watershed management
purposes [25,26].

In addition to systematic visual inspection (which is very difficult to conduct on large
areas), a variety of research has been conducted worldwide on gully erosion. Most studies
have focused on identifying the factors controlling the appearance of gullies [27–30]. Nu-
merous statistical models and computer techniques have been developed for predicting the
occurrence of the gully erosion [31,32]. Statistical models can be divided into bivariate and
multivariate methods [33,34]. The most popular include the index of entropy (IofE) [35], the
hierarchical analysis process (AHP) [36], weight of evidence (WOE) [26,35], the frequency
ratio (FR) [37,38], the information value (InfVal) [39], multivariate adaptive regression
splines (MARS) [40], logistic regression [27,37], the artificial neural network (ANN) [41],
the support vector machine (SVM) [42], and random forest (RF) [43–45], in addition to
other machine learning models [28]. Among the bivariate model group, the frequency ratio
and the information value methods are the most commonly used methods [46,47]. Each
factor controlling gully formation is analyzed individually in a straightforward way [48].
Because of their simple interpretation, bivariate models can be easily implemented within
the geographic information system environment [7]. These have revealed satisfying results
in the literature, both in Morocco through studies carried out in the Ourika and Rheraya
watershed [39] and worldwide [15,34,43,49]. Conversely, in multivariate statistical models,
the relationship between gully factors is analyzed together to study the occurrence of
gullies. The probability results are usually easy to interpret [34]. Moreover, multivariate
models allow us to work with different predictor variable types, including ordinal, nominal,
numeric, and categorical types, or a combination of these [50]. Nowadays, with the high
predictive ability of machine learning algorithms used for various purposes, interesting
perspectives are offered for the spatial prediction of environmental hazards [51,52]. Studies
using the random forest model (RF) have shown good results [41,53,54]. Although these
machine learning algorithms have previously been applied to landslide susceptibility map-
ping [55,56], flood susceptibility mapping [57], and groundwater potential mapping [58]
all over the world, they have rarely been used for gully erosion modeling. In the Moroc-
can context as an example, the assessment of gully susceptibility using machine learning
models remains rarely used. The random forest (RF) model has been used in only one
gully prediction study [59]. Current studies tend to combine their performance and high
predictive capacity while preserving the simplicity of interpretation [43].

Located in an arid climate, the Souss-Massa basin is vulnerable to soil erosion and
gully extension [60]. In the rural municipality of El Faid, covered by this study, gully
erosion remains the main land degradation factor. River flows are irregular, and the runoff
is always fast, violent, and only observed during short flooding periods. Numerous adverse
consequences result: increased risk of flooding, road accidents with an impact on public
and private properties, and a reduction in the retention capacity of dams due to silting. In
this context, protecting human lives, private goods, and public infrastructures is dependent
on conservative land management that is based on an assessment of the susceptibility
to gullying and rational identification of appropriate conservative actions. Moroccan
literature reveals rare or non-existent studies on gully erosion [39]. To contribute to the
evaluation of gully erosion susceptibility, our study was focused on the rural municipality
scale (El Faid). It aimed at comparing the predictive accuracy of bivariate, multivariate, and
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machine learning models to identify areas where gullies occurred. While each approach
offers their own advantages, comparative studies of susceptibility mapping with these
three approaches represent a research gap in the field. This paper presents the material and
methods by reporting on the study area (Section 2.1), the modeling approach (Section 2.2.2.),
optimization and tuning of the model (Section 2.2.3.), and susceptibility model validation
(Section 2.2.4.). The results will focus on defining the spatial relationship between the
presence of gullies and the 12 factors causing a predisposition to gully erosion. The
predictive capacities of the frequency ratio (FR), logistic regression (LR) and random forest
(RF) were compared based on their predictive quality. Adopting these methods will be
useful to decision-makers for identifying vulnerable areas for future land management
measures in similar Mediterranean environments.

2. Materials and Methods
2.1. Study Area

The rural municipality of El Faid covers an area of 51,200 ha. It is located between
the High Atlas and Anti-Atlas Mountains (between latitudes 30◦26′ and 30◦39′ North, and
longitudes 8◦24′ and 8◦4′ West; Figure 1) in the center of the Souss basin, more precisely
under the Souss River. The area is crossed by many seasonal streams (Tadenssat, Takenatine,
Ait El Hssine, Aourir, Ait Oualil, Imaouen, etc.) which are characterized by a torrential
nature during heavy rains that causes considerable damage to infrastructure, especially
roads.
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Figure 1. Location of the rural municipality of El Faid (Morocco). Figure 1. Location of the rural municipality of El Faid (Morocco).

The average elevation is 864 m. More than 30% of the study area is above 1000 m.
The southern peaks culminate at more than 1500 m. El Faid consists of two contrasting
areas: (1) Mountains (elevation exceeding 700 m), with more than 30% of the municipality
surface characterized by a steep slope (exceeding 50%) constituting the upstream areas
where the gullies that feed the main streams are located; and (2) The flat plain (the northern
area) where most of the streams meet, representing the dynamic center with important
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equipment and infrastructures. Thus, this area is key as it contains all the administrative
establishments of the municipality.

The climate is arid and semi-arid. The average temperature is around +28 ◦C. Rainfall
is characterized by spatial and temporal variability, with an average of 200 mm/year (at
the Aoulouz Meteorological station).

As a part of the Anti-Atlas, the rural community of El Faid is composed of dolomitic
limestones and shales of the Paleozoic, including massifs of Precambrian rocks [61]. The
soils of the municipality are favorable to intensive agriculture, involving fruit trees such
as citrus fruit and olive trees. The primary sector is therefore highly favored but it never-
theless suffers due to irregular climatic conditions, especially with regard to rainfall. The
municipality shelters a large forest area consisting mainly of argan, juniper, and carob trees.

2.2. Methods

Susceptibility is defined as the probability of the spatial occurrence of a phenomenon
based on the relationship between the distribution of the studied phenomenon and a
set of geo-environmental factors controlling it [34]. The scientific literature includes a
large number of models that have been used to describe and evaluate gully growth [62].
Forecasting susceptibility to gullying takes into account a number of interrelated steps
(Figure 2). These steps consist of preparing data to be used for the modeling process,
developing the training model, and validating the adjusted model.
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2.2.1. Used Data

Gully erosion is a complex natural phenomenon. Modeling its occurrence probability
remains a challenging task. Such a process relies on the use of a set of predisposing factors
for this phenomenon. Twelve factors were used as predictors for this work: elevation,
slope, aspect, plan curvature, slope length factor (LS), lithology, stream power index
(SPI), compound topographic index (CTI), land use, topographical wetness index (TWI),
normalized difference vegetation index (NDVI), and vegetation cover (C factor). Once the
probability of occurrence of the phenomenon on a spatial scale is established, the model
validation phase is essential in order to assess its performance and predictive qualities.
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The training gully dataset was acquired through on-screen digitizing using high-
resolution imagery from Google Earth. Further, several field prospecting surveys were
carried out to complete and correct them. Thus, the spatial gully dataset comprised
893 ravines (Figure 3). The dataset was checked and was verified to ensure topological
consistency for its use. Those gullies were randomly split into two subsets: the training
dataset (669 gullies), and the validation dataset (224 gullies; 25%). The gully centroids were
extracted with the intention of representing gully conditions.
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Figure 3. Gully inventorymap.

Topographical variables were derived from the digital elevation model DEM of 12.5
× 12.5 m pixel size resolution using common GIS functions. Lithology was extracted
from Marrakech geology map; land use, NDVI, and factor C were derived from the
satellite images of Sentinel-2 (Table 1). The land use map accuracy was evaluated through
a confusion matrix with an overall accuracy of 76.8% and a kappa coefficient of 66.1%
(Table 2).

Table 1. Characteristics of predisposing factors to gullying.

Factor Form and Resolution Source

Elevation, slope, aspect, plan curvature,
LS, SPI, CTI, and TWI 12.5 × 12.5 m DEM (ALOS PALSAR)

https://search.asf.alaska.edu/

Land use, factor C, NDVI, 10 × 10 m Sentinel-2, imagery of 07-04-2019
https://earthexplorer.usgs.gov/

Lithology 12.5 × 12.5 m Geological map of Marrakech at a
1:500,000 scale, produced in 1957

https://search.asf.alaska.edu/
https://earthexplorer.usgs.gov/
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Table 2. Land use confusion matrix.

N Class Classified Bare
Soils Built-Up Areas Agriculture Forrested

Areas Total Corrected
Sample

1 Bare soils 81 7 8 8 104 81

2 Built-up areas 2 14 7 5 28 14

3 Agriculture 1 0 18 11 30 18

4 Forested areas 2 4 3 79 88 79

Total 86 25 36 103 250 192

Overall accuracy (A) 0.768

Kappa 0.661

Topographic factors play an essential role in the explanation of the natural hazard
of gully erosion [27,63]. The slope gradient affects surface runoff and drainage den-
sity [34,64,65]. The slope gradient map was generated from the DEM and was classified
into five classes (Figure 4b).

By controlling the duration of sunshine, humidity, and evapotranspiration, the aspect
exerts a control on the vegetation that affects linear erosion processes [66]. The aspect map
was generated from the DEM and classified into nine classes (Figure 4c).

The curvature plan is considered to be a useful geomorphological land description
parameter; it can be used to represent the spatial variability in diverging and converging
overland flow of water [65,67]. The curvature map has been classified into three classes
(Figure 4d). Negative curvature plan values indicate concavity, positive values define
convexity, and zero values indicate a flat surface. The LS and C factors used to assess
vulnerability to erosion were used as predisposing factors for gully erosion. The formula
used for the determination of factor C [68] using the NDVI provides information on
vegetation cover and its health The formula is described as follows:

C = exp [−(2NDVI/(1 − NDVI))]

where NDVI = (NIR − Red)/(NIR + Red).
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The stream power index (SPI) is used to measure the erosive power of water flowing
through a watershed. High SPI values represent areas with steep slopes and accumulation
of flow, and thus high erosive potential. It is calculated using the following formula [69].

SPI = As × tan ß, (1)

where As is the specific catchment area (m) and β is the slope gradient (◦). The SPI map
was classified into three classes (Figure 4e).

The compound topographic index (CTI) is the quotient of slope and flow accumulation.
It represents the power of the watercourse per unit of bed area. Low values of this index
indicate small watersheds with steep slopes and small water catchment areas, as opposed to
areas with high values, which represent areas with gentle slopes and large water catchment
areas [69]. It is calculated using the following relationship [70]:

CTI = A × S × PLANC, (2)

where A is the upstream drainage area, S is the local slope, and PLANC is the planform
curvature. The CTI map was classified into six classes (Figure 4f).

The topographic wetness index (TWI) is a useful topographical and hydrological pa-
rameter. It is derived from the interactions of small-scale relief coupled to the contributing
upward gradient land surface according to the following relationship [71]:

TWI = ln (As/tan β), (3)

where As is specific catchment area (m) and β is the slope gradient (◦). The TWI map was
classified into four classes (Figure 4h).

Soil surface properties are regarded as significant to gully erosion susceptibility [72].
They are commonly considered as an effective factor to evaluate the gully erosion pro-
cess [73–75]. Moreover, the lithological characteristics of the surface materials play an
important role in the soil’s resistance to erosion, infiltration, and runoff, and consequently
in the development of gullies [14,76–78]. The study area contains two groups of rocks.
According to their resistance to the splash effect and to friction by the flowing water, the
rock types were classified by degree of friability according to Table 3.

Table 3. Lithofacies class descriptions.

Type of Rock Lithofacies Description

Limestone Very high
Unaltered compact rock, conglomerates or strongly

cemented soils (massif, limestone, strongly stony
soils, igneous or eruptive rocks)

Marls, sandstone, silts Low
Moderately compacted sedimentary rocks and soils.
Soil or soft rock, weakly resistant or strongly/deeply

altered (marls, gypsum, clay, silt, etc.)

To take into consideration human influences, land use was added to the factors
controlling gullying. The land use map was developed by classifying Sentinel-2 satellite
images using ArcGIS 10.5 software, corrected and validated using very high-resolution
images from Google Earth and field visits. The land use map was classified into four classes
(agriculture 4.85%, forest land 58.82%, built-up areas 0.63%, bare soil, 35.96%). (Figure 4g)
The forest area represents the dominant class for the rural municipality surface area. The
forest land includes argan trees, poor pastures, and many non-forested areas.

To take into account the effect of the vegetation on the gully erosion hazard, the
normalized difference vegetation index (NDVI) was used to describe the vegetation density.
Therefore, areas presenting low NDVI values will have a high susceptibility of gully
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erosion [79]. The NDVI was calculated using the red and near-infrared bands of the
Sentinel-2 using the equation:

NDVI = NIR − R/NIR + R, (4)

where NIR and R are the near infrared and red bands of the electromagnetic spectrum,
respectively.

The negative values of this index correspond to surfaces other than the plant cover,
for example water. Values close to zero show bare surfaces and non-forested areas. For the
vegetation formations there are positive NDVI values between 0.1 and 0.5 (Figure 4i).

2.2.2. Gully Susceptibility Models
Background of the Modeling Approaches Used
Frequency Ratio (FR)

In bivariate statistical approaches, the frequency ratio is a method based on calculating
the gully density weighting values for each class of factors [80]. The spatial relationship
between the gully birthplace and each factor was derived by the ratio of the area where
gullies were concentrated with respect to the total area studied. The ratio of the probability
of occurrence of a gully to a non-occurrence with respect to a given attribute [81] is as
follows:

FRi,j =
Npix

(
Si,j

)
/ ∑j Npix

(
Si,j

)
Npix

(
Ni,j

)
/ ∑j Npix

(
Ni,j

) (5)

where FRi,j is the frequency ratio of class j in factor i; Npix (Si,j) is the number of pixels of
gully presence within class j in factor i; and Npix (Ni,j) is the number of pixels of class j
in factor i. Values greater than 1.0 indicate a strong correlation between the presence of
gullying and the factor’s class and so forth [82].

The prediction rate was calculated for each predisposing factor using the following
equation [83]:

PR = (SAmax − SAmin)/(SAmax − SAmin), (6)

where SA is the index of the spatial association (FR) of spatial factors and gullies. The
prediction rate is considered as high if (0.6 ≤ PR); moderate if (0.4 ≤ PR < 0.6), and low if
(PR < 0.4).

Logistic Regression (LR)

Logistic regression is a multivariate statistical approach used to predict the probability
of the presence of an event or dependent variable. The independent variables can be
continuous or categorical, based on the optimization of the weights of each variable. These
weights are estimated by regression coefficients [45].

In the case of gullying, the relationship between this phenomenon and these indepen-
dent factors can be expressed as follows:

p =
1

(1 + e−Y)
(7)

where p is the gully occurrence probability (varying between 0 and 1 on an S-curve) and Y
is a linear combination of the following form:

Y = b0 + b1x1 + b2x2 + . . . + bnxn (8)

where Y is the dependent variable representing the presence (1) or absence (0) of the
gully, b0 is the model intercept, b1 . . . bn are the partial regression coefficients, and x1 . . . xn
correspond to the independent variables.
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Random Forest (RF)

As a modern machine learning method, the random forest technique is based on the
concept of a classification or regression tree (CART), which consists of classifying a dataset
into homogeneous groups via a tree where each node has a choice (a rule) and at each end
is a given decision [84].

By creating a set of decision trees, where each has a specific rule, the training data will
be divided according to the number of trees, and the data will be classified according to
their equivalent decision tree. The average of all the results received from each tree will be
the result to be taken.

Data Set Preparation

It should be noted that for multivariate model training, the dataset should contain
both present and absent gully erosion events. Security areas where the slope did not exceed
5% and where gullies were absent were identified. Random non-gullying point samples
were taken from the security area. Non-gullying points were combined with training
points. The gullying and non-gullying points were assigned a value of one (1) and zero (0),
respectively, and then rasterized. Furthermore, the 12 independent factors as well as the
dependant variable maps were converted to Raster format and resampled to a common
resolution of 12.5 m and common extent. R language was used for processing.

Furthermore, for machine learning models the training data must be standardized
or normalized (values between 0 and 1). It is also necessary to transform the categorical
variables into numerical ones. For this purpose, the factors of land use, lithology, and
aspect were divided into classes with values between 0 and 1 (Table 4).

Table 4. Categorical variables used for the random forest model.

Land Use Lithology Aspect

L1 L2 L3 L4 Lt1 Lt2 a b c d e f g h

Class Bare
soil

Built-up
areas

Agricultural
land Forest Marls,

sandstone, silts Limestone North North-
East East South-

East South South-
West West North-

West

2.2.3. Optimizing and Tuning the Models

For the frequency ratio model, results may depend on the used classification for the
controlling factors. Indeed, each factor class is composed of a homogeneous location with
regard to the considered factor. Literature classifies the factors causing a predisposition to
gullying according to three approaches: (1) Choice of classes based on works carried out
in the same study area, or in a study area with similar climatic characteristics [15,65,85];
(2) classification using the natural breaks method, rarely used in the literature [86,87]; and
(3) use of an arbitrary choice that depends on the factor value range and the territorial
characteristics of the area [35,88].

These three approaches were compared to test model sensitivity to the underlying
controlling factors classification (Table 5).

RF model adjustment is based on obtaining the best hyperparameter arrangement to
improve the model’s accuracy and ensure its best possible tuning. The hyperparameters
that must be optimized are: Mtry (number of variables randomly sampled as candidates at
each split), Ntree (number of trees to grow), and Maxnodes/Nodesize (directly related to tree
depth; the node size of classification trees implicitly limits the number of nodes in each tree).

After testing the results of the model with its default parameters, the effects of Mtry
and Ntree on the predictive qualities of the model were tested since these parameters have
the greatest effect on the model performance assessed through the out of bag error OOB.
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Table 5. Selected classes for three scenarios of the frequency ratio model. Approach 1 is based on works carried out in the
same study area [39,47,88–90]. Approach 2 is based on works carried out in a study area with similar climatic characteristics
[86,87]. Approach 3 refers to classification using the natural breaks method [35,88].

Factor Approach 1 Approach 2 Approach 3

NDVI

<−0.03 <0.14 <0.05

−0.03–0.13 0.14–0.27 0.05–0.1

>0.13 >0.27 0.1–0.2

0.2–0.3

>0.3

C factor

<0.5 <0.6 <0.2

0.5–0.7 0.6–0.8 0.2–0.4

>0.7 >0.8 0.4–0.6

0.6–0.8

>0.8

Elevation (m)

<600 <827 <600

600–1200 827–1164 600–800

> 1200 >1164 800–1000

1000–1200

1200–1400

>1400

LS

<2 <3.4 <2

2–5 3.4–8.7 2–5

5–10 8.7–13.9 5–12

10–15 13.9–19.6 12–20

>15 >19.6 >20

TWI

<5 <4.7 <2

5–7 4.7–7.4 2–5

7–10 7.4–10.3 5–7

>10 >10.3
7–10

>10

CTI

<2 <−387.8 <−250

2–8 −387.8–−196.9 −250–−50

8–23 −196.9–−11.6 −50–0

23–52 −11.6–15.3 0–10

52–198 15.3–56.9 10–25

>198 >56.9 25–50

50–100

>100

SPI

<1.5 <−1.3 <0

1.5–2 −1.3–0.3 0–0.5

>2 >0.3 0.5–1

1–2

> 2
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Table 5. Cont.

Factor Approach 1 Approach 2 Approach 3

Slope (%)

<5

5–15

15–30

30–50

>50 [39,65,85]

Aspect

Flat

North

North-East

East

South-East

South

South-West

West

North-West

Land use

Bare soils

Built-up areas

Agriculture

Forested areas

Curvature Plan

Concave

Flat

Convex

Lithology
Marls, sandstone and silts

Limestone

2.2.4. Susceptibility Model Validation

The validation subset was used to evaluate the predictive power of the model. As a
widely employed method to assess the quality of a classification [15,91], the area under
the receiver operating characteristic curve (AUC) was selected for the validation of model
performance. Several authors have tried to interpret AUC values. According to Yesilnacar
(2005) [92] and Moukrim et al. (2018) [93], AUC > 0.90 indicates perfect prediction of
the model; 0.80 < AUC ≤ 0.90 indicates good prediction; 0.70 < AUC ≤ 0.80 indicates
moderate prediction; 0.60 < AUC ≤ 0.70 indicates poor prediction; and AUC ≤ 0.60
indicates invalidity.

The confusion matrix was used to assess the accuracy of the classification. By com-
paring the classifications made by the three algorithms of the known classifications as
selected, the confusion matrix allowed us to measure and summarize the accuracy of
classification [94].

3. Results
3.1. Gully Erosion Susceptibility Modeling
3.1.1. Effect of the Classification of Controlling Factors on the Predictive Performance of
the Frequency Ratio Model

The FR model was fitted according to the three factor classification approaches described
in the methodology. Prediction rates according to each approach are presented in Table 6.
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Table 6. Frequency ratio values for each factor class according to the three approaches. FR frequency ratio; PR prediction rate.

Approach 1 Approach 2 Approach 3

Factors Classes FR PR Classes FR PR Classes FR PR

NDVI

<−0.03 0.00

7.53

<0.14 0.86

7.44

<0.05 0.30

3.36

−0.03–
0.13 0.84 0.14–0.27 0.04 0.05–0.1 0.28

>0.13 0.16 >0.27 0.10 0.1–0.2 0.38

0.2–0.3 0.03

>0.3 0.01

Factor C

<0.5 0.08

7.42

<0.6 0.04

4.06

<0.2 0.00

4.71

0.5–0.7 0.05 0.6–0.8 0.49 0.2–0.4 0.02

>0.7 0.87 >0.8 0.47 0.4–0.6 0.02

0.6–0.8 0.55

>0.8 0.41

Elevation
(m)

<600 0.06

4.81

<827 0.09

3.37

<600 0.02

2.35

600–1200 0.35 827–1164 0.45 600–800 0.05

>1200 0.59 >1164 0.46 800–1000 0.21

1000–1200 0.26

1200–1400 0.29

>1400 0.17

LS

<2 0.10

1.65

<3.4 0.06

2.32

<2 0.05

2.36

2–5 0.13 3.4–8.7 0.32 2–5 0.26

5–10 0.22 8.7–13.9 0.29 5–12 0.31

10–15 0.27 13.9–19.6 0.21 12–20 0.25

>15 0.28 >19.6 0.12 > 20 0.13

TWI

<5 0.15

1.52

<4.7 0.15

1.67

<2 0.07

2.93

5–7 0.20 4.7–7.4 0.20 2–5 0.37

7–10 0.32 7.4–10.3 0.32 5–7 0.28

>10 0.33 >10.3 0.33 7–10 0.20

>10 0.08

CTI

<2 0.07

2.75

<−387.8 0.05

3.45

<−250 0.02

2.66

2–8 0.21 −387.8–
−196.9 0.00 −250–

−50 0.05

8–23 0.35 −196.9–
−11.6 0.14 −50–0 0.10

23–52 0.20 −11.6–
15.3 0.30 0–10 0.15

52–198 0.13 15.3–56.9 0.38 10–25 0.32

198< 0.04 56.9< 0.13 25–50 0.17

50–100 0.13

>100 0.06
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Table 6. Cont.

Approach 1 Approach 2 Approach 3

Factors Classes FR PR Classes FR PR Classes FR PR

SPI

<1.5 0.12

4.95

<−1.3 0.21

4.49

<0 0.05

1.51

1.5–2 0.20 −1.3–0.3 0.15 0–0.5 0.07

>2 0.68 >0.3 0.64 0.5–1 0.22

1–2 0.29

>2 0.37

Slope (%)

<5 0.04

2.91

5–15 0.15

15–30 0.36

30–50 0.28

>50 0.17

Aspect

Flat 0.08

1.00

North 0.14

North-
East 0.10

East 0.07

South-
East 0.12

South 0.18

South-
West 0.11

West 0.10

North-
West 0.10

Land use

Bare soils 0.36

5.57

Built-up
areas 0.00

Agriculture 0.02

Forested
areas 0.62

Curvature
plan

Concave 0.54

3.07Flat 0.26

Convex 0.20

Lithology

Marls,
sandstone
and silts

0.11
6.96

Limestone 0.89

According to the three approaches, lithology and land use factors underlay high
susceptibility values, with a correlation of 6.96 for the lithology and 5.57 for the land use.
However, with a prediction rate of 1, the slope did not have a significant effect on the
estimate of susceptibility to gully erosion.

The limestone lithology class, which showed maximum frequency ratio values with a
prediction rate of 0.89, was characterized by a high susceptibility to gullying. Indeed, the
limestone substrate was compact, with low weathering and a low friability rate. For the
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forest areas class, it presented a relatively high value with a frequency ratio of 0.62. This
high susceptibility was combined with the fact that the argan forest presented a deteriorated
aspect with a sparse tree cover. For other categorical factors, such as aspect and curvature
plan, the prediction rates of the frequency ratio model were moderate. Gullying is therefore
not highly controlled by these two factors.

For each approach, the predisposing factors for gully erosion were weighted according
to their density to estimate the relative contribution of each factor to the prediction of the
spatial occurrence of gullying (Figure 5).
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For the first two approaches, NDVI presented the maximum susceptibility values,
with a prediction rate of 7.53 for the first and 7.44 for the second. However, once the
number of intervals was increased from three classes to five classes, this factor became the
fourth highest in terms of its correlation weight, with a prediction rate of 3.36 (Table 6).
By using the natural breaks method in the second approach and increasing the number of
classes in the third one, the C-factor dropped from the second position to the fourth in the
second approach, and to the third position in the third approach (Table 6).

Topographic factors: LS, TWI, and CTI (but not SPI) had low gully susceptibility
values. The latter had moderate susceptibility values, with a prediction rate of 4.95 and
4.49 for the first two approaches. With the increase in class thresholds in the third approach,
the SPI factor was the second lowest in terms of susceptibility.

According to the frequency ratio model, vegetation plays a decisive role in controlling
the occurrence of gullying. With low susceptibility values the topography of the land
presents a low control over gully erosion. Testing the effect of the class settings used in
the frequency ratio model on the predictive qualities of the model led to several findings.
Changes in class intervals affected the prediction rates of each gullying predisposing factor,
but there was almost no change in the susceptibility ranking of the factors. In contrast,
changing the number of classes had a higher effect on factor ranking. Thus, as the number
of classes of a factor increased, its prediction rate tended to decrease. By increasing the
number of classes of a causative factor, the number of pixels containing gully surface in
every class tended to reduce. Hence, the more the number of classes increased, the more
the surface of each class decreased.

The fitted frequency ratio model (using classes that presented the best prediction
rates (PR) for the three scenarios (Table 5)) was used to produce gullying susceptibility
map (Figure 6). This map shows five susceptibility classes (classified using natural breaks)
representing various susceptibility rates: 5.57% very low, 18.9% low, 25.3% moderate,
35.84% high, and 14.31% very high.
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3.1.2. Gully Susceptibility Analysis Using the LR Model

Fitting the logistic regression model allowed for the analysis of the correlation between
the 12 factors used to predict gullying. The correlation plots shown in Figure 7 facilitate
understanding of the correlation between each factor and the training data.

Low NDVI and TWI values were accompanied by the occurrence of gullying. As
for factor C, the low values were negatively correlated with gully erosion, which is quite
logical. The low values of factor C and the high values of NDVI were related to the presence
of vegetation and therefore to a low risk of the presence of gullying. The low values of
TWI correspond to a local steep slope. By their sigmoid form, the other topographic
factors (elevation, slope, SPI and LS) were positively correlated with gullying. The Table 7
represents the coefficients of the fitted logistic regression model and their consecutive
standard error.
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Figure 7. The correlation plots of the continuous factors for the logistic regression (LR) model: (a) CTI; (b) Curvature plan,
(c) Elevation; (d) Factor C; (e) LS; (f) NDVI; (g) Slope; (h) SPI; (i) TWI.
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Table 7. Estimated weights and standard error for the factors used in the LR model.

Factors Estimated Weight Standard Error

Aspect −1.321 × 10−3 1.188 × 10−3

CTI −4.676 × 10−5 8.423 × 10−5

Curvatureplan −1.623 × 10−1 1.983 × 10−1

Elevation 2.698 × 10−3 8.713 × 10−4

Factor C −4.510 × 101 4.777 × 10+1

Land use 2.029 × 10−1 1.194 × 10−1

Lithology 4.140 × 10−1 4.298 × 10−1

LS factor 6.188 × 10−2 3.608 × 10−2

NDVI −8.484 × 101 8.967 × 10+1

Slope 4.813 × 10−1 5.572 × 10−2

SPI −8.804 × 10−1 8.474 × 10−1

TWI 2.698 × 10−1 9.320 × 10−2

p-value = 0.0093

The significance of the chi-squared values was acceptable at a 95% confidence interval.
The fitted LR model was used to produce the susceptibility map (Figure 8) for the

rural municipality of El Faid. This map was reclassified by the natural breaks technique
into five classes as follows: 42.7% very low, 21.2% low, 21.5% moderate, 12.4% high, and
2.07% very high.
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3.1.3. Gully susceptibility analysis using the RF model

RF model were fitted using default parameters. Thus, the best number of variables
randomly sampled for Mtry was 12, with an accuracy of 0.885 and a kappa coefficient of
0.74. Optimizing the model was based on adjusting the Mtry and Ntree parameters.

The literature includes an extensive discussion of Mtry’s influence on the model’s
results. Several studies reported that different Mtry values did not affect the true positive
rates of their model and that other performance parameters (sensitivity/specificity, kappa,
and ROC) were stable under different Mtry values. The optimal Mtry parameter was
identified through increasing the number of variables with three scenarios (Figure 9). For
each one, a maximum number of searches (0 to 10, 0 to 20, and 0 to 30) was tried. A model
with a high predictive quality was achieved with an Mtry of 14, with a precision of 0.88%
and kappa coefficient of 0.74%.
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The Ntree parameter had significant effect on the predictive accuracy of the model.
Adelabu and Dube (2015) [44] showed that changes in Ntree and Mtry can have an effect
on the OOB error. To find the effect of the Ntree parameter, the results of the model and the
controlling factor prediction rates for three different numbers of trees (500, 1000, and 2000)
were compared (Figure 10).

The most important variables controlling gully erosion for the three numbers of classi-
fication trees Ntree were: CTI, slope, SPI, and LS. For the other factors of less importance
(such as TWI, curvature plane, NDVI, elevation, factor C, etc.) the change in the Ntree
parameter did not significantly influence the ranking of the factors in terms of prediction
rate for all three scenarios.

Ntree, achieving good RF mode performance, was identified using the out of bag
(OOB) plot (Figure 11) that measures the prediction error of the RF model. The average
error on each prediction sample was very high for low Ntree values. However, as the
number of trees increased, the error tended to decrease until it stabilized between 500 and
1500 trees. Regarding the area under the curve AUC parameter, it was found that for the
three scenarios tested previously, the AUC values increased slightly when exceeding 500 to
1000 trees and also from 1000 to 2000 trees. The increase of the Ntree parameter was not
accompanied by a perfect improvement of qualities in terms of AUC values. Hence, we
will refer to OOB values to choose the optimal number of trees (Ntree). The controlling
factor prediction rates for the tuned RF model are shown in Figure 12.
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 Figure 10. The effect of Ntree increase on factor importance and on area under the curve (AUC) values of the RF model.
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The optimized RF model was used to produce a gully susceptibility map (Figure 12).
This map was reclassified by the natural breaks technique into five classes as follows: 18.9%
very low, 19.5% low, 22.6% moderate, 20.94% high, and 17.97% very high.

3.2. Validating and Comparing the Models
3.2.1. FR Model Validation

The results of the prediction rate curves of the three FR approaches are shown in
Figure 13. By identifying the optimal logical breakpoints within a range of values, the
use of the natural breaks method in the second approach allowed for an improvement of
the AUC of 1.51% compared to the first approach. However, the increase in the number
of continuous factor classes in the third approach increased the reductive qualities of the
model, with a 5.13% improvement in the AUC.

Sustainability 2021, 13, x FOR PEER REVIEW 22 of 31 
 

 
Figure 13. Gully erosion susceptibility map (LR) for the rural municipality of El Faid. 

Running the frequency ratio model according to the classes presenting the best pre-
diction rates for the three approaches improved the model’s prediction rate by 0.86% com-
pared to the third approach (Figure 14). The predictive performance of the frequency ratio 
(FR) model in the rural municipality of El Faid can thus be qualified as having good to 
excellent accuracy. 

 
Figure 14. Representation of the accuracy of the frequency ratio for the three approaches. 

3.2.2. LR Model Validation 

Figure 13. Gully erosion susceptibility map (LR) for the rural municipality of El Faid.



Sustainability 2021, 13, 682 22 of 30

Running the frequency ratio model according to the classes presenting the best pre-
diction rates for the three approaches improved the model’s prediction rate by 0.86%
compared to the third approach (Figure 14). The predictive performance of the frequency
ratio (FR) model in the rural municipality of El Faid can thus be qualified as having good
to excellent accuracy.
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3.2.2. LR Model Validation

After standardizing the data by the “prediction” function, the AUC value (Figure 14)
was determined by the “performance” function which evaluates the performance of the
predictor used. The AUC of the model was 97.3%, which testifies to the excellent predictive
accuracy of the logistic regression model.

3.2.3. RF Model Validation

The validation dataset was used to evaluate predictive quality of the model according
to the AUC parameter, using the hyperparameters shown in Figure 14. The predictive
quality of RF model in the rural municipality of El Faid can thus be qualified having as
good to excellent accuracy, with an AUC of 91.49%.

3.3. Comparison between Models (FR, LR, and RF)

Comparing and validating the performance of the gully susceptibility models showed
that:

The adjustment of the prediction models is a crucial step to improving their prediction
results. In the case of the frequency ratio model the optimization of the hyperparameters
improved the AUC values by 7.5%. The resulting AUC values for the FR, LR, and RF
models were respectively 80.79%, 97.30%, and 91.49%. It can be said that the most reliable
gully susceptibility map for the rural municipality of El Faid was that resulting from the
logistic regression method, as it had the highest area under the curve.

To settle the model’s accuracy issue in terms of prediction based on the validation
sample, the areas presenting a very high susceptibility to gully erosion of each model were
intersected with the validation set in a single map (Figure 15). Thus, the model presenting
the largest area of crossover with the 224 gullies of the validation sample would have the
best predictive quality. It is necessary to specify that the model with the best accuracy
should avoid predicting areas where there was no gullying as gully areas. Despite the fact
that the LR model presented the best AUC value, the RF model showed a crossover area of
500,156 m2, in comparison to the 6500 m2 presented by the LR model. The confusion matrix



Sustainability 2021, 13, 682 23 of 30

(Table 8) was used to validate the accuracy of the results of the models used. The findings
from the confusion matrix confirm that the RF model showed the best accuracy, with 98.4%
of the observations correctly classified. The FR model shows that 198 observations were
not well observed, with reduced accuracy compared to other models (Figure 16).
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Table 8. Confusion matrix of the FR, LR, and RF models.

(FR) Class
Error (LR) Class

Error (RF) Class
Error

No Gully Gully No Gully Gully No Gully Gully

Prediction

No
Gullying 41.50% 11.30% 21.40% 49.14% 0.81% 1.60% 68.69 0.63% 0.90%

Gullying 8.50% 38.70% 18% 4.30% 46.83% 6.40% 0.95% 29.71 3.10%
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The comparison of the FR, LR, and RF susceptibility models proved that the model
presenting the best AUC value was not necessarily the most accurate. However, machine
learning methods such as the random forest RF model can be used successfully in other
similar semi-arid contexts.

4. Discussion

This study attempted to use remote sensing and GIS techniques to predict the occur-
rence of gullies to generate maps of susceptibility towards gullying for the rural municipal-
ity of El Faid. Erosion vulnerability mapping is an essential element which, by illustrating
risk, provides a tool for awareness raising, land management, and support for decision
making and action.

The gully erosion susceptibility is controlled by several factors, and their importance
can be assessed by various models [15,73]. Using a multitude of factors (topographic,
hydrological, and anthropogenic) to compare three classification models, it was found that
the validation method used to assess the forecasting accuracy of models was an essential
step in determining the most reliable model [95]. However, with the development of
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classification algorithms and their efficiency [96], accuracy can be determined by different
metrics [97].

The comparison between the results of each model showed that areas classified as
highly susceptible to gullying were identified along steep slopes, drainage lines, and
wastelands concentrated primarily in the southern part of the study area (Figures 6–13).
Similarities in the areas of moderate gullying susceptibility were found in the douars near
the mountains and also in lands with medium slope in the downstream parts of the small
mountains in the south of the municipality. The logistic regression model did not show a
similar pattern compared to the random forest and frequency ratio models. Similarities in
areas presenting low susceptibility were due to moderate slopes, low drainage density, and
less human influence, while areas of very low susceptibility were located near agricultural
lands. In addition to the commonly used AUC method, the method of crossing areas
classified as having a high susceptibility to gullying with the validation sample is a simple
but effective method. The model with the highest precision should have the greatest
gullying areas classified with high and very high sensitivity [34]. As a result, the RF model
with an AUC of 0.90 showed the best predictive quality, with the best accuracy in terms of
crossover area and confusion matrix.

The three methods chosen in this work have been widely used in susceptibility
mapping studies. Each of these models has its own strengths and weaknesses, but no
agreement has been reached on the best approach for the gully susceptibility analysis [38].
As a commonly used method [38,87,88,98], the frequency ratio model employs bivariate
statistical analysis to quantify gullying susceptibility through individual factors related
to gullying and offers better accuracy than other methods [99]. It takes into account the
relationship of each predisposing factor and the occurrence of gully erosion, whereas it
does not consider the relationship of all controlling factors on their own [13].

Logistic regression is used to establish a multivariate regression relationship between
a dependent variable and several independent variables [100]. It does not assume linear de-
pendencies between the controlling factors and the gullying process. However, this model
generalizes the variables representing causal factors [38,101]. By forming a suitable link
function for the usual linear regression model, logistic regression makes it possible to work
with all types of variables, which represents a relevant advantage of this technique [100].
Results indicate that the LR model is more efficient than the FR model in the susceptibility
modeling for gullying and other natural hazards [37,99,102].

The RF model is a robust and well-performing technique for susceptibility modeling,
as corroborated by the research [103,104]. It can support multiple input variables without
removing each variable and several other sets of classes that have high prophetic accu-
racy [105]. The RF model can also detect nonlinear relationships between both duplicate
independent and dependent variables. Thus, our study showed that the RF model will be
a good choice for other hazard susceptibility studies carried out in similar Mediterranean
contexts.

The study of the susceptibility to gullying highlights the flood risk in the study area,
providing a basis to guarantee the proper conduct of water and soil conservation. The maps
thus produced will allow the prioritization of actions to reduce the phenomenon of erosion
and the establishment of an efficient method to achieve the objectives while minimizing
the investment of time and money. The gully erosion management actions thus proposed
will make it possible to develop a consistent and concrete action plan, which will help stop
inappropriate land management while trying to promote the economic conditions of the
populations.

5. Conclusions

Soil erosion is one of the basic causes of land destruction. Linear gully erosion causes
an irreversible loss of agricultural lands and water pollution by materials transported
during floods. This work aimed to establish spatial susceptibility to gully erosion in the
rural municipality of El Faid. The findings will provide a solid basis for establishing



Sustainability 2021, 13, 682 26 of 30

water and soil conservation action plans to reduce floods and disasters caused by stream
overflows in the region.

Twelve predisposing factors (elevation, slope, aspect, curvature plan, slope length,
stream power index, composite topographic index, land cover, topographic wetness index,
normalized vegetation index, lithology, and vegetation cover factor) were chosen to com-
pare three predictive modeling approaches: frequency ratio (FR), logistic regression (LR),
and the random forest model (FR).

The predictive performance of the models, evaluated using the AUC, was improved
by 5.13% for the frequency ratio (FR) model. Thus, the logistic regression (LR) model
showed the best performance with one (AUC 97.3%), as compared to the random forest
model (AUC 91.49%) and the frequency ratio model (AUC 80.79%). Areas presenting an
extremely high vulnerability to gullying were compared to the validation sample. The area
crossover and confusion matrices proved that the model presenting the best AUC value
was not necessarily the best-performing one.

From modeling to erosion control, this study addressed all aspects related to the gully
erosion problem. The susceptibility maps thus produced will allow for the elaboration of
a consistent and concrete action plan that will ensure sustainable land management and
enhance the resilience of local communities that are affected by this phenomenon.
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