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Abstract: The transformation from traditional industry to Industry 4.0 can bring many benefits in
various spheres, from efficiency to safety. However, this transition involves adopting technologically
advanced machinery with a high level of digitization and communication. The costs and time to
replace obsolete machines could be unsustainable for many companies while retrofitting the old
machinery. To make them ready to the Industry 4.0 context, they may represent an alternative to the
replacement. Even if there are many studies related to retrofitting applied to machinery, there are
very few studies related to the literature process industry sector. In this work, we propose a case
study of a two-phase mixing plant that needed to be enhanced in the safety and maintainability
conditions with reasonable times and costs. In this regard, the Digital Twin techniques and Deep
Learning algorithms will be tested to predict and detect future faults, not only already visible and
existing malfunctions. This approach strength is that, with limited investments and reasonable times,
it allows the transformation of an old plant into a smart plant capable of communicating quickly
with operators to increase its safety and maintainability.

Keywords: retrofitting; Industry 4.0 technologies; digital twin; deep learning; process plant; safety
and maintenance

1. Introduction

Industry 4.0, also called the fourth industrial revolution, is the natural consequence
of the third revolution [1], and it is mostly based on two main factors: Internet of Things
and Services (IoT) and Cyber-Physical Systems (CPS) [2]. The implementation of Indus-
try 4.0 aims to guarantee businesses a competitive strategical advantage, organization
agility, organizational efficiency and effectiveness, profitability, manufacturing innova-
tion, maintenance costs [3], improved product safety and quality, improved operations,
delightful customer experience and environmental and social benefits [4,5]. As a result
of its implementation, businesses could achieve a better result in the three dimensions
of the Triple Bottom Line (TBL)—economic, social and ecological. Businesses that oper-
ate with the aim of achieving these three principles can be defined as sustainable [6,7].
The implementation of Industry 4.0 technologies is not simple and often presents potential
problems, particularly for Small and Medium-Sized Enterprises (SME). Such problems can
include limited availability of financial resources, limited knowledge and scarce techno-
logical competencies [8]. Moreover, even if the use of technologies such as IoT and CPS
improve the quality and the safety of the product and the process, another new risk, such
as problems connected to cybersecurity, could emerge [9]. SMEs, which make up 90% of
European industries [10], are those which encounter greater difficulty in the implementa-
tion of Industry 4.0. Nonetheless, they must find a way to adapt to remain competitive
against multinational industries [11]. Whereas that the process plants often have a useful
life that exceeds 20 years, in many cases, it may be very economically inconvenient to
replace the old plant with a new-generation plant designed for Industry 4.0 [12]. More-
over, when a plant is replaced, it must be considered that the replacement includes an

Sustainability 2021, 13, 646. https://doi.org/10.3390/su13020646 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3064-3915
https://orcid.org/0000-0002-8908-433X
https://doi.org/10.3390/su13020646
https://doi.org/10.3390/su13020646
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13020646
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/2/646?type=check_update&version=2


Sustainability 2021, 13, 646 2 of 18

extended machine downtime. This is often unsustainable in terms of time. In this respect,
it would be useful to evaluate a retrofit operation. Retrofitting improves the accuracy,
energy consumption, safety level, maintainability and ease of use of an old plant to obtain
optimal plant performance. In the context of Industry 4.0, we talk about smart retrofitting.
In addition to the classical retrofitting features, smart retrofitting involves implementing all
necessary tools and technology provided by Industry 4.0 [13]. Retrofitting is related to the
need for sustainability, productivity and increased technological level. Therefore, with a
smart economy and high connectivity, retrofitting allows the introduction of old plants in
Industry 4.0.

There are many retrofitting models in an Industry 4.0 prospective in literature, mostly
related to manufacturing environments such as production lines or computer numerical
control (CNC) machines. Although the existing research is valuable, to the best of the
authors’ knowledge, concerning the retrofitting of process plants from an Industry 4.0
perspective, there are not many relevant literature cases. In this context, the present work
aims to develop an old process plant retrofit to make it ready for Industry 4.0. The case
study refers to an old two-phase mixing plant retrofitted from an Industry 4.0 perspective
to improve safety and maintainability conditions. This work is focused on process plants
since the number of annual failures and injuries in this industrial sector are expected to
be very relevant due to component wear, which is often subject to an intensive working
condition [14]. The retrofitting objective is to ensure predictive maintenance applications
by creating virtual modeling of the plant and preventing operators’ high-risk events. In this
regard, the Digital Twin (DT) techniques and Deep Learning algorithms will be tested
to predict and to detect future faults, not only already visible and existing malfunctions.
DT technologies, through a virtual representation of physical assets (a single control valve,
a pump line, or the whole plant), make it possible to apply predictive policies in plant
management and maintenance [15]. DT is reactive compared to traditional simulation
models: it receives information from sensors on the physical asset and changes once the
asset has been modified.

The rest of the paper is as follows. Section 2 presents a literature review that analyzes
the primary retrofitting studies from an Industry 4.0 perspective in industrial and process
plants. Section 3 introduces the research approach adopted to retrofit an old process
plant. Section 4 presents a case study of a two-phase mixture process plant. This section
introduces the plant’s original state and the objectives that we want to achieve. Section 5
describes the retrofitting process related to the plant presented in the previous quarter
and proposed solutions to improve safety and maintainability. Finally, Section 6 offers the
discussion, and Section 7 the conclusions and future developments.

2. Literature Review

The literature review will bring attention to the adoption of Industry 4.0 paradigms
using retrofitting in the context of industrial and process plants. Some authors have used
retrofitting to improve maintenance operations. For Instance, Cattaneo and Macchi [16]
have retrofitted an old drilling machine realizing a DT for estimate Remaining Useful Life;
Herwan et al. [17] and Hesser et al. [18] used artificial neural networks (ANN) for detecting
the tool wear in a CNC machine after retrofitting; the latter show how the ANNs give
better results than support vector machine (SVM) and k-nearest neighbors (KNN) models
in tools wear prediction. Strauß et al. [19] have retrofitted a heavy lift Electric Monorail
System (EMS) at the BMW Group with a low-cost sensor and have used machine learning
algorithms for predictive maintenance; this work shows how supervised models, such as
the ANNs, are the best choice when labeled fault data are available. Supervised ANNs
cannot be used without data, and they also have the disadvantage of overfitting, which
tends to make the model adapt to a specific and not general behavior of the system. If no
data are available, a semi-supervised approach can be adopted using models such as the
Isolation Forest or the One-class SVM.
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Cruz et al. [20] have implemented a data visualization system with which it is possible
to make real-time analysis and predict machinery problems. Other works aim to improve
performance, such as Guerreriro et al. [21] which, through the smart retrofit of a drilling
process and using augmented reality, improve the quality and reduce the cycle time of the
process. Still using augmented reality, Hassan Al-Maeeni et al. [13] propose the retrofitting
of a bending machine through which it helps operators follow the right sequence of work to
improve times and costs. Some authors suggest retrofitting case studies with an approach
aimed at adaptive manufacturing; for instance, Lass and Gronau [22] apply it on a roller
conveyor to speed up the reconfiguration. Contreras Pérez [23] retrofitted a CNC machine
inserted in a flexible manufacturing cell, demonstrating that adopting the Industry 4.0
paradigms does not involve a huge investment but can be obtained by retrofitting existing
equipment. Retrofitting is also an excellent opportunity for sustainability, as claimed by
Stock and Slinger [12]. They propose a case study on a desktop tool machine. As proof of
this, Lins and Oliveira [24] present in their work the improvement of the energy efficiency
of a mechanical arm through a Cyber-Physical Production System (CPPS) retrofitting
process, while Lima et al. [25], through simulation tools and cloud, propose an approach to
evaluate the energy consumption in a manufacturing system.

Furthermore, Ayani et al. [26] highlighted how DT technology is economically advan-
tageous and beneficial for sustainability. An important aspect related to Industry 4.0 and
retrofitting for its implementation is undoubtedly the safety of operators. Burresi et al. [27],
in the retrofitting of a steel mill plant through the implementation of a CPS, in addition
to efficiency objectives, also have the aim of improving the safety of operators, obtaining
benefits not only in terms of increasing productivity but also in training new operators.

Instead of focusing on the benefits that can be obtained from an Industry 4.0 retrofitting,
such as those listed above, some works focus on how to transform a machine, a plant,
a process ready for Industry 4.0. These works focus on the aspects of the approach adopted,
communication, type of IoT sensors and all the other technologies adopted to make the old
manufacturing systems smart. For instance, ref. [28–30] propose different approaches to
make CNC machines and robotic arms ready for Industry 4.0, while Haskamp et al. [31]
present a migration process from an old system to an ICPS (Industrial Cyber-Physical
System) for a flexible manufacturing system. Gualtieri et al. [32] propose a qualitative
and economic evaluation model for the transformation from the manual working area to
the human–robot collaborative area. Garcia et al. [33] present a case study that aimed
to increase the level of communication and interoperability in a flexible manufacturing
system. Some retrofitting works use a Reference Architectural Model Industry 4.0 (RAMI
4.0)-based approach [24,33,34]. RAMI 4.0 is a kind of framework for the implementation
and development of Industry 4.0 applications; although it is an effective method to im-
plement Industry 4.0, often, in old plants, this type of approach needs data that are not
available or are difficult to collect. Most of the cases discussed in the literature refer to
manufacturing processes, while regarding process plants, it is still a relatively unexplored
topic. Moreover, regarding the implementation of digital models, the literature reports
several examples of DT applications in maintenance; instead, the implementation for safety
or risk assessment is limited. The few works identified are carried out by Gabbar et al. [35].
They proposed dynamic process modeling for safety assessment and risk analysis. Al-
though the case study regards a hydro-desulphurization unit and demonstrated to identify
some specific high-risk scenarios, the proposed model did not develop a systematic process
hazard analysis. Ramzan et al. [36] also proposed a simulation model for the hazard
analysis on a distillation column with two products. A further study that made use of dy-
namic simulation for conducting process hazard analysis was conducted by Wu et al. [37].
These authors integrated qualitative models with dynamic simulation for conducting a
process hazard analysis. Recently, Kummer and Varga [38] developed an open software
platform that allows generating disturbances to provide input to traditional hazard as-
sessment processes to reduce the hazard process duration and human error. It was tested
in a chemical process to evaluate the system’s sensitivity to critical variable disturbances.
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The literature approaches are intended to provide only a quantitative assessment of the
risk without developing a real DT of the plant.

The literature reviewed highlights, first of all, how retrofitting operations are typical
for manufacturing plants and not for process plants. Secondly, although all addressed
Industry 4.0 technologies, the proposed articles mainly focus on developing a single aspect
and not on an integrated system. The Industry 4.0 paradigm strength is referred precisely
to the integration of these technologies into a single system capable of connecting all actors
involved in the execution of activity (from the individual operator to the manager, from the
first to the last machine).

For this reason, the framework presented in this article wants to show how a careful
analysis of technologies, about the reality under investigation, can allow to digitalize and
manage at best an old plant, above all keeping costs down. From the articles reviewed,
we can see the inaccessibility (for the moment) to these technologies by small industrial
realities. For this reason, the proposed approach wants to try to overcome this limitation.

3. Retrofitting Research Approach

The proposed approach to retrofit an old process plant can be divided into four main
phases, as shown in Figure 1.

Figure 1. The approach adopted for the retrofitting process.

1. The starting point is the definition of the objectives. The adoption of Industry 4.0
paradigms makes it possible to achieve targets such as improving working conditions,
better quality processes, better communication, collaboration, improved productivity,
improved efficiency, flexibility, agility and reduced costs. In our case study, this objec-
tive is connected to enhancing the safety and maintainability of a two-phase mixing
plant through smart solutions. Achieving all these objectives is very difficult; therefore,
before designing the retrofit, it is important to identify which are the most strategic
ones. This step is essential because it helps designers to identify the Industry 4.0
application to be defined.

2. The second phase consists of an AS-IS analysis. In this step, a detailed description
of the plant and process is developed to analyze the main functions of the plant,
the variables (temperature, pressure, flow rate, ...) that come into play in the process,
the variables already monitored and those that must be controlled. This is possible
thanks to the analysis of historical data and interviews and questionnaires with
the operators who used the plant. Indeed, in this phase, a risk assessment of the
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plan must be developed in order to identify and analyze all possible tricky events,
their causes and the internal and external risk factors. Through an iterative process,
the preliminary analysis and knowledge of Industry 4.0 paradigms can change or add
previously defined objectives. Moreover, considering that the idea is to create a digital
mapping of a process, a careful technical evaluation can help to define additional
variables to be monitored and controlled to achieve the required targets.

3. The third phase regards the retrofitting processes.The new hardware (IoT tools) will
be implemented, a platform will be developed for acquiring data, control the plant
and simulate new scenarios. The sensors and actuators acting on the variables must
communicate with the acquisition platform. This step is one of the most critical activi-
ties in the retrofitting process since the sensors and actuators already present could
not communicate with third-party systems, requiring their replacement or adjustment.
The realized system allowed us to implement Deep Learning and Swarm Intelligence
(SI) algorithms devoted to anomaly prediction and prevention. The collected data will
be stored in databases and used in real time by a specific additional application. Thus,
appropriate communication protocols will have to be defined and implemented to
guarantee the required performance in terms of speed, efficiency and security. It is
preferable to use Cloud Storage rather than classic DBs to ensure that many users can
rapidly access data, simultaneously.

4. Finally, a user interface has to be developed in order to make the developed applica-
tions easy to use for the operators. Although operators should have experienced at
least some training and are known, the interface has to be designed so that it can be op-
erated by very heterogeneous user groups with little to no training, in varying contexts
and environments and with only a little knowledge about the users themselves.

4. The Case Study

The case study regards a laboratory plant (shown in Figure 2a,b) that simulates a
situation that occurs in the oil extraction processes; the pressure of an oil field, whose
pressure is higher than the transport pressure, is exploited to create a suction on an oil field
whose pressure is not high enough for transport on the line.

(a) (b)
Figure 2. Two-phases mixture experimental process plant used for testing and data collection. A fluid is pumped by using
another fluid at higher pressure through the Venturi effect. (a) Pipeline; (b) vertical separator, tank and control valves.

In this case, the motive fluid, i.e., the one with the highest pressure, is a liquid, while
the second fluid, i.e., the aspirated one, is a gas. In the real case, the fluids are oil and
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gas, while in the experimental plant under consideration they are water and air. The plant
consists of an ejector pumping system for the transport of two-phase gas–liquid fluids.

4.1. Retrofitting Objectives

The main retrofitting objective is to enhance the safety and maintainability conditions
of the plant. The major criticalities of the system are linked to the compromise of the
final part of the ejector and the possibility of occlusions in the pipes. Creating a DT of the
entire system is a relatively expensive process in terms of time. Therefore, given that the
most dangerous component in the event of a malfunction is the ejector, it is more useful
to create the DT of this component in the first phase. In this way, it will be possible not
only to simulate the various operating conditions but also to evaluate the real behavior
of the system with respect to the simulated one. To improve maintainability conditions,
especially about the formation of occlusions in the pipes, it may be useful to implement an
anomaly detection system that allows to quickly identify the area where the intervention is
to be performed.

4.2. AS-IS Analysis

Figure 3 shows the scheme of the experimental plant. The pump (CO1), connected
to the open tank (CO4), takes a flow rate Qliq of water and sends it, at a certain pressure
Pliq, to the ejector (CO2). The ejector is the main component of the system; it has the task
of exchanging energy between the high-pressure fluid and the low-pressure one. Inside
the ejector, transformation from pressure energy into kinetic energy occurs through a
converging cone. The depression created by this transformation generates a suction on the
air duct, which is at atmospheric pressure. A mixture of the two fluids comes out of the
ejector at a pressure compressed between the pressure of the two. This biphasic mixture
flows into a tank that acts as a vertical separator. The liquid component goes downwards by
gravity while the gaseous one goes upwards. Finally, the gaseous component is dispersed
into the atmosphere from the tank while the liquid one is re-flowing back into the open tank.
The plant is also equipped with two solenoid valves that control the flow rate at the outlet
of the liquid component (VC2) and the flow rate at the outlet of the gaseous component
(VC1) from the tank. Through an analog PID (Proportional–Integral–Derivative) control,
these valves maintain a prefixed liquid level (sensor L20) and a pressure (sensor L19) inside
the tank.

The most critical component is the diverging cone at the ejector outlet, used for
pressure recovery. This component in the event of overpressure in the affected area could be
compromised. Furthermore, when working with water and air in this system, incrustations
or occlusions are rarely formed in the pipes. Considering a real case where the fluids are
oil and gas extracted from an oil field, these problems are much more frequent. According
to the risk assessment analysis, the main risks connected to this plant are

• ejector blast,
• air pipe flooding,
• plant flooding,
• tank explosion, and
• spillage of vapors into the air.

The retrofitting process discussed in the next sections aims at predicting and prevent-
ing the highlighted risk events through smart solutions.
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Figure 3. Original plant scheme; in the original configuration the two solenoid valves were controlled by analog Proportional–
Integral–Derivative (PID) controllers. Moreover, some of the sensors were completely manual.

5. Retrofitting Process Results
5.1. New Variables and Hardware

It is possible to divide the variables of a process into monitored variables, usually
represented by sensor readings, and controlled variables, which typically require the
presence of an actuator. In this case, in the original configuration, the pressure and the
liquid level inside the tank were the monitored variables necessary for the normal operation
of the process. The controlled variables were the gas and liquid outlet section from the tank,
controlled by two solenoid valves (VC1 and VC2). Although these variables were sufficient
for the normal operation of the process, the plant was equipped with other monitored
variables useful for better checks on operations. These variables were the pressure before,
after and on the ejector case and the flow before the ejector. To make the system ready
for Industry 4.0, in addition to the variables introduced above, it is necessary to control
new variables. Specifically, after analyzing the process from the fluid dynamic point of
view, the variables necessary to ensure sufficient monitoring of the risks are those shown
in Table 1.

All mechanical sensors, such as the pressure gauges placed near the ejector, have been
replaced with analog instruments. The acquisition and control board used in this case is an
Arduino Mega 2560, which accepts an input voltage for analog signals from 0 to 5 volts.
Most of the sensors installed are equipped with a 0–5 volts output; the sensors with a
different output range have been equipped with a converter that has equalized the output
voltage to the voltage accepted by the acquisition card. Figure 4 shows the layout of the
system with the new equipment installed.
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Table 1. Variables with their associated devices; all sensors used in the new configuration are shown.

Variables Ref Sensor/Actuator Type

Pressure before ejector LN5 Setra 280E Absolute pressure sensor
Pressure on the ejector case LN11 Setra 280E Absolute pressure sensor

Pressure after ejector LN9 Setra 280E Absolute pressure sensor
Pressure in the tank LN19 Foxboro 841GM-CI1 Relative pressure sensor

Liquid level in the tank LN20 Foxboro IDP-10 Differential pressure sensor
Flow before the ejector LN4 Foxboro Magnetic Flowtransmitter Flow sensor

Air inlet flow LN8 Foxboro Vortez DN 50 Volumetric flow sensor
Gas outlet section from the tank VC1 ECKARDT MB6713 Pneumatic solenoid valve

Liquid outlet section from the tank VC2 ECKARDT MB6713 Pneumatic solenoid valve

5.2. Adjustment/Redesign Acquisition and Control Platform

As it is possible to see in Figure 4, with respect to the initial configuration of Figure 3,
all the sensors converge in the acquisition card. In addition, the control of the solenoid
valves, which was previously carried out with an analog PID control (see Figure 3), is now
completely managed by the acquisition card itself. As previously said, the acquisition card
chosen is Arduino Mega 2560. It was chosen because it is very versatile, reliable, easily
programmable and cheap. Arduino Mega 2560 is equipped with an 8-bit microprocessor,
54 digital and 16 analog pins. Normally Arduino can communicate only through the
serial port; for this reason, it has been equipped with an additional shield that allows it to
communicate through the Ethernet port.

Figure 4. Retrofitted plant scheme; all sensors converge in a single acquisition board (Arduino 2560). The board sends the
data to a server that will process them and make them available. The board will also control the solenoid valves according
to the precise indications of the server.

The Arduino MEGA 2560 has a clock of 16 MHz. The execution speed is very high
and suitable for the management of real-time systems, such as the case study presented,
considering the delays due to memory management and that the operating code is not an
operating system but a single program. The libraries allow Arduino to access the internet
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via a SocketIO connection to send data to the Cloud. The SocketIOs will enable us to
receive the plant data, in real-time, from any connected device. A web page interprets
and analyzes the data and allows users to save and download the data while the plant is
running. Arduino has been preferred to other types of acquirers, such as ADAM, because
it can adapt its outputs autonomously, being a programmable microcontroller. On the
contrary, other acquirers need at least a PC always turned on and connected to the network
to read and send commands. What has been said would lead not only to a drastic increase
in sensor reading times but, above all, to risks when the PID systems that control the
actuators are activated because there is no direct control over them.

Figure 5 represents the flow of information. The sensors send an analog signal to the
Arduino, which converts this signal into a digital signal.

Figure 5. Information flow; the acquisition card receives analog signals from the sensors and sends
commands directly to the actuators. The acquisition card converts the signals from analog to digital and
communicates with the outside world through the web socket protocol using Ethernet communication.

Arduino sends, through the web socket communication protocol, the sensor readings
detected to a web platform, which will have the task of analyzing, displaying and storing
these data. Communication is not mono-directional; from the web platform, it is possible,
always using the web socket communication protocol, to send commands to the Arduino,
which can control the actuators present on the system. WebSocket, in particular, socketIo
is a web technology that offers the possibility of establishing a bi-directional Full-Duplex
communication on a TCP/IP port between a client and a server. The peculiarity of a
Full-Duplex communication is to transmit and receive data simultaneously between the
“interlocutors”. In the context of the development of web applications, which must have
real-time functionality, web sockets are the reference HTML5 technology that web applica-
tions should aim for in the future. The system was equipped with an analog PID control of
the solenoid valves to maintain constant pressure and liquid level in the tank at certain
values. In the new configuration, this control is guaranteed by Arduino, which, thanks to a
special library, allows to perform a digital PID control. The PID parameters and the desired
pressure and level values are communicated through the web platform.

Regarding data storage, it must be considered that the volume of data stored will be
very large over time. Moreover, to use Industry 4.0 typical algorithms, such as machine
learning ones, very fast access to data is required. For this reason, it is not recommended to
use a traditional data storage approach, such as a classic relational DB. A solution could
be using one of the many cloud service vendors such as Microsoft Azure, Amazon, etc.
At this point, the plant can be considered Industry 4.0 ready.

What is described only means that the system is designed to be included in a 4.0
context. This does not mean that the plant is already taken advantage of the benefits of
Industry 4.0. To take advantage of the benefits of Industry 4.0 it is necessary to develop
applications dedicated to performing certain functions, as can be seen in the next section.
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5.3. Development of Industry 4.0 Applications

The strategic objectives defined above are to improve safety and maintainability
conditions; therefore, the applications that have been defined are as follows:

• create a DT model of the process that occurs in the ejector;
• create an anomaly detection platform to promptly identify the cause of an anomaly.

The former allows both to simulate the behavior of the ejector in different scenarios
and compare the real-time status of the system with the simulated one to evaluate any
malfunctions. The latter focuses attention on the problem of the occlusion of the pipes,
allowing technicians, in case of occlusion of some pipes, to quickly identify which is the
area on which to intervene.

5.3.1. Ejector Digital Twin

For developing the Ejector DT we used a supervised approach because it is too
complex to model the behavior of this component through mathematical equations or
Computational Fluid Dynamics (CFD) Simulation software like Ansys. Initially, a series of
test campaigns were carried out that allowed the collection of data under different working
conditions; subsequently, among the supervised approach, we evaluated Deep Learning
and SI algorithms.

The best results for the ejector simulation model were obtained using SI algorithms
such as Fish Colony, Water Cycle and Grey Wolf. Moreover, many mathematical functions
have been implemented, such as linear, exponential, quadratic, etc., to identify the model
that best represents the behavior of the ejector. Table 2 shows how the available variables
have been used for output estimation.

Table 2. Parameters used for the realization of the model based on the swarm intelligence.

Variable Reference Sensor Description

Pliq LN5 Observed input
Pejec LN11 Observed input
Ptank LN19 Observed input
Qliq LN4 Observed input
Qgas LN8 Observed output
Qgas* - Estimated output

Qgas* is the estimate of Qgas obtained with the model.

To test the various algorithms, a set of simulations were carried out varying the
algorithm, the function, the number of iterations (between 30 and 90) and the swarm
size (between 30 and 90 agents). Table 3 shows an extract of the analyzed scenarios
(experiment number, intercept present or not, function type, population size and maximum
iteration number).

By comparing the variance inflation factor (VIF) and the computational time, the best
estimation algorithm for ejector DT was the Gray Wolf with swarm size equal to 60 and 60
iterations. Equation (1) reports the mathematical model, and Figure 6 shows the comparison
of real and simulated behaviors.

Q∗
gas = −0.0692Pliq − 0.4303Pejec − 0.4303Ptank + 1.0329Qliq (1)

The estimation error committed ranges from a minimum of 0.03% to a maximum of
7.75% on all the tests considered.

The DT tool can work both online and off-line. Working off-line, the tool allows us to
analyze what-if scenarios, identifying the tricky situations for operators without activating
the plant and simulating maintenance procedures.

When the tool works on-line, it receives information from sensors and modifies its
parameters allowing users to compare the data provided by sensors and the simulated ones.
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Table 3. Extract of analyzed scenarios (experiment number, intercept present or not, function type,
population size and maximum iteration number).

Exp Intercept f(x) nPop MaxIt

1 True Linear 30 30
2 False Linear 30 30

. . . . . . .
63 True Exponential 30 60
64 False Exponential 30 60
65 True Linear 30 60
66 False Linear 30 60
. . . . . . .
111 True Exponential 30 90
112 False Exponential 30 90
113 True Linear 30 90
114 False Linear 30 90
. . . . . . .
143 True Exponential 60 90
144 False Exponential 60 90

Figure 6. Example of observed and estimated variable tracking with the Grey Wolf algorithm.

5.3.2. Anomaly Detection Platform

Before proceeding with the development of the anomaly detection platform, the pro-
cess parameters, shown in Table 4, were defined. Subsequently, a test campaign was carried
out in normal and anomalous operating conditions. The manual valves, arranged along
with the plant, were used to simulate the anomalies. Specifically, the valves VM3, VM4,
VM5 and VM6 were used to simulate occlusion, and the valve VM7 simulated a tank leak
(see Table 5).
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Table 4. Process parameters contain the parameters characteristic of the normal steady state. These pa-
rameters were used to perform the tests for training the anomaly detection model.

Description Reference Sensor Variable Value Unit of Measure

Engine fluid pressure LN5 Pliq 5 Bar
Tank level LN11 Ls 500 Mm

Tank pressure LN19 Ptank 0.3 Bar
PID tank level - Kil 0.8 -
PID tank level - Kpl 0.5 -
PID tank level - Kdl 0.1 -

PID tank Pressure - Kis 0.4 -
PID tank Pressure - Kps 0.4 -
PID tank Pressure - Kds 0.1 -

Table 5. Fault types—the categories into which a fault, related to occlusions or leaks, can be classified.

Fault Code Description Fault Reproduction Mode

A1 Fault 1 consists of an obstruction in the air intake duct Simulated by closing the VM3 shut-off valve
A2 Fault 2 consists of an obstruction of the ejector outlet duct Simulated by closing the VM4 shut-off valve
A3 Fault 3 consists of an obstruction of the water outlet pipe from the tank Simulated by closing the VM5 shut-off valve
A4 Fault 4 consists of an obstruction of the air outlet duct from the tank Simulated by closing the VM6 shut-off valve
A5 Fault 5 consists of a tank leak Simulated by opening the VM7 shut-off valve

The problem of identifying anomalies has been separated into two sub-problems:

• evaluate whether the system is in a fault condition or not;
• if the system is in a fault condition, classify the type of fault.

The first problem was addressed using a traditional approach. A multivariate statistic was
used to verify whether the system was in a control condition or not; specifically, Hoteling’s
T2 Control Chart was used [39]. Once the data were standardized, and the control limit was
calculated using the steady-state data, it was possible to discriminate the out-of-control
points in the tests that presented anomalies and assign them the specific anomaly.

Figure 7 shows an example of data collected where is clearly defined the working
condition and the out-of-control condition. Once the anomaly is generated, the system
switches from a control condition (T < UCL) to an out-of-control condition (T > UCL).

The dataset obtained is similar to that in Table 6. On the one hand, there are standard-
ized sensor readings, while, on the other, there is a vector of five binaries, which identifies
the type of anomaly.

Several studies [40–43] have shown that when you have available data related to
anomalies, or you are able to simulate anomalies (as in this case), anomaly detection
algorithms, based on neural networks, have obtained good results. For that, the second
problem was dealing with an MLP neural network (see Figure 8). The dataset described
above was divided into a training dataset and a test dataset; subsequently, systematic
experimentation was carried out to evaluate the best configuration for the neural network.
Table 7 shows the parameters and ranges used for systematic experimentation.
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Figure 7. The trend of the multivariate statistic (Hotelling T2) during an A1 anomaly; sensor readings are condensed into a
single variable, so it is easy to determine when the system is out of control.

Table 6. Extract of dataset used for the training of the neural network. Column X contains the anomaly data, which were
standardized with mean and variance calculated in the steady-state conditions. Column Y contains binary vectors necessary
to classify the type of anomaly.

X Y

LN4 LN19 LN20 LN8 LN5 LN11 LN9 VC1 VC2 A1 A2 A3 A4 A5

1.02 0.99 −0.01 −21.34 −0.84 −20.93 1.42 4.14 0.67 1 0 0 0 0
1.02 −0.02 −0.01 −21.54 −0.84 −20.93 1.42 4.14 −0.04 1 0 0 0 0
1.02 0.99 −0.01 −21.65 −0.84 −20.93 1.42 4.14 1.03 1 0 0 0

...
−0.91 5.03 −0.88 −5.87 0.98 0.70 3.41 −4.86 1.03 0 1 0 0 0
−2.83 5.03 −0.88 −6.47 −0.84 0.70 3.41 −5.42 1.03 0 1 0 0 0
−0.91 8.05 −0.88 −6.47 0.07 0.70 6.40 −7.68 0.31 0 1 0 0 0

...
1.02 −1.02 −1.76 0.06 1.89 −0.24 2.42 4.14 −0.04 0 0 1 0 0
−0.91 −0.02 −0.88 0.06 0.98 0.70 2.42 4.14 1.39 0 0 1 0 0
1.02 0.99 −0.88 −0.44 0.98 1.65 1.42 3.58 0.31 0 0 1 0

...
1.02 −1.02 0.87 −2.95 2.80 0.70 2.42 0.77 1.39 0 0 0 1 0
−0.91 −2.03 2.62 −3.05 0.98 0.70 1.42 3.02 −2.55 0 0 0 1 0
−0.91 −0.02 1.74 −3.15 0.98 0.70 3.41 −0.92 −1.48 0 0 0 1 0

...
1.02 4.02 8.75 −1.65 0.98 −0.24 2.42 −3.17 2.10 0 0 0 0 1
−0.91 2.00 10.51 −1.65 2.80 0.70 0.43 −2.61 −0.40 0 0 0 0 1
1.02 2.00 12.26 −1.65 0.98 0.70 3.41 −1.48 −0.76 0 0 0 0 1

...

Readings at time t and (t-1) were used as input for the neural network. Thus, the
network was equipped with a kind of memory. Finally, the best configurations were
evaluated through a k-fold evaluation test. In terms of accuracy (about 98%), the best
configuration was the one with 36 neurons in the first hidden level and 8 in the second
level, with a learning rate of 0.05 and 300 training epochs.
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Table 7. Parameters and range for the neural network training; a systematic analysis of all combina-
tions of the reported parameters has been carried out.

Feature Range

Epochs of training 1→1000 step 25
Learning rate η 0.01–0.05–0.1
Hidden layers 1–2

Number of neurons Network growing 1→ 40 step 1

Figure 8. Structure of the neural network used. In input to the network, in addition to the readings
at time t, the readings at time t-1 are used; in this way the network has a kind of memory.

5.4. User Interface

The platform interface is essential. A web interface was created for the case study
examined. Through this interface, it is possible to see the sensor readings in real-time,
evaluate the deviation between the ejector’s real behavior and the simulated one and,
finally, identify the anomalies. The interface has been equipped with the system 3D model
in which anomalies will be reported directly to facilitate anomalies identification. Figure 9
shows the main page of the developed interface.
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(a) (b)

Figure 9. With the user interface it is possible to monitor the process through the visualization of the sensor state by gauge indicators
and graphs, the evaluation of the real behavior compared to the digital model, and the visualization of eventual anomalies directly on
the plant 3D digital model. (a) User Interface; (b) example anomaly on VM6.

6. Discussion

The retrofitting process led to an improvement in the performance of the system, but,
at the same time, it presented some difficulties in the application and the emergence of
new problems. The application of the proposed approach to the case study allowed, in a
reasonable time and machine downtime, an improvement in the performance. As shown in
Table 8, the retrofitted system allows better maintenance and operator safety management
thanks to the specific applications for anomaly detection and simulation. Furthermore,
the newly developed platform allows remote monitoring and controlling via a web ap-
plication. Thus, both operators and managers can have a broader view of the process.
Managers and analysts can also quickly access the database cloud with historical data to
make statistics and forecasts.

Table 8. Qualitative analysis of retrofitting improvements.

Old Plant Retrofitted Plant

Security High risk for operators who are near
the plant in the event of a malfunction.

With the simulation tool, it is possible to anticipate tricky
situations by intervening preventively or by stopping
the process.

Maintainability Specialized operators are required to
identify the area on which to intervene
in the event of an anomaly.

Thanks to the anomaly detection tool, time for identi-
fying the intervention area is drastically reduced, and
highly specialized operators are not required to deter-
mine the area of interest.

Plant control Process control is only possible in the
vicinity of the plant, and making an
overall assessment of the process is very
complicated.

Through the developed platform, it is possible to mon-
itor the process in real-time using a web application.
Furthermore, it is possible to combine the various sensor
readings to obtain aggregate data that gives a rough idea
of the process status.

Access to data There is no data acquisition system. Thanks to the data acquisition and storage system in
the cloud, data can be quickly accessed both locally and
remotely. Consequently, it requires the adoption of data
protection systems from any cyber-attacks.

Regarding the criticality in reference to the model implementation, it is possible to high-
light the need for deterministic transactions. Real-time implies determinism. This means
that processing must be based on suitable (operating) systems designed for real-time.
The design of embedded systems, by definition, is aimed at applications with specific
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performance and guaranteed stability. Moreover, for embedded systems, the usual concept
that computing devices will soon be more powerful and less expensive is no longer valid.
Programming paradigms must take into account a new dimension where resources are
limited “by design”.

7. Conclusions

The process of transitioning old process plants to Industry 4.0 is still a great challenge
for many companies, especially SMEs. This article proposes a general framework to guide
the transition process. The proposed framework was applied to a real case study relating
to a two-phase process plant. The application to the real case showed the strengths and
weaknesses of the proposed method. The strength of this approach is that, with limited
investments and reasonable times, it allows the transformation of an old plant into a smart
plant capable of communicating easily with the outside world—all this without completely
changing the system configuration. In the case study presented, the improvement of com-
munication allowed the improvement of the aspects related to safety and maintainability.
The application of this approach presented some challenges, mainly related to the multidis-
ciplinarity of the topics dealt with, ranging from knowledge of the process to electronics to
information technology and data analysis. Furthermore, the definition of the new variables
is a recursive operation linked to the performance evaluation. This can lead to a delay
compared to the time foreseen in the planning phase. The work carried out on the plant is a
preliminary work. Indeed, development is foreseen in the future. Surely the DT, which was
created in this phase only for the ejector, will have to be implemented in the entire system
and even in the entire work environment through cameras and RFID systems. Concerning
the anomaly detection system, new systems will have to be developed that do not require
preliminary data to function; for example, unsupervised machine learning algorithms could
be used. Moreover, it could be useful to develop a dedicated interface for mobile devices
such as smartphones or smartglasses.
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