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Abstract: Due to the uncertainty in output power of wind farm (WF) systems, a certain reserve
capacity is often required in the power system to ensure service reliability and thereby increasing
the operation and investment costs for the entire system. In order to reduce this uncertainty and
reserve capacity, this study proposes a multi-objective stochastic optimization model to determine
the set-points of the WF system. The first objective is to maximize the set-point of the WF system,
while the second objective is to maximize the probability of fulfilling that set-point in the real-time
operation. An increase in the probability of satisfying the set-point can reduce the uncertainty in the
output power of the WF system. However, if the required probability increases, the set-point of the
WF system decreases, which reduces the profitability of the WF system. Using the proposed method
helps the WF operator in determining the optimal set-point for the WF system by making a trade-off
between maximizing the set-point of WF and increasing the probability of fulfilling this set-point
in real-time operation. This ensures that the WF system can offer an optimal set-point with a high
probability of satisfying this set-point to the power system and thereby avoids a high penalty for
mismatch power. In order to show the effectiveness of the proposed method, several case studies are
carried out, and the effects of various parameters on the optimal set-point for the WF system are also
analyzed. According to the parameters from the transmission system operator (TSO) and wind speed
profile, the WF operator can easily determine the optimal set-point using the proposed strategy. A
comparison of the profits that the WF system achieved with and without the proposed method is
analyzed in detail, and the set-point of the WF system in different seasons is also presented.

Keywords: energy management systems; multi-objective function; optimal set-points; stochastic
optimization; wind farm operation

1. Introduction

Wind energy, along with other renewable energy sources, is expected to grow sub-
stantially in the coming decades and play an important role in fulfilling future world
energy needs as well as contributing to reducing global warming. The International Energy
Agency (IEA) estimates that the annual wind power could increase to more than 2180 TWh
by 2030, which is seven times higher than accumulative wind power production up to
2009 [1,2].

In order to convert wind energy into electricity, a vast number of wind turbine gen-
erators (WTGs) and the WF systems have been under construction recently and injecting
huge amounts of power into the power system. However, due to the rapid increase in the
penetration of wind power, future power systems may face numerous challenges from
the supply variability and uncertainty in the output power of WF systems. For small WF
systems, this uncertainty can be neglected because the total output power of the WF system
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is small compared with the power system capacity. Recently, however, WF systems are
designed with a huge installed capacity of up to several GW [3]. Therefore, the uncertainty
in such large WF systems cannot be neglected, which adversely affects the operation of
the power system in terms of power quality, system security, and system stability [4,5].
Various methods have been proposed to handle the uncertainty in the output power of the
WF system in the operation of the power system [6,7].

The most common approach to reducing the effect of the uncertainty in the output
power of the WF system is to use auxiliary supplies or reserve capacity, such as battery
energy storage system (BESSS) [8,9], power-to-hydrogen-to-power system [10], power-to-
gas energy storage [11], controllable distributed generators [12], etc. The optimal control of
these auxiliary systems can reduce the effect of wind power curtailment by peak shaving
as well as by compensating for the power mismatch by the uncertainty in WF’s output
power. However, the operation and investment costs for this reserve capacity are quite
expensive due to the installation of additional controllable distributed sources. In order to
reduce these costs, the optimal scheduling and sizing of the reserve capacity are required,
considering the uncertainty in the output power of the WF system.

There are several optimization algorithms and strategies for the operation of power
systems that have been proposed for optimal sizing and scheduling of the reserve capacity
using robust optimization [13], stochastic optimization [14,15], dynamic programming [16],
and reinforcement learning (RL)/deep RL [17]. The authors in [13] have proposed a two-
stage distributed robust optimization model to investigate the optimization scheduling for
the multi-energy coupled system, considering the uncertainty in wind power. This model
aims to minimize the expectation of the operation cost under the worst-case condition. The
authors in [14,15] have developed a two-stage stochastic programming model for optimal
unit commitment and dispatch decisions. The authors in [16] have proposed a capacity
sizing method for wind power–energy storage systems using dynamic programming. The
authors in [17] have developed a double deep Q-learning-based distributed operation
strategy for a BESS considering the uncertainty in the output of wind power. However,
these studies in [13–17] only focus on the optimal operation of the power system with
a certain uncertainty in the output power of the WF system. The transmission system
operators (TSOs) attempt to optimize the operation scheduling of resources outside the WF
system, such as power plants and BESSs, to ensure the service reliability in the worst-case
(i.e., the output power of the WF is at the lowest bound). A large uncertainty bound can
lead to a significant increase in the operation and investment costs due to the requirement
of the huge amount of reserve capacity in the power system.

In order to reduce the amount of reserve capacity in the system, the uncertainty in
the output power of the WF system should be decreased by optimizing the set-point
of the WF system. Various methods have been proposed to determine the set-points of
WTGs and the WF system with different objectives [18–20]. The authors in [18] have
proposed an operation strategy to optimize the set-point of each WTGs for maximizing
the total output power of the WF system. The authors in [19] have investigated the wind
power smoothing effect considering the different number of WTGs and the operation of
WTGs in the WF system. The authors in [20] have developed an operational strategy to
minimize the power deviation in the WF system by optimizing the set-point for each WTGs.
However, most studies have focused on maximizing the output power of a WF system [18],
smoothing wind power output [19], or minimizing power deviation in the WF system [20].
Determining the set-point of the WF system to reduce the uncertainty of the output power
has not been considered in the literature.

Therefore, this study mainly focuses on developing a strategy for the WF operator
to determine the optimal set-point of the WF system to reduce the uncertainty in the
output power. In the proposed strategy, a multi-objective stochastic optimization model
is developed based on mixed-integer linear programming (MILP). The multi-objective
function consists of two single objectives; the first objective is to maximize the set-point
of the WF system, while the second objective is to maximize the probability of fulfilling
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the set-point of the WF system in real-time operation. As aforementioned, the set-point of
the WF system helps TSO in determining the optimal scheduling for all external resources
to fulfill the electric demands. In order to reduce the uncertainty of the output power, the
WF operators need to assure that they can satisfy the set-point in the real-time operation
and inject it into the power system. Any power mismatch between the actual output
power and the committed power may result in a high penalty for the WF operator. To
increase the profit of the WF by selling power to the grid, it is easy to observe that the
WF should inform a high set-point to the TSO. However, if the set-point for WF systems
increases, the probability of fulfilling such high set-point decreases. By using the proposed
method, the WF operator is able to determine the set-point for the WF system by deciding
a trade-off between maximizing the set-point and increasing the probability of fulfilling
that set-point. A high probability of fulfilling the set-point helps the WF system avoiding a
penalty for power mismatch between the actual output power and the set-point of output
power and also reduces the uncertainty of the output power of the WF system. This helps
the TSO to significantly reduce the reserve capacity and thereby reducing the investment
and operation costs for the whole system. The effect of the ratio of weight factors and
the minimum probability requirement on the set-point of the WF system are analyzed in
detail in the simulation section. In addition, a comparison of the profits that the WF system
achieved with and without the proposed method is analyzed in detail and the set-point of
the WF system is also presented with different wind speed profiles for the four seasons in
a year. The major contributions of this study are listed as follows:

• A multi-objective stochastic optimization model is developed to determine the optimal
set-point of WF with different wind probability density functions. This helps to reduce
the uncertainty of the output power of WF and thereby to reduce the requirement of
reserve capacity;

• A novel algorithm is proposed for a trade-off between maximizing the set-point of
WF and increasing the probability of satisfying this set-point in real-time operation.
With any input information, the WF operator is able to find out the optimal set-point
with a required probability;

• By increase, the probability of fulfilling the set-point in real-time operation, the uncer-
tainty of the output power of WF can be decreased. This results in the reduction of
operation cost of the whole system.

This paper is arranged as follows: In Section 2, the system configuration and operation
of the system are presented. In Section 3, the detailed strategy for determining the optimal
set-point of the system WF is presented. In Section 4, a MILP-based mathematical model
for multi-objective stochastic optimization is formulated. In Section 5, the numerical results
are analyzed, and the comparison on the set-point of the WF system is also presented. The
conclusion of this study is summarized in Section 6.

2. System Configuration

Figure 1 depicts a typical WF system, which is connected to the power system to
supply electric demands. The whole system is operated by a transmission system operator
(TSO). The TSO’s primary task is to determine the optimal scheduling for supply resources
(i.e., power plants and renewable energies sources) and manage the operation of the entire
system in real-time operation. To optimize the scheduling for power plants, TSO requires
the set-point from the WF system. The WF system normally operates by the WF operator,
and this management system is also responsible for determining the optimal set-point of
the WF system and informing the TSO. This set-point of the WF system plays a vital role
in the optimal scheduling of other resources. Therefore, the WF system must be able to
fulfill its set-point in real-time operation. Any power mismatch between actual output and
committed power results in a massive penalty for the WF system from TSO. Therefore, this
study mainly focuses on determining the optimal set-point of a WF by a trade-off between
maximizing the set-point and increasing the probability of satisfying the set-point in the
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real-time operation. The operation strategy for the WF system is presented in detail in the
next section.
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Figure 1. A typical wind farm (WF) system configuration.

3. A Strategy for Determining the Optimal Set-Point of WF System

In this section, we present a strategy for the WF operator to determine the optimal
set-point of the WF system, as shown in Figure 2. First, the wind speed parameter is
assumed to comply with the Weibull distribution, and the detailed information about
the Weibull parameters (i.e., Weibull shape and scale) are taken as input data. Based
on the probability density function (PDF) of wind speed data, numerous scenarios for
wind speed at each interval is generated to ensure the accuracy of the proposed method.
However, a large number of scenarios significantly increases the computation burden for
the simulation system. Therefore, a scenario reduction algorithm was developed to merge
similar scenarios, as shown in detail in Algorithm 1. After merging all similar scenarios,
the output capacity of each WTGs is calculated using (7) with the corresponding wind
speed in each scenario. The total output power of the WF system in each scenario is used
to determine the optimal set-point of the WF system by solving a multi-objective stochastic
optimization model. The first objective is to maximize WF’s profitability by selling power to
the power system (i.e., maximizing the set-point). However, the WF operator cannot always
ensure that the WF system always meets the maximum set-point in real-time operation.
Therefore, the WF operator may try to make a trade-off between maximizing the set-point
of the WF system and increasing the probability of fulfilling that set-point considering the
ratio of weight factors and the minimum probability requirement. In order to determine
the actual probability for each set-point of the WF system, we also developed Algorithm 2,
and the detailed explanation for Algorithm 2 is presented in Section 4.

As stated previously, Algorithm 1 was developed to reduce the number of scenarios by
merging similar scenarios in the scenario set. First, the Kantorovich distances are calculated
for each pair of scenarios in the scenario set, and then a similar pair of scenarios (k, s)
is determined, as shown in Algorithm 1. Because the two similar scenarios often do not
contribute much in evaluating the proposed method, one scenario can be omitted, and
the probability for the other is updated simply by the sum of the probabilities of both
scenarios [21,22]. This process is repeated until the number of scenarios reduced to the
minimum scenario requirement.
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In the next section, a detailed mathematical model is developed to determine the
set-point of the WF system with different input data.

4. Mathematical Model

In this section, a mathematical model is developed based on mixed-integer linear
programming (MILP) to determine the optimal set-point of the WF system. This optimal
set-point is determined by making a trade-off between maximizing the set-point of WF and
increasing the probability of fulfilling this set-point in real-time operation. Suppose the WF
operator informs a high set-point, which is more profitable; however, the probability of
fulfilling that set-point may significantly reduce. Hence, it is important having a trade-off
between these two factors (i.e., maximizing the set-point and increasing the probability of
fulfilling that set-point). The following mathematical model is developed to analyze the
effects of different parameters on determining the set-point of the WF system.

First, in order to evaluate the effectiveness of the proposed method, we assume that
the wind speed at WTGs follows Weibull distribution during each season as in [22,23].
The probability density function (PDF) and cumulative distribution functions (CDF) of
the Weibull distribution are shown in (1) and (2), respectively. The Weibull shape (k) and
Weibull scale (λ) are taken as input parameters in different seasons, and these parameters
are taken from [23].

f (v) =
k
λ

( v
λ

)k−1
exp

[
−
( v

λ

)k
]

(1)

F(v) = 1− exp
[
−
( v

λ

)k
]

(2)

To ensure accuracy in determining the optimal set-point of a WF system, numerous
scenarios (S) needs to be generated using PDFs and CDFs. Each scenario is a row vector
Vs consisting of the wind speed at each interval of the day from v1,s to vT,s, as shown in
(3). The probability of each scenario (probs) is determined by multiplying the probability
of each time interval having a certain wind speed vs,t, as shown in (4). In this study, we
assume that the number of scenarios is large enough, and therefore the total probability of
occurrence of the entire scenario set (S) is 1, as shown in (5).

Vs = (vs,1, vs,2, . . . vs,t, . . . , vs,T) ∀s ∈ S (3)

probs =
T

∏
t=1

(ps,t) ∀s ∈ S (4)

where: ps,t is the probability of interval t having wind speed vs,t

S

∑
s=1

probs = 1 (5)

The total output power of the WF system is determined by the total output power of
each WTGs, as shown in (6), where the amount of output power of each WTG is calculated
by (7) for each corresponding input of wind speed. In order to determine the optimal
set-point of the WF system, a multi-objective function is developed, as shown in (8). The
first part of (8) represents the normalization of the set-point of the WF system, where the
minimum and maximum value of the WF system’s output power is determined using (9)
and (10), respectively. The second part of (8) is the probability of satisfying the set-point in
real-time operation for the WF system. The weight factors α and β show the importance of
every single objective in the multi-objective function. The constraints (11) and (12) show
the relationship between the weight factors α and β, the values of α and β must be in the
range (0, 1) and their sum needs to be 1. If the value of α is close to 1, the WF operator is
more concerned with maximizing the set-point of the WF system. On the contrary, if the
value of α is close to 0, the WF operator is more concerned about the possibility that the
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WF system can satisfy the set-point in real-time operation. Constraints (13), (14) represent
the bound of the set-point of the WF system and constraint (15) represents the minimum
probability requirement for satisfying the set-point of the WF system in real-time operation.

POut
WF,s,t =

N

∑
n=1

PWTG
n,s,t ∀s ∈ S, t ∈ T (6)

PWTG
n,s,t =


0 vn,s,t < vcut−in or vn,s,t > vcut−out
1
2 Cp(β, λ)ρπR2v3

n,s,t vcut−in ≤ vn,s,t < vrate

PWTG
n,rate vrate ≤ vn,s,t ≤ vcut−out

∀n ∈ N, s ∈ S, t ∈ T

(7)

Max

{
α ·
(

PSch
WF − POut

WF,min

POut
WF,max − POut

WF,min

)
+ β ·

(
prob

(
P ≥ PSch

WF

))}
(8)

POut
WF,min = min

(
T

∑
t=1

POut
WF,s,t

)
∀s ∈ S (9)

POut
WF,max = max

(
T

∑
t=1

POut
WF,s,t

)
∀s ∈ S (10)

α + β = 1 (11)

0 ≤ α, β ≤ 1 (12)

0 ≤ PSch
WF ≤ T · POut

WF,rate (13)

POut
WF,rate =

N

∑
n=1

PWTG
n,rate (14)

prob
(

P ≥ PSch
WF

)
≥ probreq ∀t ∈ T (15)

The probability of fulfilling the set-point of WF in the left-side of constraint (15) is de-
termined by Algorithm 2. This algorithm helps the WF operator determine the probability
that the WF system can meet the set-point in real-time operation. Algorithm 2 checks the
output power of the WF system in each scenario and compares it with a certain set-point
(PSch

WF ) of WF. Suppose the output power of a scenario is greater than PSch
WF , the probability

for satisfying the set-point is updated by adding that scenario’s probability. After checking
all scenarios, the WF operator can determine the probability of satisfying the set-point.

Algorithm 2: Determining probability of a set-point
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In the next sections, the optimal set-point of the WF system is presented in detail
with different PDFs of wind speed. Furthermore, the effects of various parameters on the
optimal set-point of the WF system is analyzed in detail.

5. Numerical Results

In this section, different probability density functions (PDFs) are presented for the
four seasons in a year, respectively. In each season, the optimal set-point is analyzed in
detail based on the minimum probability requirements and the ratio of weight factors in
the objective function (8).

5.1. Input Data

As stated earlier, wind speed follows the Weibull distribution. In this study, we
analyze the changes in the set-point of the WF system during different seasons in a year.
Each season has different parameters for the Weibull distribution. PDFs and CDFs of wind
speed are shown in Figure 3a,b for different seasons, respectively. It can be observed the
average wind speed in fall and summer is higher than in spring and fall. This means that
the set-point in fall and summer is usually higher in spring and winter. Detailed parameters
for Weibull shape and scale are tabulated in Table 1 for different seasons.
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Figure 3. Weibull distribution model of wind speed in different seasons: (a) probability density
function; (b) cumulative distribution function.

Table 1. Detailed parameters for Weibull distribution in different seasons [23].

Seasons
Parameters for Weibull Distribution

Weibull Shape (-) Weibull Scale (m/s)

Spring 3.2 7.5
Summer 3.24 9.29

Fall 3.99 10.04
Winter 3.61 7.03
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The test WF system consists of 20 WTGs, and the close WTGs are grouped to form a
cluster. In this study, we assume that 20 WTGs are grouped into 4 clusters, and each cluster
has 5 WTGs, as shown in Figure 1. All WTGs in the WF system has the same configuration,
and detailed information for WTGs is presented as follows [24].

• The rated power is 10 MW;
• The minimum operation point is 10% of the rated power, i.e., 1 MW;
• The maximum ramp-up/ramp-down is 20% of the rated power, i.e., 2 MW.

To determine the optimal set- point of a WF system and analyze the effectiveness of
the proposed method, the multi-objective stochastic optimization model is implemented in
Visual Studio C++ integrated with IBM ILOG CPLEX 12.6 [25].

5.2. Determine Optimal Set-Point of WF in Spring with a Large Scenario Set

In this section, a detailed analysis of the optimal set-point of the WF system is pre-
sented with wind speed data in spring. The optimal set-point of the WF system is the total
energy that the WF system injects into the power system during a day with a wind speed
profile in spring. The scheduling horizon is a day, and each interval is set to 1 h. The effects
of minimum probability requirement and ratio of weight factors on the set-point of WF are
also presented in detail.

In order to ensure the accuracy of the proposed method, we generate 10,000 scenarios.
However, a large number of scenarios increases the computation burden for the simulation
system. Therefore, Algorithm 1 is used to reduce the number of scenarios to 1000. In the
first case study, the ratio of weight factors (α/β) is fixed to 1/1, and the minimum probability
requirement in constraints (15) is varied from 0.1 to 0.95. The optimal set-point of the
WF system is shown in Figure 4. It is easy to observe that the set-point of WF decreases
if the minimum probability requirement increases. The set-point is nearly 1400 MWh if
the minimum probability requirement is 0.1. This means that the WF can only guarantee
to satisfy the set-point (i.e., 1400 MWh) with a probability of 10% in real-time operation.
However, if the set-point reduces to nearly 950 MWh, the WF can guarantee to satisfy this
set-point with a probability of up to 95% in real-time operation. The actual probability of
fulfilling a given set-point is shown in detail in the second axes of Figure 4. It requires
a trade-off between maximizing the set-point of WF and maximizing the probability of
satisfying that set-point. This is because the WF operator may face a massive penalty for
the power mismatch between the actual output power and the set-point of output power
during the real-time operation of the power system. Therefore, it can be concluded that the
set-point should be set at around 1000 MWh in this season, and the WF can guarantee to
fulfill this set-point with a probability of up to 85%.
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Figure 4. The set-point of WF with different values of minimum probability requirement.
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In the second case study, the minimum probability requirement is set to 0.85 to avoid
the penalty for power mismatch, while the weight factor α is varied from 0 to 1. The value
of α close to 1, the WF operator tended to pay more attention to the maximum the set-point
of the WF system. By contrast, if the value of α close to 0, the WF operator tends to pay
more attention to the high probability of fulfilling this set-point in real-time operation
(i.e., reduce the uncertainty of the output power of WF). Depending on information from
TSOs, such as the selling price and the penalty for mismatch power, the WF operator will
determine the ratio of weight factors (α/β) to take a trade-off between the profits from
selling wind power and the possible penalty of power mismatch. It can be observed
from Figure 5 that the set-point of the WF system is determined with different values of
the weight factor α. In order to ensure the probability of satisfying the set-point from
90% in real-time operation, the set-point of the WF system should be set in a range from
800 MWh to around 1000 MWh, which corresponds to the value of the α weight factor
from 0.05 to 0.8.
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Figure 5. The set-point of WF with different values of weight factor (α).

Finally, the effects of the value of weight factor α and the minimum probability require-
ment on determining the set-point of the WF system are shown in Figure 6. In this case
study, the value of weight factor α was varied from 0.05 to 1, and the minimum probability
requirement is varied from 0.5 to 0.9. It can be observed from Figure 6 that the effect of
the minimum probability requirement on the set-point of the WF system is negligible,
especially in the case of the small value of α, while the value of α has a high effect on the
set-point of the WF system. The maximum set-point of the WF system is 1160 MWh, corre-
sponding to a value of α of 1 and the minimum probability requirement of 0.5. However, as
mentioned earlier, the value of α and the minimum probability requirement is determined
based on a trade-off between the profits from selling wind power and the penalty of power
mismatch between the actual output and the committed power of the WF system. Based
on the above-detailed analysis, the WF operator can easily determine the optimal set-point
with any value of α and the minimum probability requirement.

5.3. Comparison of the Optimal Set-Point with and Without the Proposed Method

To show the effectiveness of the proposed method, a detailed comparison of the set-
point of the WF system will be presented using the proposed method and not using the
proposed method. As stated in Section 4, the proposed method is to determine the optimal
set-point of a WF system by making a trade-off between maximizing the output power
of the WF system and maximizing the probability of satisfying this set-point in real-time
operation. This can reduce the penalty for mismatch power between the set-point and
the actual output power. Without the proposed method, the WF operator usually sets
the set-point based on the history data (i.e., PDF). However, this method can lead to the
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following two problems, (1) a low set-point with a high probability and (2) a high set-point
with a low probability. Both cases can reduce the profit of the WF system.
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Therefore, in this section, we analyze the effect of the set-point on the profit of a WF
system using the wind speed profile in spring. Without the proposed method, we assume
that the set-point of a WF system is 750 MWh and 1000 MWh. Based on the probability
density function in Section 5.1, the corresponding probability to satisfy each set-point in
real-time operation is easily determined. The detailed set-points of the WF system and the
probability of fulfilling these set-points are tabulated in Table 2.

Table 2. Set-point of WF with and without the proposed method.

Without Proposed Method With Proposed Method

Set-Point (MWh) Probability Set-Point (MWh) Probability

750 0.99 980 0.87
1000 0.81 - -

To calculate the profit of the WF system, we assume that the selling price is
100 KRW/kWh, and the penalty for the mismatched power is 500 KRW/kWh. The profit
of the WF system is calculated based on the set-point and the amount of mismatch power
between the set-point and the actual output power in real-time operation, as shown in
Table 3. When the set-point is small (i.e., 750 MWh), the penalty for the mismatched
power decreases significantly because the WF system can ensure to meet this set-point
with the probability of 0.99. However, the amount of selling power to the power system is
also small and thus significantly reducing the profitability of the WF system. Conversely,
when the set-point increases (i.e., 1000 MWh), the probability of fulfilling the set-point
in real-time operation is only 0.81. Therefore, the WF system often faces a high penalty
due to mismatched power. That is the main reason why we proposed a new algorithm to
determine the optimal set-point of the WF system to maximize the total profit for the WF
system. It can be seen that the optimal set-point is 980 MWh obtained using the proposed
method, which provides the highest profit with a different amount of mismatch power
between the set-point and the actual output power.
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Table 3. Profit of WF with and without the proposed method (×103 KRW).

Set-Point (MWh)
Possible Power Mismatch (MWh)

10 20 30 40 50

750 74,200 74,150 74,100 74,050 74,000
1000 80,050 79,100 78,150 77,200 76,250

980 (optimal case) 84,610 83,960 83,310 82,660 82,010

5.4. Optimal Set-Point of WF in Different Seasons

In the previous sections, the effects of the various parameters on determining the
set-point of the WF system were analyzed in detail using the wind speed data in spring. In
this section, the set-point of the WF system is determined with different input parameters of
wind speed for other seasons (i.e., summer, fall, and winter), and the minimum probability
requirement is varied from 0.1 to 0.95.

The set-point of the WF system is shown in detail in Figure 7a–c for summer, fall, and
winter, respectively. Similar to the discussion in Section 5.2, the set-point of the WF system
will decrease if the minimum probability requirement increases. To ensure power supply
reliability (i.e., reducing the power mismatch between the set-point of WF’s output power
and the actual output power), the minimum probability requirement is usually set greater
than or equal to 0.85. If the minimum probability requirement is varied from 0.85 to 0.95, it
can be seen from Figure 7a–c that the set-point changes from 1710 MWh to 1760 MWh for
summer, from 2180 MWh to 2430 MWh for fall, and from 840 MWh to 870 MWh for winter,
respectively. The change in the set-point of the WF system is reasonable with the given
input data of wind speed in Table 1. The average value of the wind speed in fall and
summer is much larger than that in winter. Therefore, although the minimum requirement
probability is the same, the WF operator could determine a high set-point for the WF
system during summer and fall, while this value usually decreases significantly during
spring and winter. A detailed comparison of the set-point of the WF system is analyzed in
detail in the next section.

5.5. Comparison of the Optimal Set-Point of WF among the Four Seasons

In this section, the set-point of the WF system and the actual probability to satisfy each
set-point in real-time operation are presented and compared among the four seasons in a
year with different wind speed parameters. In this case study, the weight factor α is varied
from 0 to 1, and the minimum probability requirement is set to 0.85 to avoid a penalty for
power mismatch. If the value of α is 0, the WF operator is only interested in maximizing
the probability of satisfying the set-point of a WF system. Therefore, the set-point is set
to 0, and the probability of fulfilling this set-point is 1. On the contrary, if the value of
α varies from 0.4 to 1, the set-point of the WF system does not change much, as shown
in Figure 8a. Therefore, the set-point of WF systems can be set at 980 MWh, 1760 MWh,
2430 MWh, 870 MWh for spring, summer, fall, and winter, respectively. It can be observed
that the set-point of WF is largest in the fall and the smallest in winter. Corresponding to
each set-point of the WF system, the WF operator always ensures that the probability of
fulfilling the set-point in real-time operation is greater than or equal to 0.85, as shown in
Figure 8b.

To show more clearly the difference in the set-point of the WF system during different
seasons in a year, the detailed set-points of the WF system are tabulated in Table 4 with the
optimum value in spring as a reference case. It can be observed that the set-points of the
WF system increase significantly during summer and fall. If the value of α varies from 0 to
1, the increase in the set-point of WF could be from 72% to 100% in summer and 140% to
153% in fall compared with the set-point in spring, while the set-point in winter is slightly
lower than in spring (i.e., from −7% to −12%).
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Figure 7. The set-point of WF with a different value of minimum probability requirement: (a)
summer; (b) fall; (c) winter.

In this study, a detailed analysis of the set-point of the WF system was presented
with different weight factors in the multi-objective function and wind speed profiles. It
can be seen that the proposed method plays an important role in determining the optimal
set-point for the WF system. This enables the WF operator to maintain a high profit by
avoiding a penalty for any mismatch power between the set-point and the actual output
power in real-time operation. The proposed method can be integrated into the energy
management system of the WF system, and the optimal set-point is updated with any input
information, such as wind speed profile and weight factors. In this study, the proposed
method was tested with seasonal input data, and the optimal set-point is determined for a
day in the season. However, the proposed method is also applicable to the different time
scheduling horizons (e.g., an hour, a day, a week, etc.) with the corresponding probability
density functions.
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Figure 8. Comparison of the optimal results among different seasons: (a) the set-point of WF; (b) the
probability of fulfilling the optimal set-point.

Table 4. Set-point of WF in different reasons and value of weight factors.

Value of Alpha
Increase in the Set-Point of WF

Spring (%) Summer (%) Fall (%) Winter (%)

0 0.00 0.00 0.00 0.00
0.1 0.00 79.03 140.46 −7.64
0.2 0.00 100.11 141.34 −7.16
0.3 0.00 80.02 122.18 −14.33
0.4 0.00 72.10 143.30 −18.10
0.5 0.00 83.10 144.43 −12.61
0.6 0.00 83.10 153.06 −12.61
0.7 0.00 83.10 153.19 −10.02
0.8 0.00 83.10 153.19 −10.02
0.9 0.00 78.72 147.14 −11.21
1 0.00 78.83 147.14 −11.21

6. Conclusions

In this study, a multi-objective stochastic optimization model was proposed to de-
termine the set-point for a WF system. The first objective is to maximize the set-point of
the WF system, while the second objective is to maximize the probability of fulfilling that
set-point in real-time operation. The proposed strategy mainly focuses on determining the
set-point of the WF system by a trade-off between these two objectives considering the
ratio of the weight factors in the multi-objective function and the minimum probability
requirement. A comparison of the profit of the WF system using the proposed method
and not using the proposed method were analyzed in detail. The results indicate that the
WF system can always ensure the maximum profit at the optimal set-point achieved by
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the proposed method. Using the proposed method not only maintains a high set-point for
the WF system but also ensures a high probability for satisfying this set-point in real-time
operation. According to the wind speed profile in spring, the set-point of the WF system
is set from 800 MWh to 1000 MWh with the value of α from 0.05 to 0.8 to ensure the
probability of satisfying the set-point greater than or equal to 0.95 in real-time operation. A
similar analysis also has been carried out with different wind data for four seasons, and the
set-point of WF systems should be set at 980 MWh, 1760 MWh, 2430 MWh, 870 MWh for
spring, summer, fall, and winter, respectively. It can be observed that the set-point of the
WF system is largest in fall and is lowest in winter. With these set-points of WF in the four
seasons, the WF operator always ensures that the probability of fulfilling these set-points
in the real-time operation is greater than or equal to 0.85.
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Nomenclatures:

Sets
T Scheduling horizon
S Set of scenarios
N Set of WTGs
Indices
t Index of time intervals
s Index of scenarios
n Index of WTGs
Parameters

f (v), F(v) Probability density function and cumulative distribution function of wind speed

k, λ Weibull shape and scale parameters

vs,t Wind speed at t in scenario s

Vs Wind speed vector in scenario s

probs Probability of scenario s

PWTG
n,s,t Output power of WTG n at t in scenario s

PWTG
n,rate Rated output power of WTG n

vcut−in, vcut−out Cut-in, cut-out wind speed

vrate Rated wind speed of WTGs

POut
WF,s,t Output power of the WF system at t in scenario s

PSch
WF Optimal set-point of the WF system

prob
(

P ≥ PSch
WF

)
Probability of fulfilling the set-point in real-time operation

probreq Minimum required probability of fulfilling the set-point in real-time operation

α, β Weigh factors of different objective

POut
WF,min Minimum set-point of the WF system

POut
WF,max Maximum set-point of the WF system

POut
WF,rate Rated output power of the WF system
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